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Abstract—This paper proposes a novel positioning algorithm
based on angle of arrival (AoA) in Bluetooth low energy (BLE),
utilizing machine learning (ML) to achieve high-precision indoor
positioning. Although various positioning methods use BLE, such
as radio fingerprinting and proximity methods, the AoA method
is known for its superior positioning accuracy and has received
significant attention. However, similar to other methods, it is
susceptible to the degradation of the positioning accuracy caused
by the reflection, obstruction, and diffraction of radio waves
by walls and furniture. To address this issue, we exploit ML
techniques in the weighted least square (WLS) method in BLE-
AoA systems. Using ML models trained on AoA datasets with su-
pervised learning, the weights in the WLS method can be adjusted
in a data-driven manner, thereby enhancing positioning accuracy.
As the ML models, this paper utilizes weight learning model
(WLM), random forest (RF), and multi-layer perceptron (MLP)
and validates their effectiveness through computer simulations
using publicly available datasets.

I. INTRODUCTION

Indoor positioning, a technology for tracking and identifying

the location of people or devices within indoor spaces, has seen

an increasing demand over the past decade [1]. Its usage ranges

widely from indoor navigation (in hospitals, office buildings,

and airports) to object localization (in warehouses for goods

and household items) [2]. Global navigation satellite system

(GNSS) is a highly accurate and effective technology for

use in outdoor environments. However, positioning accuracy

is significantly degraded in indoor environments, where ex-

terior walls create non-line-of-sight (NLOS) conditions [3].

Consequently, various indoor positioning technologies have

been developed to replace GNSS, many of which utilize

wireless technologies, such as ultra-wideband (UWB), Wi-Fi,

and Bluetooth [4]. Among these technologies, Bluetooth low

energy (BLE) is anticipated to play a crucial role in building

wireless communication infrastructure for Internet of things

(IoT) technologies owing to its low power consumption [5].

BLE offers multiple positioning metrics, each of which has

its own advantages and disadvantages. Received signal strength

indicator (RSSI) methods include proximity and fingerprinting;

however, both achieve only meter-level accuracy, which is

insufficient [6]. Additionally, methods such as time difference

of arrival (TDoA) in GNSS or time of flight (TOF) in light

detection and ranging (LiDAR) and ultrasonic sensors can

lead to significant positioning errors owing to minor clock

discrepancies between the transmitter and receiver, making

them impractical for BLE, which assumes inexpensive devices

[7]. However, BLE in Bluetooth 5.1 and beyond is equipped

with direction-finding capabilities, enabling the acquisition of

angle of arrival (AoA) using BLE devices [8]. Positioning

methods using AoA can achieve centimeter-level accuracy;

therefore, they are considered the most precise among BLE-

based positioning methods and are attracting significant atten-

tion [9]. Therefore, this paper focuses on the AoA method

for BLE. In the AoA method, two or more receivers with

known positions receive direction-finding signals transmitted

by a transmitter, and measure the AoA. The measured AoA

is aggregated through the network into an upstream central-

ized system, where the estimated position coordinates of the

transmitter are calculated.

Algorithms such as multiple signal classification (MUSIC)

method calculate the AoA, and algorithms based on triangu-

lation or the least square (LS) method calculate the estimated

position coordinates [10]. Although the AoA method boasts

high positioning accuracy, it is not immune to the effects

of reflection, diffraction, and obstruction of radio waves by

walls and furniture, which degrade positioning accuracy [11].

These radio propagation characteristics vary depending on

the dimensions and layout of the indoor environment, which

makes it challenging to address them using statistical methods.

Therefore, many studies have explored the application of

machine learning (ML) techniques to solve this issue. For

example, [12] effectively addressed the AoA measurement

error by integrating ML into the MUSIC algorithm.

In this study, we aim to enhance positioning accuracy by

introducing ML into existing positioning algorithms. Specifi-

cally, we focus on the latest positioning algorithms based on

the weighted LS (WLS) method [13], and propose a method to

adjust the weights using ML models in a data-driven manner.

As the ML models, this paper utilizes three ML models: weight

learning model (WLM), random forest (RF), and multi-layer

perceptron (MLP), to adjust the weights and evaluate each.

The main contribution of this paper is to demonstrate the

effectiveness of applying ML to the positioning algorithm of

the BLE-AoA method through computer simulations using

publicly available datasets created with commercially available

BLE devices [14].

The remainder of this paper is organized as follows. Sect.

II presents the system configuration and positioning algorithm



Fig. 1: Overview of AoA-Based positioning system.

of the AoA-based positioning method. Sect. III explains the

proposed machine-learning-based positioning algorithm. Sect.

IV first describes the dataset and ML settings used for the

simulations and then discusses the effectiveness of the pro-

posed method based on the simulation results. Finally, Sect. V

provides a summary and conclusion.

II. INDOOR POSITIONING USING AOA

A. Positioning system configuration

Fig. 1 shows the configuration of the positioning system

assumed in this paper. The transmitter, installed at an arbi-

trary location within the positioning environment, transmits

direction-finding signals to the receivers fixed on walls and

other surfaces. Each receiver calculates the AoA based on

the received signal, and the calculated AoA is aggregated

into a centralized system through the network. In the cen-

tralized system, the estimated position coordinates of the

transmitter are calculated using positioning algorithms based

on the triangulation method or LS method. In this study, we

conducted offline simulations using a publicly available dataset

that recorded the AoAs aggregated in a centralized system.

Additionally, BLE allocates channels 37, 38, and 39 to transmit

signals in the advertising channels. However, this paper only

uses data from channel 37 to ignore the characteristic changes

due to the different frequencies used.

B. Positioning algorithm

Fig. 2 is an overview of the AoA-based indoor positioning

environment. The green squares represent the fixed receivers

(RX1 to RX4), the blue plot represents the transmitter (TX).

Let the total number of observed AoA data points be K, and

the k-th AoA data point observed at the j-th RX be denoted

by θj,k [degree]. In vector form, θk = [θ1,k, θ2,k, θ3,k, θ4,k].
The RX and TX position vectors are denoted as aj =
[

xRXj , yRXj
]T

(j ∈ {1, 2, 3, 4}), tk =
[

xTX
k , yTX

k

]T

, respec-

tively. The role of positioning is to estimate the position of

TX p̂k = [x̂k, ŷk]
T from observed AoA data θk, which is

represented by red plot.

Fig. 2: AoA-Based estimation of transmitter position.

In the AoA method, the intersection of the AoAs is con-

sidered the estimated position coordinate. However, due to

measurement errors in the AoAs, a single intersection point is

rarely obtained, and only a candidate region for the estimated

position coordinates is identified. Therefore, algorithms such

as the LS method are used to determine the estimated position

coordinates from the candidate region. In this algorithm, the

estimated position vector is determined as the positions that

minimize the sum of the squared perpendicular distances Dk

from the red lines corresponding to nj,k, which is a unit

direction vector given by

nj,k =
[

cos
(

θj,k
180 π

)

, sin
(

θj,k
180 π

)]T

. (1)

The distance Dk is expressed as

Dk =

4
∑

j=1

(aj − p)
T
(

I2 − nj,kn
T

j,k

)

(aj − p) , (2)

where p is a position vector and I2 is the identity matrix with

size of two. According to the LS approach, the position vector

p that minimizes Dk, denoted as p̂k, is defined as

p̂k = argmin
p

Dk. (3)

To find the optimal vector p̂k, Dk is partially differentiated

concerning p, and the solution with the minimum value Dk is

formulated as

4
∑

j=1

(

I2 − nj,kn
T

j,k

)

(aj − p̂k) = 0. (4)

Denoting matrix and vector as

Rk =

4
∑

j=1

(

I2 − nj,kn
T

j,k

)

, (5)

qk =
4

∑

j=1

(

I2 − nj,kn
T

j,k

)

aj , (6)
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Fig. 3: Schematic of WLM-aided positioning algorithm.

(4) is simply expressed as

p̂k = R−1
k qk. (7)

However, LS is vulnerable to uncertainties in the observed

values and cannot minimize the mean square error (MSE),

i.e., the variance of the estimate [15].

WLS is an effective method to address this problem, and it

utilizes

Rk =

4
∑

j=1

cj
(

I2 − nj,kn
T

j,k

)

, (8)

qk =
4

∑

j=1

cj
(

I − nj,kn
T

j,k

)

aj , (9)

instead of (6). Here, cj ∈ [0, 1] is a weight coefficient for each

AoA, and cj = 0 means that RXj is not used in the calculation.

Appropriately adjusting cj can improve positioning accuracy;

however, the adjustment method has not been sufficiently

studied yet. If the statistical model of the observations is

well-formulated, minimum MSE (MMSE) filtering should be

applied. Otherwise, it is difficult to determine the optimal

weight coefficients analytically. Therefore, this paper proposes

a novel positioning algorithm that adjusts the weight cj in a

data-driven manner using ML models.

III. MACHINE LEARNING-AIDED POSITIONING

A. Weight learning model

Fig. 3 is a schematic diagram of the positioning algo-

rithm using WLM. In this algorithm, the weight vector c =
[c1, c2, c3, c4] are trainable parameters, and the positioning

accuracy is improved by using the optimal vectors obtained

through the ML-based search. ML involves a training phase,

during which the model is trained using training and validation

data, and a test phase, during which the model is evaluated

using test data. Yielding the unit direction vectors nj,k into

WLS layer (WLSL), the estimated position vector p̂k is

calculated by (7) with the assistance of weight vector c.

Fig. 4: Schematic of RF-aided positioning algorithm.

To adjust the weight c, supervised learning is conducted in

the training phase to minimize MSE loss function, which is

expressed as

E =
1

K

K
∑

k=1

‖p̂k − tk‖
2. (10)

The gradient of c based on the error function is then calculated

using the backpropagation method. The weights c are updated

by an optimization algorithm using the obtained gradients. In

the test phase, the weights are fixed to the optimized vectors

obtained in the training phase.

B. Random forest

Fig. 4 shows a schematic diagram of the positioning al-

gorithm using RF. The major difference of RF from the

weight vector c of WLM is that the weight vector ck =
[c1,k, c2,k, c3,k, c4,k] can be adjusted for each data point k. RF

is a ML model consisting of many decision trees. In this study,

100 decision trees are prepared. When θk is yielded into the

RF, each decision tree locally predicts weight vector, and the

resultant output weight vector ck of RF is selected by taking

the majority vote of these local predictions.

Here, cj ∈ {0, 1} allowing the RF to classify whether each

receiver is used (cj = 1) or not (cj = 0) for each θk. As

cj is a binary value, there are 16
(

24
)

candidates of weight

vector c. However, considering a constraint that at least two

receivers are required for calculating the two-dimensional

estimated position vector p̂k, five cases where three or more

cj,k are 0 are excluded, resulting in 11 candidate vectors: c ∈
{[0, 0, 1, 1],[0, 1, 0, 1],[0, 1, 1, 0],[0, 1, 1, 1],[1, 0, 0, 1],[1, 0, 1, 0],
[1, 0, 1, 1], [1, 1, 0, 0], [1, 1, 0, 1], [1, 1, 1, 0], [1, 1, 1, 1]}.

For preparing labeled training data c̃k of RF,

c̃k = argmin
c

‖p̂k − tk‖ (11)

is found among 11 candidates, then dataset (θk, c̃k) is provided

into RF for supervised training.

In the training phase, the model parameters within RF are

updated to ensure that the RF output vector ck matches the

labeled training data c̃k. In the test phase, the RF output vector
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Fig. 5: Schematic of MLP-aided positioning algorithm.

ck obtained by yielding θk into the trained RF and the unit

direction vectors of the AoA nj,k are provided into the WLSL

for position estimation.

C. Multi-layer perceptron

Fig. 5 is a schematic diagram of the positioning algorithm

using MLP. The MLP considered consists of an input layer,

a hidden layer, and an output layer. Here, we define a weight

matrix W (1) of size M × 4. The (j,m)-th element w
(1)
j,m of

W (1) is the weight between the m-th node of the hidden

layer and the j-th node of the input layer. Additionally,

b(1) = [b
(1)
1 , . . . , b

(1)
m , . . . , b

(1)
M ]T is a bias vector of size M×1.

When θk is yielded into the input layer, the input z
(1)
m,k to the

hidden layer is calculated as

z
(1)
m,k =

4
∑

j=1

w
(1)
m,jθj,k + b(1)m . (12)

Thus, the input z
(1)
k = [z

(1)
1,k, . . . , z

(1)
m,k, . . . , z

(1)
M,k]

T to the

hidden layer is expressed as

z
(1)
k = W (1)θk + b(1). (13)

z
(1)
k is then input to the activation function as

qk = f
(

z
(1)
k

)

= max
(

0, z
(1)
k

)

, (14)

where the activation function f(·) of the hidden layer is the

ReLU function.

In MLP, linear processing with weights and biases and

nonlinear processing with activation functions are performed

alternately, as described above. The input to the output layer

is z
(2)
k = W (2)q

(1)
k + b(2), where W (2) and b(2) are the

weight matrix and bias vector between the hidden and the

output layers, respectively. By using the sigmoid function as

the activation function of the output layer g(·), the weights

ck are output as a vector with each component taking a value

between 0 and 1 as

ck = g
(

z
(2)
k

)

=
1

1 + exp
(

−z
(2)
k

) , (15)

where the exponential function exp (·) is extended to a vector-

valued function. The obtained weights ck and unit direction

Fig. 6: Positioning environments.

Fig. 7: Heatmaps of AoA measurement errors.

vectors of the AoA are input into the WLSL, and the estimated

position coordinates p̂k are obtained.

In the training phase, similar to the explanation in Subsect.

3.A, the weights W (1),W (2) and biases b(1), b(2) between

each layer of the MLP are updated iteratively to minimize the

error function. In the test phase, positioning is performed by

yielding θk into the MLP, which has fixed weights and biases

optimized in the training phase, and the obtained weights and

unit direction vectors of the AoA into WLSL.

IV. SIMULATION RESULT

A. Simulation setup

This paper evaluates the proposed method using a publicly

available dataset created in [14]. This dataset contains AoA

data collected using four receivers (RX1 to RX4) and one

transmitter (TX) in the room space of (12, 6, 3.1) meters,

as shown in Fig. 6. To ignore the effects of human bodies,

the transmitter and receivers were mounted on tripods and

fixed at heights of 2.3 meters and 1.1 meters from the floor,

respectively. In addition, the orientation of TX was fixed

during the AoA measurements to eliminate the influence of

its directionality and installation direction. The grid spacing on

the floor was 60 cm, and the transmitter remained stationary for

one minute at each of the 119 points indicated by black plots.

The transmit power was set to 0 dBm, and the direction-finding

signal transmission period was 50 Hz. However, due to packet

loss, the AoA measured by the receivers is approximately 20
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Fig. 8: MDE of estimated position coordinates.

to 30 samples per second. As mentioned in Sect. II, this paper

uses only data from channel 37 advertising channels; therefore,

channel 37 data were extracted from the entire dataset. Further-

more, because the receivers were not time-synchronized during

AoA measurements, temporal synchronization was performed

on the post-measurement data by taking the median every

second. Consequently, with θk considered one sample, 60

samples were obtained per point, resulting in 7,140 samples

across all data points (i.e., K = 7, 140). The entire dataset

was randomly divided into training (50 %), validation (25 %),

and test (25 %) data. The ML models were trained using

the training and validation data, and then each method was

evaluated using the test data.

Fig. 7 shows heatmaps of each receiver’s mean absolute

error (MAE) of the AoA. The MAE ranges from a minimum

of approximately 0◦ to a maximum of approximately 60◦, and

positioning accuracy is expected to decrease in areas with

high MAE. RX2 and RX4, installed along the long sides,

show a common trend of increasing MAE as the distance

from the center increases, whereas RX1 and RX3, installed

along the short sides, do not show a common trend. This

analysis suggests that the characteristics of the AoA cannot be

predicted based on the installation positions of the receivers.

The proposed method aims to improve positioning accuracy

by adjusting the weights of the WLS method using a ML

model trained on complex AoA characteristics. The following

subsection discusses the evaluation results of the conventional

and proposed methods using test data.

B. Evaluation using test data

The positioning accuracy of the conventional LS algorithm

and the proposed methods using WLM, RF, and MLP is

evaluated from the perspective of the distance error (DE)

|p̂k − tk|.
Fig. 8 shows the mean DE (MDE) for all 1,785 test data

samples. The MDE of LS is 1.05 m, WLM is 1.01 m, RF is

0.52 m, and MLP is 0.37 m, indicating improved positioning

accuracy for all proposed methods compared with conventional

LS. MLP achieved about an approximately 65 % improvement

in accuracy compared with the LS method. Moreover, the

MDE follows the order of MLP <RF <WLM, indicating

Fig. 9: CDF of DE in estimated position coordinates.

that RF is more accurate than WLM, and that MLP is more

precise than RF. In the test phase, WLM has a lower degree of

freedom in weight adjustment than the other two methods, as

the weights are fixed over K samples. RF has a lower degree of

freedom in weight adjustment than MLP because the possible

values of each weight component are only 0 or 1. From this

perspective, it is inferred that higher degrees of freedom in

weight adjustment lead to improved positioning accuracy.

Fig. 9 shows cumulative distribution function (CDF) charac-

teristics of DE for each method. While the BLE-AoA method

is capable of centimeter-level positioning, only 55 % of the

conventional LS methods resulted in less than 1 m DE. In

comparison, 91 % of MLP and 87 % of RF have DE below

1 meter, demonstrating stable centimeter-level positioning.

However, the maximum DE is about 2 to 3 m: 3.08 m

for LS, 2.80 m for RF, and 2.23 m for MLP. Addressing

these outliers remains a challenge for future works. On the

other hand, in the figure, RFR represents a method using a

Random Forest Regressor (RFR), where cj,k can take values of

{0, 0.2, 0.4, 0.6, 0.8, 1.0} as a simple extension of RF, increas-

ing the number of weight candidates in RF to 1,225. As the

number of weight candidates increases, improvements in CDF

characteristics are observed, asymptotically approaching the

performance of MLP. This result confirmed that, as mentioned

earlier, the degree of freedom in weight adjustment is crucial

for improving positioning accuracy. Furthermore, increasing

the number of weight candidates in RF is expected to approach

positioning accuracy comparable to MLP. However, as the

number of weight candidates increases, the computational

complexity required to label the training data increases expo-

nentially, making MLP preferable considering the time cost.

Fig. 10 shows the DE heatmaps within the positioning area

for LS and MLP. This figure demonstrates how the positioning

accuracy improves at each point. While MLP shows an overall

improvement in positioning accuracy, points with high DE in

LS also have high DE in MLP. Similar trends were observed

for WLM and RF. As ML learns the characteristics of the entire

dataset, it may generalize poorly to data that deviate from the

overall trend. Fig. 7 suggests that AoA measured in regions

with significant positioning errors in LS likely has different
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(a) Least square

(b) MLP-aided positioning algorithm

Fig. 10: Heatmaps of DE in estimated position coordinates.

characteristics from the other areas. The ML model might have

generalized poorly to such data. Future studies should focus

on generalizing the ML model to the entire area using various

methods, such as increasing the number of datasets used for

training and integrating the positioning results of multiple ML

models.

V. CONCLUSIONS

In this paper, we proposed a positioning algorithm that uses

ML to adjust the weights of the WLS method in a data-driven

manner to improve the positioning accuracy of the BLE-AoA

positioning method. Our research has significantly improved

positioning accuracy across all three proposed methods. This

confirms the effectiveness of integrating ML into the posi-

tioning algorithm. Additionally, it was found that the degree

of freedom in weight adjustment is crucial for improving

positioning accuracy. Acquiring generalization performance

for the entire positioning area remains a challenge for the

future.
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