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Abstract—Traditional datasets for human activity recognition
(HAR) are typically obtained from single-channel radar, which
does not effectively utilize the target feature information. This
paper introduces a multi-channel fusion HAR algorithm based
on millimeter-wave radar. The algorithm leverages the multi-
channel data acquisition capability of multi-input multi-output
(MIMO) radar and employs three independent MobileNetV3
lightweight network models for classification and recognition.
Subsequently, a hard classification algorithm is utilized to fuse
the multi-channel information, enabling the identification of
human behaviors. Experimental results indicate that the proposed
algorithm achieves an excellent classification performance of
97.05% on the experimental dataset. Moreover, it demonstrates
a marked improvement in accuracy and stability compared to
traditional single-channel classification methods. Furthermore,
when compared with commonly used classification networks for
human behavior, MobileNetV3 used in the algorithm highlights its
ability to achieve commendable classification performance with
minimal computational cost. This validates the proposed method
as a viable lightweight hardware-transplantation approach.

Index Terms—multi-input multi-output (MIMO), human activ-
ity recognition (HAR), multi-channel fusion, lightweight neural
network

I. INTRODUCTION

With the continuous advancement in the field of artificial
intelligence and the maturation of Internet of Things (IoT)
technologies, human activity recognition (HAR) has emerged
as a subject of significant interest for further research in
various domains such as public safety, smart elderly care,
interactive gaming, and traffic monitoring [1]–[4]. Among the
various methods of HAR, the use of millimeter-wave radar
technology has gained favor due to its advantages of con-
tinuous monitoring, non-intrusive nature, and lack of privacy
concerns. The implementation of millimeter-wave radar for
HAR currently involves several approaches.

The first kind of approach involves the application of logical
judgments and threshold detection, which offers simplicity
and rapid response processing. J. Baik et al. proposed a
method that increases the number of judgment threshold fea-
tures by adding two additional detection features, which are
centroid distance and distance width, to the conventional speed
and acceleration, achieving certain classification results using
these four features [5]. However, the primary limitation of this
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method is the poor classification performance due to false
negatives and false positives, and the number and accuracy
of thresholds also affect the performance of algorithm.

The second kind of approach utilizes traditional machine
learning methods, relying on features extracted from sliding
windows and classic machine learning algorithms. A. Shrestha
et al. processed continuous data using a sliding window
approach and introduced Sequential Forward Selection (SFS)
as a feature selection tool to further optimize the classification
performance of the Support Vector Machine (SVM) [6]. F. J.
Abdu et al. employed Canonical Correlation Analysis (CCA)
algorithm in conjunction with the SVM classifier to create a
special discriminant vector for activity recognition [7]. Never-
theless, traditional machine learning methods are plagued by
the complexities of manual feature extraction and performance
constraints.

Lastly, there is the increasingly popular method of deep
learning, with an increasing number of high-performance net-
works being applied to HAR. This classification approach has
gradually become mainstream [8]–[12]. J. Maitre et al. proposed
a deep neural network (DNN) model consisting of a con-
volutional neural network (CNN), a long-short-term memory
(LSTM) network, and a fully connected neural network for
HAR [8]. H. Li et al. proposed a framework based on a
bidirectional LSTM network that integrates various methods
for multi-modal sensor fusion in HAR [9]. Deep learning
eliminates the tedious step of feature extraction in traditional
machine learning, allowing raw datasets to be trained directly.
However, datasets are typically obtained from single-channel
radar data, which fails to effectively utilize the target feature
information captured by MIMO radar.

Building upon this research, this paper presents a human
activity recognition algorithm based on MIMO millimeter-
wave radar. Specifically, after necessary preprocessing of the
multi-channel echo data acquired by the MIMO radar, the
data are classified through three independent, lightweight Mo-
bileNetV3 network models. Subsequently, a hard classification
algorithm is utilized to integrate the multi-channel information,
yielding the final recognition outcomes. To validate recognition
performance of the algorithm, a dataset comprising 600 groups
of each of the six common human activities is collected for
verification. Experimental results indicate that the algorithm
significantly improves recognition accuracy compared to tra-



ditional single-channel HAR algorithms. Simultaneously, our
comparative experiments demonstrate that the proposed algo-
rithm is a viable lightweight hardware-transplantation method.

II. EXPERIMENTAL SETUP AND DATA PROCESSING

A. Experimental Setup

The primary hardware components utilized in this ex-
periment include the 60 GHz millimeter-wave radar sensor
IWR6843, introduced by Texas Instruments (TI), and the
DCA1000 data capture card, as illustrated in Fig. 1.

Fig. 1. Experimental instruments: (a) IWR6843 millimeter-wave radar and
(b) DCA1000 data capture card

TABLE I presents the settings for the key parameters of
the experimental radar system. Each frame of data lasts for
50 milliseconds, with a total of 100 frames collected in a
single trial. The duration of data collection for each experiment
is 5 seconds. The experiment employs a configuration of 3
transmitting and 4 receiving antennas, resulting in 12 data
collection channels.

TABLE I
EXPERIMENTAL RADAR SYSTEM PARAMETER SETTINGS

Start Frequency 60 GHz
Continuous Frequency Modulation Signal Bandwidth 1200 MHz

Continuous Frequency Modulation Signal Period 50 µs
Number of Transmitter and Receiver Antennas 3 transmitters 4 receivers

ADC Sampling Frequency 2 MHz
Radar Sampling Points 64

Continuous Frequency Modulation Slope 30.018 MHz/µs
Signal Rise Time 40 µs

Signal Sampling Gap 10 µs
Frame Sampling Periods 128 chirps per frame

Maximum Detectable Distance 10 m
Maximum Measurable Velocity 8.33 m/s

In this experiment, we focus on the multi-classification of
six common human behaviors, which include waving hand,
standing up, sitting down, falling, getting up and sleeping.
Illustrations of these six behaviors are shown in Fig. 2. To
enhance the generalization ability of the recognition results, all
behavior data collection in this study is performed from dif-
ferent angles and distances. The specific experimental scenario
model is depicted in Fig. 3, where the experiment is conducted
in a relatively open space. All human behaviors are collected
within a 5*5 meter square area, with the radar positioned at a
height of 2.8 meters above the ground.

There are 10 participants, with heights ranging from 1.6
m to 1.85 m. Each participant performs behaviors facing the
radar, but their orientation relative to the radar is random. The
specific behavior dataset is introduced in TABLE II. While

Fig. 2. Schematic diagram of six common human behaviors

Fig. 3. Experimental scenario model

the radar detection range may have included interference from
other static objects, the presence of rapidly moving dynamic
objects is avoided. The actual experimental setup is depicted
in Fig. 4.

TABLE II
EXPERIMENTAL RADAR SYSTEM PARAMETER SETTINGS

Behavior Types Collected 6
Number of Targets 10 individuals

Data Volume per Single Target and Single Behavior 60
Target Activity Range 5 m*5 m

Radar Height from Ground 2.8 m
Total Dataset Data Volume 3600

Fig. 4. Actual experimental scenes: (a) empty scene and (b) HAR scene

B. Experimental Data Processing

In the 3-transmit 4-receive mode used in this experiment,
the radar RF transmission process is altered compared to the
single-transmit mode. The radar divides each chirp into 3 time
blocks, and during different time blocks, the 3 TX antennas
sequentially transmit their signals, while the 4 RX antennas
simultaneously receive the echo signals. This allows for radar



data collection under the 3-transmit 4-receive mode. After the
data obtained from each channel is stored as a row vector in a
specific order, we obtain the initial single-pulse sampling data
matrix.

Fig. 5. Radar signal transmission model in 3-transmit 4-receive mode

After preprocessing the intermediate frequency signals and
reshaping the data matrix, this paper obtains a radar three-
dimensional data matrix. For the data from each channel,
the Fast Fourier Transform (FFT) in the range dimension is
performed, which is applied to each row of the data matrix.
The specific expression for the FFT is as follows:

TR(m,k) =

Ns∑
u=1

∥WuS(n−u,m)e
−j2πku/N∥2 (1)

where TR(m,k) represents the amplitude of the mth chirp after
discrete FFT at the digital frequency point 2πk/N ,where N is
the number of points for the discrete FFT, Wu is a predefined
Hamming window function, and S(n−u,m) denotes the data of
the n−u sample point of the mth chirp, where n represents the
sample point, and u is the integration variable. The obtained
Range-Time map is shown in Fig. 6.

Fig. 6. Obtained Range-Time map

In practice, during the radar data collection process, in ad-
dition to human targets, many other objects can interfere with
the echo signals, affecting the identification of the distance
component. For these constant direct current (DC) components
that are present in each collection, this paper employs intra-
frame cancellation methods to remove them. The calculation
formula is as follows:

MTI(m,k) = TR(m,k) − TR(m+j,k) (2)

where MTI(m,k) represents the Range-Time map after can-
cellation, and j denotes the span of continuous frequency
modulation for each cancellation. After the aforementioned
processing, the final Range-Time map can be obtained, as
shown in Fig. 7.

After the application of range-FFT to the matrix data of
each frame following clutter suppression, the sum of each
row is computed. Subsequently, the maximum value is sought
across each column, and the index of this maximum value is
interpreted as the target position within the frame. A Doppler
dimension FFT is then performed at the target position of each

Fig. 7. Processed Range-Time map for 6 types of behaviors: (a) falling (b)
waving hand (c) standing up (d) sitting down (e) sleeping (f) getting up

frame. Through a process analogous to the acquisition of the
Range-Time map described previously, a Frequency-Time map
is obtained.

III. MULTI-CHANNEL FUSION ALGORITHM FOR HUMAN
BEHAVIOR INFORMATION BASED ON MOBILENETV3

A. Network Classification Architecture Based on MobileNetV3

To enhance the generalization ability of the algorithm,
this paper proposes to use the MobileNetV3 network, which
has shown superior performance in the field of lightweight
classification, as the basic architecture for the classification
network.

The core idea of the MobileNetV3 is to use depthwise
separable convolutions to replace the traditional pointwise
convolution methods, thereby significantly reducing the com-
putational complexity and achieving network lightweighting.
Depthwise separable convolutions consist of two steps: depth-
wise convolution and pointwise convolution, as illustrated in
Fig. 8. Depthwise convolution refers to the application of con-
volution to each input channel separately, resulting in multiple
output channels. Pointwise convolution involves convolving
each output channel, thus merging the output channels from
multiple depthwise convolutions. This method of depthwise
separable convolution reduces the amount of computation and
the number of parameters while maintaining good accuracy
and generalization capabilities.

The core structure of MobileNetV3 is the bottleneck (bneck)
structure, as shown in Fig. 9. The structure begins with an
expanded convolution, which increases the number of channels
through a 1*1 convolution. This is followed by a depth-
wise separable convolution. MobileNetV3 then introduces a
Squeeze-and-Excitation (SE) channel attention mechanism.
After passing through the residual structure of the linear
bottleneck layer, the h-swish activation function is used [13].
This maintains performance while improving computational
efficiency.

Fig. 8. Depthwise convolution in depthwise separable convolution

Compared to traditional CNN represented by ResNet, Mo-
bileNetV3, through techniques such as depthwise separable



Fig. 9. MobileNetV3 bneck structure

convolutions and the Squeeze-and-Excitation (SE) channel
attention mechanism, can significantly reduce computational
complexity and the number of parameters while maintaining
good accuracy and generalization capabilities. This has made
it one of the important models for efficiently performing visual
tasks such as image classification and object detection on
mobile devices.

B. Multi-Channel Information Fusion Algorithm Based on
Hard Classification

In typical HAR tasks, limited by radar hardware or other
reasons, other algorithms often use single-channel radar data
for HAR, which can lead to two issues. Firstly, single-channel
radar systems can only provide information from a single
angle or direction, which is insufficient for acquiring a com-
prehensive spatial understanding of target behaviors. Secondly,
datasets acquired using a single radar are prone to environmen-
tal noise and interference, leading to significant fluctuations in
training and testing results, particularly on more lightweight
network architectures. By integrating multi-channel data for
HAR, we can not only extract target behavior features from
different orientations and at multiple levels but also enhance
the generalization ability of the HAR task through certain
channel information fusion algorithms, thereby improving task
performance.

For the 3-transmit 4-receive MIMO radar used in this
experiment, as shown in Fig. 10, in order to fully obtain
information from different angles, the experiment plans to use
the data from channels 1, 8, and 11 to synthesize target infor-
mation. As illustrated, these three channels can fully capture
target behavior information from multiple angles for HAR.
After appropriate preprocessing, the information from the three
channels is processed through three independent MobileNetV3
network classification architectures for classification training.

Fig. 10. Data channels used in 3-transmit 4-receive MIMO radar

Hard classification is a fundamental classification method

in the fields of machine learning and pattern recognition,
where each sample is assigned a clear category label. For
a given input sample, a hard classifier outputs a category,
usually the index or name of the category. Compared to
the soft classification used in neural network training, hard
classification has a stronger ability to resist overfitting in small
datasets. Moreover, in the recognition of easily confused hu-
man behaviors, hard classification can better integrate the target
feature differences from different channels, thus increasing the
recognition accuracy of easily confused behaviors.

The experimental multi-channel information fusion algo-
rithm based on hard classification decision is illustrated in Fig.
11. Initially, the range echo data from different channels are
classified using independent network architectures to obtain
decision vectors. Subsequently, a non-probabilistic model is
applied to the decision vectors of each channel, selecting
the decision vector that appears most frequently among those
representing different target behaviors as the final decision
vector, which is then used for the multi-class classification
task of behavioral targets.

Fig. 11. Multi-channel information fusion model based on hard classification

In cases where discrimination is not possible, a further hard
classification is performed on the frequency-time maps from
different channels to obtain classification results. If discrim-
ination still fails, a reclassification based on the independent
lightweight network model for different channels is conducted
for the easily confused behaviors recorded in the aforemen-
tioned two rounds of decision-making. Unlike the previous two
rounds of discrimination, in this round, the test set categories
are only labeled with the recorded easily confused behaviors,
allowing for a targeted hard classification to obtain the final
decision label. The specific multi-round hard classification
process is depicted in Fig. 12. The aforementioned method
not only comprehensively integrates multi-channel information
for more accurate judgments but also synthesizes multi-domain
information and addresses easily confused human behaviors,
thereby effectively achieving the task of HAR.

Fig. 12. Multi-round hard classification



IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Network Training Details
Regarding the division of the training set, for the 6 types of

behaviors, each behavior has a dataset of 600. The experiment
uses a 7:3 ratio to divide the training and test sets, meaning
each behavior has a training set of 420 and a test set of 180.
The experiment samples using a uniform sampling scheme to
ensure the generalization ability of the experiment.

As for the setting of experimental hyperparameters, the
experiment uses the Adam optimizer and cross-entropy loss
function for training. The training learning rate is set to 0.001,
with a total of 100 epochs for training. The GPU device used
for training is the RTX4070Ti.

B. Ablation Experiment Results of Single-Channel and Multi-
Channel

In the ablation experiments, we conduct classification ex-
periments using the MobileNetV3-s network architecture for a
single channel. To mitigate the potential impact of insufficient
data volume on the results of the single-channel ablation
experiment, we integrate the data from three channels as the
training and test sets for the single-channel experiment, thereby
ensuring that the training data volume for the multi-channel
and single-channel experiments is identical. The confusion
matrices for multi-channel classification based on hard clas-
sification algorithm decisions and single-channel classification
are depicted in Fig. 13(a) and (b) respectively. The average
accuracy comparison is presented in TABLE III.

We can observe that, under the condition of equal training
data volume, the multi-channel classification based on hard
classification algorithm decisions not only comprehensively
integrates target behavior information but also demonstrates
a significant improvement in HAR accuracy. Moreover, it
effectively enhances the generalization ability of recognition.

Fig. 13. Ablation experiment classification confusion matrices: (a) multi-
channel classification and (b) single-channel classification

TABLE III
ABLATION EXPERIMENT AVERAGE TRAINING ACCURACY COMPARISON

Different Channel MobileNetV3 Model Average Accuracy
Three-Channel Fusion 97.05%

Channel 1 94.04%
Channel 8 94.52%
Channel 11 93.25%

C. Comparative Experiment Results with MobileNetV3 and
Different Network

For the comparative experiment, we select several network
structures that are popular in lightweight networks, including
GhostNet and EfficientNetv2-s, as well as traditional CNN
networks such as ResNet18, and Vision Transformer (ViT)
networks with transformer structures. Fig. 14 display the clas-
sification confusion matrices for MobileNetV3-s, GhostNet,
EfficientNetv2-s, ResNet18, and ViT networks. TABLE IV
presents the comparison of average training accuracy, the
number of parameters and floating point operations (FLOPs)
for each network model. It can be seen that MobileNetV3
achieves a high classification accuracy with extremely small
computational costs, demonstrating unique advantages in sce-
narios where radar device integration and small data processing
are required.

Fig. 14. Comparative experiment classification confusion matrices: (a)
MobileNetV3-s (b) GhostNet (c) EfficientNetv2-s (d) ResNet18 (e) ViT



TABLE IV
COMPARISON OF AVERAGE TRAINING ACCURACY AND NUMBER OF

PARAMETERS AND FLOPS FOR EACH NETWORK MODEL

Network Model Average Accuracy Parameters FLOPs
MobileNetV3-s 97.05% 1.62M 0.061G

GhostNet 96.75% 4.40M 0.22G
EfficientNetv2-s 97.42% 20.19M 2.89G

ResNet18 97.13% 11.2M 1.82G
ViT 95.23% 86.5M 16.86G

In summary, through comparative and ablation experiments,
it can be observed that the multi-channel classification algo-
rithm based on MobileNetV3 proposed in this paper achieves
superior HAR performance with a smaller computational cost
in application scenarios involving embedded devices and small
datasets. Compared to other traditional HAR algorithms, it
exhibits strong advantages.

V. CONCLUSIONS

This paper proposes an algorithm for HAR using MIMO
millimeter-wave radar, which is based on the MobileNetV3
network and multi-channel information fusion. Through ex-
periments, it can be observed that the proposed multi-channel
information fusion algorithm outperforms traditional single-
channel algorithms in terms of recognition accuracy and
stability and the recognition accuracy reaches 97.05%. For
comparative experiments, the MobileNetV3 network achieves
a relatively high recognition accuracy with smaller parameter
count and FLOPs compared with other popular HAR classifi-
cation networks, indicating that the MobileNetV3 satisfies the
condition of achieving superior HAR classification with min-
imal computational cost, and represents a viable lightweight
hardware-transplantation recognition approach.
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