
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

ET-SSM: Linear-Time Encrypted Traffic
Classification Method Based On Structured State

Space Model
Yanjun Li∗, Xiangyu Zhao∗, Zhengpeng Zha∗†, Zhenhua Ling‡

∗ Institute of Advanced Technology, University of Science and Technology of China
Email: {ballinli, xyzhao23}@mail.ustc.edu.cn,

† Corresponding author. Email: zhazp@ustc.edu.cn,
‡ School of Information Science and Technology, University of Science and Technology of China

E-mail: zhling@ustc.edu.cn

Abstract—Encrypted traffic classification involves categorizing
data traffic that has been encrypted for privacy and security.
In this domain, Transformers have been essential for successful
pretraining. However, their quadratic time complexity makes
them costly and slow for inference. While many works tried to
reduce memory overhead and speed up inference, they often fail
to match the classification performance of existing methods. To
tackle this challenge, we present an Encrypted Traffic State Space
Model (ET-SSM), utilizing recent advances in sequence routing
based on state space models. The ET-SSM initially integrates
SSM layers with a multiplicative gated architecture, which has
proven effective in simplified sequence modeling frameworks.
This structure learns static linear layers that do not account
for pairwise traffic interactions. To overcome this limitation, we
employ convolution layers to capture adjacent traffic context
interactions while maintaining overall linear time complexity.
Extensive experiments demonstrate that ET-SSM not only signif-
icantly reduces memory overhead and accelerates inference time
but also achieves state-of-the-art classification results. This makes
it a promising candidate for the pretraining model in encrypted
traffic classification for realistic production environments. The
source code will be released upon paper acceptance.

I. INTRODUCTION

Recently, the widespread use of traffic encryption has be-
come instrumental in protecting the privacy and anonymity
of Internet users [1], [2]. While this advancement is vi-
tal for security and confidentiality, it concurrently presents
significant challenges to traffic classification. The increasing
utilization of privacy-enhancing encryption techniques, such
as Tor and VPNs, by both legitimate users and malicious
actors, complicates the task of distinguishing benign from
harmful traffic. Encrypted traffic classification thus emerges as
a crucial tool in this landscape. It enables the identification and
mitigation of malware and cybercriminal activities that exploit
encryption to bypass surveillance systems, without compro-
mising the privacy and integrity of legitimate communications.
This delicate balance between user privacy and cybersecurity
underscores the indispensable role of sophisticated encrypted
traffic classification methodologies in maintaining a secure
digital environment.

In this area, Transformers [7] have become the de facto

B
et

te
r

Smaller

Fig. 1. The average F1 Score vs. parameter size (millions) comparison.
Our ET-SSM achieves the state-of-the-art average F1-score on six encrypted
traffic classification datasets while having the smallest parameter size (i.e.
The size of the bubbles is depicted in the figure.), compared with cutting-
edge encrypted traffic classification model, e.g. TFE-GNN [3], ET-BERT [4],
YAYC [5], FS-Net [6].

architecture for pretraining models in encrypted traffic classi-
fication. Since the introduction of ET-BERT [4], Transformers
have proven central to encrypted traffic classification due to
their ability to learn effectively from large unlabeled datasets.
Specifically, using attention mechanisms [8] as a core routing
component has been critical to achieving empirical success
in downstream encrypted traffic classification tasks. Moreover,
YaTC introduces a masked autoencoder-based traffic trans-
former [9] with multi-level flow representation to learn more
efficient encrypted traffic representations. However, despite
the significant success of these attention-based models in en-
crypted traffic classification, their high memory cost and slow
inference time make them challenging to deploy in realistic
production environments [1]. In the field of cybersecurity,
where encrypted traffic classification is a crucial downstream
task, there is a greater emphasis on achieving high throughput
rates at a low cost [10]–[12]. Some efforts address the high
memory costs and slow inference throughput of pretrain-



ing models for encrypted traffic classification by employing
knowledge distillation methods. For instance, XENTC [13]
improved the DistilBERT [14] leverages knowledge distillation
to enable the use of a compressed model while maintain-
ing good performance. Subsequently, a streamlined packet
structure, consisting of a header and a partial payload, is
employed to achieve effective feature reduction. Despite these
efforts to create lightweight Transformers for encrypted traffic
classification, they cannot achieve comparable classification
performance. Given the quadratic computational complexity
of Transformer models, which escalates with the sequence
length, the Transformers cannot balance the effectiveness and
efficiency. Are Transformers the best solution to effective
and efficient encrypted traffic classification?

State Space Models (SSMs) for deep learning offer a
promising alternative for sequence modeling. Recent research
indicates that SSMs are a competitive architecture for handling
sequences, as demonstrated in [15]. Various adaptations of
SSMs have demonstrated success across diverse domains.
They effectively handle continuous signals, such as audio [16]
and visual data [17], as well as discrete signals, such as
textual content [18]. SASHIMI [16] is a new architecture for
modeling waveforms that yield state-of-the-art performance on
conditional audio generation benchmarks. S4ND [17] shows
SSMs modeling large-scale visual data across 1D, 2D, and 3D
formats as continuous multidimensional signals. Mamba [18] is
a promising language model that not only outperforms Trans-
formers of equivalent size but also matches the performance
of Transformers twice its size. In addition to delivering strong
performance, SSM-based routing avoids the quadratic com-
plexity associated with increasing sequence lengths. Specif-
ically, the model facilitates the capture of recurrent neural
network (RNN) long-range dependencies while maintaining
convolutional neural networks (CNN) training speeds. Com-
pared to the sparse information density typical of visual data
and the denser information density found in speech, text-based
SSMs [18] more closely resemble encrypted traffic. However,
encrypted traffic classification requires lower computational
costs and higher inference speeds compared to the text domain
to ensure privacy and anonymity.

The encrypted traffic classification field urgently requires a
model that combines low cost, rapid processing speeds, and
high classification performance. In this work, we propose an
architecture, ET-SSM for applying SSMs for encrypted traffic
classification. Specifically, to enhance the model’s represen-
tative capacity, we have developed a multiplicative gating
architecture [19], [20]. This approach simplifies the routing
mechanism while maintaining its effectiveness in modeling
necessary interactions. Moreover, to better model the adjacent
encrypted traffic context without increasing computational
costs, we have incorporated CNN blocks into the ET-SSM
framework. As observed in Fig. 1, ET-SSM achieves the state-
of-the-art average F1-score on six encrypted traffic classi-
fication datasets while having the smallest parameter size.
Furthermore, compared to existing methods, ET-SSM improves

inference speed while maintaining low GPU memory usage.
Our contributions are outlined as follows:

• We propose ET-SSM, the first SSM-based method for
encrypted traffic classification. Compared to existing clas-
sification methods, our approach achieves the lowest GPU
memory cost and the fastest inference speed.

• The ET-SSM achieves average state-of-the-art F1 scores
across six encrypted traffic classification datasets, consis-
tently outperforming other models on all these datasets.

• Extensive experiments were conducted across a range
of encrypted traffic classification tasks to evaluate our
methods, including detailed evaluations such as efficiency
analyses, and ablation studies.

II. METHODS

A. ET-SSM Model Pre-training

Recent work has demonstrated that gating can enhance the
performance of models with simplified routing. For instance,
linear time attention models have been shown to benefit
from improved gating mechanisms [21]. Inspired by the work
of [21], we incorporate gated units as the core structural
components of our model. The complete ET-SSM model is
shown in Figure 2. In the initial phase of our study, we utilize
the BURST structure, identified as a sequence of temporally
contiguous network packets emanating from either a request
or a response in a single session flow. This structure is
employed to precisely depict encrypted traffic, thereby forming
the input for our pre-trained ET-BERT model, mirroring the
strategy delineated in [4]. Subsequently, we combine token
embedding, position embedding, and segment embedding to
obtain the final encrypted traffic token representation, which
serves as the input to the ET-SSM encoder. The final MLP
classification head processes the output from the ET-SSM
encoder to determine the encrypted traffic categories.

The architecture of ET-SSM is a bidirectional adaptation
of the gated unit of [21]. Specifically, let Xi−1 ∈ RL×d be
activations at the i− 1-th layer where the length is L, and the
model size is d. We use the activation GELU [22] for σ. The
ET-SSM layer begins as follows,

X′
i−1 = LayerNorm(Xi−1) ∈ RL×d,

Z = σ(CONV (Xi−1)) ∈ RL×3d,

F = σ(CONV (X′
i−1)) ∈ RL×d,

B = σ(CONV (Flip(X′
i−1)) ∈ RL×d.

(1)

To emulate the bidirectional information extraction capability
of BERT [8], we employ two sequential blocks, namely, a
forward and a backward SSM layer, as presented,

U1 = CONV (SSM(F)) ∈ RL×d,

U2 = CONV (SSM(B)) ∈ RL×d,

U = σ(CONV ((U1 ⊗ Flip(U2)))) ∈ RL×3d.

(2)

Finally, we utilize a residual connection [23] to avoid the
gradient vanishing problem. Specifically, we sum the output



Layer
N

orm

Flip

Forw
ard 

SSM
B

ackw
ard 

SSM

C
O

N
V

Encrypted Traffic Em
bedding

ET-SSM Encoder

 L ×

M
LP &

 Ecrypted Traffic C
lassification

C
O

N
V

C
O

N
V

C
O

N
V

C
O

N
V

C
O

N
V

Flip

MLP & Encrypted Traffic Classification

ET-SSM Encoder

...

...
+ + + ++ +++

...
+ + + ++ ++ +

Token 
embedding

Position
embedding

Segment
embedding

Raw Encrypted Traffic

C
O

N
V

��−1

��−1
’

Fig. 2. The overview of the proposed ET-SSM model. Initially, we segment the raw encrypted traffic into tokens and incorporate both position and segment
embeddings to generate the encrypted traffic embedding, following the approach described by Lin et al. [4]. This embedding is then inputted into our proposed
ET-SSM encoder, which processes the sequence bidirectionally. To enhance processing speed and more effectively capture adjacent information, we employ
CONV blocks within the encoder. For inference, the MLP classification heads operate following the methodology outlined by Devlin et al. [8], predicting
encrypted traffic classifications.

U with the original input V, as the input Xi+1 of the next
layer i+ 1.

O = CONV (U+ Z) ∈ RL×d. (3)

However, the multiplicative gated architecture has a sig-
nificant limitation. It employs static linear layers that are
constrained in their ability to account for pairwise traffic
interactions. To address this limitation, we incorporate CONV
layers to capture adjacent traffic context interactions. By doing
so, we enhance the model’s ability to understand the relation-
ships between neighboring traffic data points. Importantly, this
approach maintains overall linear time complexity, ensuring
that the model remains efficient and scalable despite the added
complexity of capturing these interactions.

For the feature extraction modules, we use convolutional
(CONV) layers instead of fully connected (FC) layers as used
in [21] for two reasons. Firstly, the CONV layer is better opti-
mized by compilers than the FC layer [24]. Additionally, With
the same number of parameters, a model with CONV 1×1 runs
approximately 27% faster than one with FC layers. Finally,
suppose FC layers are used as the feature extraction modules.
In such cases, additional Permute operations are required to
adjust the output feature dimensions to be compatible with the
CONV layers, since FC and CONV layers handle different
tensor dimensions. However, these Reshape operations may
not be hardware-friendly on certain mobile devices [25], [26].

B. ET-SSM Model Fine-tuning

All encoder parameters, including embedding modules and
SSM blocks, are loaded from pretraining for downstream tasks.
To classify labeled traffic data, the decoder is replaced with
an MLP head. Given that all tokens are visible, the fine-tuning
of ET-SSM is performed in a supervised manner, as detailed

below,
X = Encoder(X0) ∈ RL×Denc ,

f = X[L, :] ∈ RDenc ,

ŷ = MLP(Norm(f)).

(4)

Here, f denotes the trailing class token, and ŷ ∈ RC repre-
sents the prediction distribution, where C is the number of
traffic categories. The classification process is then optimized
by minimizing the cross-entropy loss between the prediction
distribution ŷ and the ground-truth label y as below,

Lcls = CrossEntropy(ŷ,y). (5)

III. EXPERIMENTS

A. Dataset And Metrics

To validate the efficacy and broad applicability of ET-SSM,
we conducted a series of experiments on encrypted traffic
classification tasks, utilizing six publicly accessible datasets.
Due to page limitations, the details of the datasets are provided
in Appendix C of the supplementary materials. We evaluate
and compare the performance of our model using four typical
metrics: Accuracy (AC), Precision (PR), Recall (RC), and F1
Score (F1), as described in [27], [28].

B. Implementation Details

In our approach, we implemented two distinct learning
strategies for the ET-SSM model to adapt to different levels
of traffic data granularity, the ET-SSM (flow) and the ET-
SSM (packet). Due to page limitations, the details of the
implementation details are provided in Appendix C of the
supplementary materials.

C. Comparison With Existing Methods

Tables I and II showcase the performance comparison of
our framework with existing frameworks. The best results
are highlighted with an orange line, and the model with the
smallest parameters is shown in bold. Our framework sets a



TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON CROSS-PLATFORM(IOS), CROSS-PLATFORM(ANDROID), ICSX-VPN-SERVICE DATASETS.THE

BEST RESULTS ARE HIGHLIGHTED WITH AN ORANGE LINE, AND THE MODEL WITH THE SMALLEST PARAMETERS IS SHOWN IN BOLD.

Dataset Params(M) Cross-Platform(iOS) Cross-Platform(Android) ISCX-VPN-Service
Method AC PR RC F1 AC PR RC F1 AC PR RC F1
AppScanner [29] - 0.3205 0.2103 0.2173 0.2030 0.3868 0.2523 0.2594 0.2440 0.7182 0.7339 0.7225 0.7197
CUMUL [30] - 0.2910 0.1917 0.2081 0.1875 0.3525 0.2221 0.2409 0.2189 0.5610 0.5883 0.5676 0.5668
BIND [31] - 0.3770 0.2566 0.2715 0.2484 0.4728 0.3126 0.3253 0.3026 0.7534 0.7583 0.7488 0.7420
K-fp [32] - 0.2155 0.2037 0.2069 0.2003 0.2248 0.2113 0.2104 0.2052 0.6430 0.6492 0.6417 0.6395
FlowPrint [27] - 0.9254 0.9438 0.9254 0.9260 0.8698 0.9007 0.8698 0.8702 0.7962 0.8042 0.7812 0.7820
DF [33] - 0.3106 0.2232 0.2179 0.2140 0.3862 0.2595 0.2620 0.2527 0.7154 0.7192 0.7104 0.7102
FS-Net [34] 5.3 0.3712 0.2845 0.2754 0.2655 0.4846 0.3544 0.3365 0.3343 0.7205 0.7502 0.7238 0.7131
GraphDApp [35] - 0.3245 0.2450 0.2392 0.2297 0.4031 0.2842 0.2786 0.2703 0.5977 0.6045 0.6220 0.6036
TSCRNN [36] - - - - - - - - - - - - -
Deeppacket [37] - 0.9204 0.8963 0.8872 0.9034 0.8805 0.8004 0.7567 0.8138 0.9329 0.9377 0.9306 0.9321
PERT [38] - 0.9789 0.9621 0.9611 0.9584 0.9772 0.8628 0.8591 0.8550 0.9352 0.9400 0.9349 0.9368
ET-BERT(flow) [4] 187.4 0.9844 0.9701 0.9632 0.9643 0.9865 0.9324 0.9266 0.9246 0.9729 0.9756 0.9731 0.9733
ET-BERT(packet) [4] 187.4 0.9810 0.9757 0.9772 0.9754 0.9728 0.9439 0.9119 0.9206 0.9890 0.9891 0.9890 0.9890
YaTC[39] 2.3 0.9310 0.9307 0.9310 0.9295 0.9042 0.9081 0.9042 0.9042 - - - -
TFE-GNN - 0.8241 0.8326 0.8241 0.8130 0.8141 0.8308 0.8141 0.8067 - - - -
Ours(flow) 1.7 0.9887 0.9932 0.9866 0.9868 0.9894 0.9571 0.9587 0.9579 0.9814 0.9874 0.9877 0.9875
Ours(packet) 1.7 0.9954 0.9997 0.9951 0.9974 0.9977 0.9829 0.9891 0.9860 0.9987 0.9934 0.9947 0.9940

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON ISCX-VPN-APP, ISCX-TOR, USTC-TFC DATASETS.THE BEST RESULTS ARE HIGHLIGHTED

WITH AN ORANGE LINE, AND THE MODEL WITH THE SMALLEST PARAMETERS IS SHOWN IN BOLD.

Dataset Params(M) ISCX-VPN-App ISCX-Tor USTC-TFC
Method AC PR RC F1 AC PR RC F1 AC PR RC F1
AppScanner[29] - 0.6266 0.4864 0.5198 0.4935 0.6722 0.3756 0.4422 0.3913 0.8954 0.8984 0.8968 0.8892
CUMUL [30] - 0.5365 0.4129 0.4535 0.4236 0.6606 0.3850 0.4416 0.3918 0.5675 0.6171 0.5738 0.5513
BIND [31] - 0.6767 0.5152 0.5153 0.4965 0.7185 0.4598 0.4515 0.4511 0.8457 0.8681 0.8382 0.8396
K-fp [32] - 0.6070 0.5478 0.5430 0.5303 0.6472 0.5576 0.5849 0.5522 - - - -
FlowPrint [27] - 0.8767 0.6697 0.6651 0.6531 0.9092 0.3820 0.3661 0.3654 0.8146 0.6434 0.7002 0.6573
DF [33] - 0.6116 0.5706 0.4752 0.4799 0.7533 0.6228 0.6010 0.5850 0.7787 0.7883 0.7819 0.7593
FS-Net [34] 5.3 0.6647 0.4819 0.4848 0.4737 0.6071 0.5080 0.5350 0.4590 0.8846 0.8846 0.8920 0.8840
GraphDApp [35] - 0.6328 0.5900 0.5472 0.5558 0.6836 0.4864 0.4823 0.4488 0.8789 0.8226 0.8260 0.8234
TSCRNN [36] - - 0.9490 0.9480 0.9480 - 0.9870 0.9860 0.9870 - - - -
Deeppacket [37] - 0.9758 0.9785 0.9745 0.9765 0.7449 0.7549 0.7399 0.7473 0.9640 0.9650 0.9631 0.9641
PERT [38] - 0.8229 0.7092 0.7173 0.6992 0.7682 0.4424 0.4446 0.4345 0.9909 0.9911 0.9910 0.9911
ET-BERT(flow) [4] 187.4 0.8519 0.7508 0.7294 0.7306 0.8311 0.5564 0.6448 0.5886 0.9929 0.9930 0.9930 0.9930
ET-BERT(packet) [4] 187.4 0.9962 0.9936 0.9938 0.9937 0.9921 0.9923 0.9921 0.9921 0.9915 0.9915 0.9916 0.9916
TFE-GNN - - - - - 0.7692 0.8030 0.7692 0.7618 0.9747 0.9747 0.9747 0.9734
YaTC [39] 2.3 0.9819 0.9820 0.9819 0.9819 0.9959 0.9959 0.9959 0.9959 0.9947 0.9749 0.9747 0.9734
Ours(flow) 1.7 0.8635 0.7874 0.7597 0.7733 0.8616 0.5876 0.6787 0.6299 0.9934 0.9947 0.9945 0.9946
Ours(packet) 1.7 0.9944 0.9978 0.9979 0.9978 0.9969 0.9974 0.9975 0.9976 0.9958 0.9975 0.9976 0.9975

new benchmark in state-of-the-art performance, outperforming
the preceding leading method in the F1-score across all six
datasets. The margin of enhancement ranges from +0.16% to
+6.54%, as substantiated by the results enumerated in both
tables. Moreover, it is imperative to highlight that the results of
our experiments surpass all previous state-of-the-art methods
in terms of F1-score in the flow-level and packet-level fine-
tuning. With state-of-the-art performance in encrypted traffic
classification, our ET-SSM model also achieves the small-
est parameter count. These outstanding classification results
demonstrate that our ET-SSM structure excels in incorporat-
ing inductive bias and computational efficiency. For ease of
comparison, subsequent experiments and analyses designate
ET-SSM(packet) and ET-BERT(packet) as ET-SSM and ET-
BERT, respectively.

D. Efficiency Evaluation

Figure 3 presents the experimental analysis of inference
speed and GPU memory utilization for the ET-SSM on
the largest encrypted traffic classification dataset, Cross-
Platform(iOS). As depicted in Figure 3(a), ET-SSM achieved
the fastest inference speed among all evaluated methods across
various input batch sizes. Specifically, it enhanced inference
speed by a factor of 2.2 to 2.5 compared with the previous
fastest method YaTC. This significant speed advantage was
especially notable given the substantial model parameters and
less efficient architectural designs observed in models like
ET-BERT, TFE-GNN, and FS-Net. This superior performance
highlighted ET-SSM’s lower computational complexity than
other encrypted traffic classification models. In Figure 3(b),
ET-SSM exhibited the lowest GPU memory consumption
compared to previous encrypted traffic classification models,
even using large batch sizes. Compared to the relatively low-



2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

(a) Inference Speed Comparison (b) GPU Memory Comparison

Fa
st

er

Sm
aller

Fig. 3. The Inference Speed and GPU Memory Comparison of ET-SSM, YaTC, ET-BERT, TFE-GNN and FS-Net on Cross-Platform(iOS)

cost GPU memory methods FS-Net and YaTC, FS-Net was
hindered by significantly slower inference speeds and subpar
classification performance. And YaTC was still based on
attention structure, hindering its inference speed and GPU
memory. Our ET-SSM distinguished itself by significantly
enhancing memory efficiency compared to other encrypted
traffic classification models.

E. Ablation Studies

Due to page limitations, the details of the ablation studies
are provided in Appendix C of the supplementary materials.

IV. CONCLUSION

In this work, we introduce ET-SSM, a novel framework
for encrypted traffic classification designed to elevate both
efficiency and effectiveness. This framework integrates SSM
layers with a multiplicative gated architecture, which has
demonstrated efficacy in simplified sequence modeling con-
texts. The core architecture of ET-SSM comprises static linear
layers that initially do not accommodate pairwise traffic inter-
actions. To address this limitation, we incorporated CNN to
capture adjacent traffic context interactions while preserving
the overall linear time complexity. Extensive experimental
results validate the efficiency and effectiveness of ET-SSM in
handling encrypted traffic classification.



Supplementary Materials

V. APPENDIX A: RELATED WORK

A. State Space Models

State space models (SSMs) [40], [41] have emerged as a
promising architecture for sequence modeling. These models
synthesize the characteristics of RNNs and CNNs [42], draw-
ing inspiration from classical state space models. SSMs can be
implemented efficiently either as a recurrence or convolution,
offering linear or near-linear scaling to sequence length. Vari-
ous adaptations of SSMs have demonstrated success in diverse
domains, handling both continuous signals, such as audio [16]
and visual [17] data, and discrete signals, such as textual
content [18]. SASHIMI [16] is based upon SSMs, resulting in
a state-of-the-art performance for both autoregressive and non-
autoregressive audio generation. S4ND [17] is an innovative
multidimensional SSM layer that extends SSM capabilities to
multidimensional data, including images and videos. S4ND
excels at modeling large-scale visual data across 1D, 2D, and
3D dimensions as continuous signals. Mamba [18] integrates
selective structured state space models into a streamlined,
attention-free end-to-end neural network architecture, achiev-
ing significant success in the text domain. This model offers
rapid inference and linear scaling with sequence lengths, show-
ing enhanced performance on real datasets involving sequences
of up to a million elements. These innovative SSMs research
efforts inspire us to develop a model based on SSMs that
features reduced hyperparameter complexity and accelerated
inference speeds for encrypted traffic classification.

B. Encrypted Traffic Classification

Encrypted traffic classification aims to discern the ser-
vices operating behind obfuscated network traffic, enhancing
network service quality and security assurance. Given the
remarkable success of the BERT [8] model within the natural
language processing community, researchers [4] are exploring
the application of its structural principles in the realm of
encrypted traffic classification through pre-training approaches.
An enhanced traffic classification framework [5] leverages
a formatted traffic representation matrix, an efficient Traffic
Transformer with hierarchical attention mechanisms, and an
MAE-based [9] pre-training paradigm to achieve superior
performance with limited labeled data. Although this attention-
based [7] pre-training model achieves great classification per-
formance, researchers found that the pre-training model suffers
from long processing time and large memory consumption.
FastTraffic [43] introduces a novel N-gram feature embed-
ding approach to encapsulate network packet structure and
sequential characteristics. Additionally, they design a three-
layer MLP that achieves rapid and efficient classification.
Furthermore, XENTC [13] enhances the DistilBERT [14]
architecture through knowledge distillation, enabling the use

of a compressed model while maintaining good performance.
Subsequently, they employed a streamlined packet structure,
consisting of a header and a partial payload, to achieve
effective feature reduction. Despite these two methodologies
being less computationally demanding than the attention-based
counterparts for encrypted traffic classification, they do not
attain comparable levels of performance. What’s more, the
inherent non-linearity of both the MLP and BERT models,
restricts their efficacy in lightweight settings.

Unlike the sparse information density characteristic of vi-
sual data and the denser information typical of speech, text-
based SSMs [18] more closely resemble encrypted traffic.
Nevertheless, encrypted traffic classification demands even
lower computational costs and higher inference speeds than
those required in the text domain, crucial for ensuring privacy
and anonymity. In response, we introduce ET-SSM, a novel
framework founded on the principles of SSMs. This approach
not only matches state-of-the-art classification performance
when compared with existing methods but also reduces GPU
memory usage and enhances inference speed. The complete
framework of ET-SSM is depicted in Fig. 2.

VI. APPENDIX B: METHODS

A. Preliminaries

A state space model (SSM) is a general-purpose tool for
describing the relationship between a continuous-time scalar
input u(t) and a scalar output y(t) using the following differ-
ential equations,

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(6)

where x(t) ∈ RN is a continuous-time state vector, x′(t)
is its derivative, and the equation is parameterized by A ∈
RN×N ,B ∈ RN×1,C ∈ R1×N ,D ∈ R1×1.

When applied to a discrete-time scalar input sequence
u1, . . . uL, the SSM equations, and parameters can be dis-
cretized, leading to the following recursion,

xk = Axk−1 +Buk, yk = Cxk +Duk, (7)

where A,B,C,D are functions of the original parameters and
a discretization rate.

This equation can be computed similarly to an RNN, where
xk ∈ RN is a hidden state at time step k. However, unlike
an RNN, the linearity of the recursion allows y1 . . . yL to
be computed directly using a convolution with precomputed
kernel K ∈ RL,

K = (CB,CAB, . . . ,CA
L−1

B),

y = K ∗ u.
(8)



An effective approach for integrating SSMs into neural net-
works has been demonstrated by the works of [15], [41]. Their
core insight is the parameterization of the transition matrix A,
known as HiPPO,

Ank = −


(2n+ 1)1/2(2k + 1)1/2 if n > k,

n+ 1 if n = k,

0 if n < k.

(9)

This matrix yields a stable and efficient training regime. The
full model, S4, retains the SSM’s ability to model long-term
sequences while being more training-efficient than RNNs.

Recently, researchers [44], [45] have proposed simplified
diagonalized versions of S4, which achieve comparable results
with a more straightforward approximation of the original
parameterization. In our preliminary experiments, we tested
several different S4 parameterizations and found no significant
difference in accuracy. Therefore, we use S4D as the parame-
terization throughout this work.

B. The Forward Pass Algorithm Description

The operational process of the ET-SSM block forward pass
is detailed in Algorithm 1. For a given input token sequence
Xi−1 with a batch size B and sequence length L from the
(i−1)-th ET-SSM block, we begin by normalizing it and then
projecting it linearly into x and z, both with a dimension size
of E. We subsequently apply causal 1-D convolution to x,
resulting in x′. Based on x′, we compute the input-dependent
step size ∆, as well as the projection parameters B and C
having a dimension size of N . We then discretize A and B
using ∆. Following this, we calculate y employing a hardware-
aware State Space Model. Finally, y is gated by z and added
residually to Xi−1, resulting in the output token sequence Xi

for the i-th ET-SSM block.

VII. APPENDIX C: EXPERIMENTS

A. Dataset And Metrics

To validate the efficacy and broad applicability of ET-SSM,
we conducted a series of experiments on encrypted traffic
classification tasks, utilizing six publicly accessible datasets.
Table III delineates the specifics of these datasets. The Gen-
eral Encrypted Application Classification [27] task categorizes
application traffic under standard encryption protocols. Our
evaluations were conducted on the Cross-Platform datasets for
both iOS and Android, encompassing 196 and 215 applications
respectively. The Encrypted Malware Classification [46] task
involves the analysis of encrypted traffic comprising both mal-
ware and benign applications. In this context, the USTC-TFC
dataset is particularly noteworthy, as it features 10 categories
each of benign and malicious traffic, providing a compre-
hensive framework for assessing encryption-based malware
detection capabilities. The Encrypted Traffic Classification on
VPN [47] task focuses on classifying encrypted traffic that
utilizes Virtual Private Networks (VPNs) for network com-
munication. We employ the widely-used ISCX-VPN dataset,
which comprises data from six communication applications,

Algorithm 1 ET-SSM Block Process
Require: token sequence Xi−1 : (B, L, D)
Ensure: token sequence Xi : (B, L, D)

1: /* normalize the input sequence X′
i−1 */

2: X′
i−1 : (B, L, D) ← Norm(Xi−1)

3: x : (B, L, E) ← Conv1dx(X′
i−1)

4: z : (B, L, E) ← SiLU(Conv1dz(X′
i−1))

5: /* process with different direction */
6: for o in {forward, backward} do
7: x′

o : (B, L, E) ← SiLU(Conv1do(x))
8: Bo : (B, L, N) ← LinearBo (x

′
o)

9: Co : (B, L, N) ← LinearCo (x′
o)

10: /* softplus ensures positive ∆o */
11: ∆o : (B, L, E)← log(1 + exp(Linear∆o (x′

o) +Parameter∆o ))
12: /* shape of ParameterAo is (E, N) */
13: Ao : (B, L, E, N) ← ∆o

⊗
ParameterAo

14: Bo : (B, L, E, N) ← ∆o

⊗
Bo

15: yo : (B, L, E) ← SSM(Ao,Bo,Co)(x
′
o)

16: end for
17: /* get gated yo */
18: y′

forward : (B, L, E) ← Conv1dforward(yforward)
19: y′

backward : (B, L, E) ← Conv1dbackward(ybackward)
20: yhadamard : (B, L, E) ← y′

forward ⊙ y′
backward

21: y : (B, L, E) ← ← Conv1dyhadamard(yhadamard)
22: Ti : (B, L, D) ← (z+ y)
23: /* residual connection */
24: Return: Ti

captured through the Canadian Institute for Cybersecurity in
both VPN and non-VPN settings. The Encrypted Application
Classification on Tor [48] task is centered around classifying
encrypted traffic using the Onion Router to enhance commu-
nication privacy. The relevant dataset, ISCX-Tor, comprises 16
distinct applications, offering a unique landscape for assessing
privacy-preserved encrypted traffic analysis.

We evaluate and compare the performance of our model
using four typical metrics: Accuracy (AC), Precision (PR),
Recall (RC), and F1 Score (F1), as described in [27], [28].

To mitigate the effects of data imbalance across multiple
categories, we employ Macro Averaging [49] which calculates
the mean value of AC, PR, RC, and F1 for each category.

B. Implementation Details

During the pre-training, approximately 30GB of traffic data
was utilized for this procedure. The dataset was divided into
two segments: (1) roughly 15GB of traffic data sourced from
public datasets [47], [50]; (2) an equivalent volume of traffic
data, approximately 15GB, obtained through passive collection
within the China Science and Technology Network (CSTNET).
Furthermore, we adopted the training data and strategies out-
lined by Izsak et al. [51]. In line with the approach used by
RoBERTa [52], we exclusively employed masked language
modeling, preceding next-sentence prediction. The batch size
was set at 128, and the total number of steps was 500,000.
The learning rate was established at 1× 10−5, with a warmup
ratio of 0.1. For fine-tuning, we utilized the AdamW optimizer
across 10 epochs, applying a learning rate of 6 × 10−5 for
flow-level and 2 × 10−5 for packet-level tasks. The batch
size remained at 32, and the dropout rate was set to 0.5.



TABLE III
SUMMARY OF DATASETS USED IN ENCRYPTED TRAFFIC CLASSIFICATION EXPERIMENTS

Task Dataset Flow Packet Label
General Encrypted Application Classification Cross-Platform (iOS) [27] 20,858 707,717 196

Cross-Platform (Android) [27] 27,846 656,044 215
Encrypted Malware Classification USTC-TFC [46] 9,853 97,115 20
Encrypted Traffic Classification on VPN ISCX-VPN-Service [47] 3,694 60,000 12

ISCX-VPN-App [47] 2,329 77,163 17
Encrypted Application Classification on Tor ISCX-Tor [48] 3,021 80,000 16

TABLE IV
COMPARISON OF DIFFERENT METHODS, THEIR CORE STRUCTURES, AND THE COMPLEXITY PER LAYER.

Symbolic method Core structure Sequential operations Complexity per layer

DeepPacket [37] CNN O(1) O(k · L · D2)

TSCRNN [36] RNN O(L) O(L · D2)

FastTraffic [43] MLP O(1) O(L · H)

ET-BERT [4] MHA O(1) O(h · L2 · D)

Ours(ET-SSM) SSMs O(1) O(h · L · D)

All experiments were conducted using Pytorch 1.8.0 on eight
NVIDIA V100 GPUs. In our approach, we implemented two
distinct learning strategies for the ET-SSM model to adapt to
different levels of traffic data granularity, the ET-SSM (flow)
and the ET-SSM (packet).

For testing, we maintained consistency in the dataset across
both strategies, ensuring a fair and objective comparison with
other methodologies. The pivotal difference between these
strategies lay in the granularity of the fine-tuning input traffic
information. Our method employed a dataset comprising a
concatenated sequence of M consecutive packets within a flow,
where M is predefined as 5 in our experimental setup.

C. Efficiency Evaluation
We conducted a theoretical analysis of the time complexity.

The computational complexity for each layer was detailed in
Table IV. In this table, we assigned a symbolic method to
each core architecture type and subsequently analyzed their
per-layer time complexities. Our ET-SSM’s core architecture
was based on State Space Models (SSMs), contrasting with
other encrypted traffic classification methods that utilized
CNN, RNN, MLP, and Multi-Head Attention (MHA). The
parameters defined in the table included L, which represents
the input length; k, the kernel size of the convolution; D,
the representation dimension, and h, the number of attention
heads, where H is typically less than D2. Consequently, ET-
SSM’s per-layer computational complexity was notably lower
compared to CNN, RNN, MLP, and MHA. Furthermore, MLP,
CNN, and MHA support parallel operations through vector
multiplication, reducing their sequential operation complexity
to merely O(1). In contrast, RNN requires O(L), due to its
dependence on sequential execution at each time step. This
sequential execution analysis shows that SSM-based routing
does not exhibit quadratic complexity as the sequence length
increases. Specifically, the ET-SSM facilitates achieving RNN-
like long-range dependencies with a training speed comparable
to CNNs.

D. Ablation Studies

In this study, we evaluated the impact of individual com-
ponents within our framework at the packet level across six
encrypted traffic classification datasets, as detailed in Table V.
We established the original ET-SSM as our baseline for
comparison. Initially, replacing the bidirectional SSM with
a unidirectional SSM resulted in a minimum decline of -
3.93% in the F1-score for the ISCX-VPN-Service dataset. This
decline likely stemmed from the inability of the unidirectional
SSM to capture bidirectional information as effectively as
architectures like BERT [8] do. Additionally, substituting the
convolutional module with a linear projection led to a decrease
in the F1 score across all datasets, with a maximum drop
of -1.40% observed in the Cross-Platform(iOS) dataset. This
reduction may be attributed to the linear projection’s inferior
capability to capture adjacent information, which was crucial
for enhancing the model’s performance. Lastly, reverting to
the original masking and next sentence prediction strategies
employed in BERT [8] resulted in a maximum reduction of
-1.28% in the F1-score for the Cross-Platform(iOS). This
outcome underscored the effectiveness of masking strategies,
similar to those proposed in [52], in encrypted traffic classifi-
cation tasks.

E. Different Label Data Size Analysis

We conducted an extensive analysis to assess the impact of
varying percentages of fine-tuning dataset volumes, with the
variance in F1-score illustrated by the size of the error bands
under packet-level fine-tuning, as depicted in Figures 4 and 5.
These figures highlight the comparative performance of ET-
SSM, YaTC, and ET-BERT across six datasets. It is observed
that as dataset volumes decrease, ET-SSM consistently outper-
forms ET-BERT, achieving a minimum increase of +0.41% in
classification performance. This improvement becomes even
more pronounced at reduced dataset volumes, particularly
below 40%, as shown in Figures 4 and 5. Furthermore, the



TABLE V
ABLATION STUDY ON SIX ENCRYPTED TRAFFIC CLASSIFICATION DATASETS

Method Cross-Platform (iOS) Cross-Platform (Android) ISCX-VPN-Service ISCX-VPN-App ISCX-Tor USTC-TFC

AC F1 AC F1 AC F1 AC F1 AC F1 AC F1

ET-SSM 0.9954 0.9974 0.9977 0.9860 0.9987 0.9940 0.9944 0.9978 0.9969 0.9976 0.9958 0.9975
w/o Bidirection 0.9571 0.9581 0.9417 0.9401 0.9412 0.9387 0.9391 0.9402 0.9423 0.9487 0.9413 0.9434
w/o Conv 0.9814 0.9834 0.9825 0.9764 0.9841 0.9864 0.9832 0.9864 0.9879 0.9893 0.9874 0.9865
w/o RoBERTa masking 0.9871 0.9857 0.9848 0.9804 0.9854 0.9823 0.9821 0.9879 0.9871 0.9903 0.9846 0.9847

Cross-Platform(iOS) Cross-Platform(Android) ISCX-VPN-Service

Fig. 4. F1-scores of ET-SSM, YaTC, and ET-BERT using varying percentages of fine-tuning samples on Cross-Platform(iOS), Cross-Platform(Android), and
ISCX-VPN-Service datasets

Cross-Platform(iOS) Cross-Platform(Android) ISCX-VPN-Service

USTC-TFCISCX-VPN-App ISCX-Tor

Fig. 5. F1-scores of ET-SSM, YaTC, and ET-BERT using varying percentages of fine-tuning samples on ISCX-VPN-App, ICSX-Tor, and USTC-TFC datasets

error band associated with ET-BERT is broader than that of
ET-SSM, indicating greater variance in ET-BERT’s F1 scores
compared to those of ET-SSM. This observation underscores
the superior robustness and enhanced classification efficacy of
our proposed framework relative to ET-BERT when applied to
packet-level fine-tuning. Conversely, while YaTC demonstrates
comparably low variance, akin to ET-SSM, and performs well
under limited label data scenarios, it does not match the
robust encrypted traffic classification capabilities of ET-SSM
across all dataset volumes. These findings further illustrate
the superior robustness and improved classification efficacy of
our framework compared to YaTC under similar conditions.
YaTC did not test performance on the ISCX-VPN-Service and
ISVC-VPN-App datasets under varying percentages of fine-
tuning samples. Instead, we only compared our method with
ET-BERT on these datasets.

REFERENCES

[1] S. Rezaei and X. Liu, “Deep learning for encrypted traf-
fic classification: An overview,” IEEE communications
magazine, vol. 57, no. 5, pp. 76–81, 2019.

[2] P. Velan, M. Čermák, P. Čeleda, and M. Drašar, “A
survey of methods for encrypted traffic classification
and analysis,” International Journal of Network Man-
agement (IJNM), vol. 25, no. 5, pp. 355–374, 2015.

[3] H. Zhang, L. Yu, X. Xiao, et al., “Tfe-gnn: A temporal
fusion encoder using graph neural networks for fine-
grained encrypted traffic classification,” in Proceedings
of the 32nd World Wide Web Conference (WWW), ACM,
2023, pp. 2066–2075.

[4] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu,
“Et-bert: A contextualized datagram representation with
pre-training transformers for encrypted traffic classifica-



tion,” in Proceedings of the ACM Web Conference 2022
(WWW), 2022, pp. 633–642.

[5] R. Zhao, M. Zhan, X. Deng, et al., “Yet another
traffic classifier: A masked autoencoder based traffic
transformer with multi-level flow representation,” in
Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI), vol. 37, 2023, pp. 5420–5427.

[6] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-net:
A flow sequence network for encrypted traffic classi-
fication,” in Proceedings of the IEEE Conference on
Computer Communications (INFOCOM), IEEE, 2019,
pp. 1171–1179.

[7] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is
all you need,” Advances in Neural Information Process-
ing Systems (NIPS), vol. 30, 2017.

[8] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transform-
ers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[9] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick,
“Masked autoencoders are scalable vision learners,” in
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2022,
pp. 16 000–16 009.

[10] U. Tariq, I. Ahmed, A. K. Bashir, and K. Shaukat,
“A critical cybersecurity analysis and future research
directions for the internet of things: A comprehensive
review,” Sensors, vol. 23, no. 8, p. 4117, 2023.

[11] A. Handa, A. Sharma, and S. K. Shukla, “Machine
learning in cybersecurity: A review,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discov-
ery, vol. 9, no. 4, e1306, 2019.

[12] O. Abdulkader, A. M. Bamhdi, V. Thayananthan, F. El-
bouraey, and B. Al-Ghamdi, “A lightweight blockchain
based cybersecurity for iot environments,” in 2019 6th
IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud)/2019 5th IEEE Interna-
tional Conference on Edge Computing and Scalable
Cloud (EdgeCom), IEEE, 2019, pp. 139–144.

[13] C.-Y. Shin, J.-T. Park, U.-J. Baek, and M.-S. Kim,
“A feasible and explainable network traffic classifier
utilizing distilbert,” IEEE Access, 2023.

[14] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distil-
bert, a distilled version of bert: Smaller, faster, cheaper
and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[15] A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré,
“Hippo: Recurrent memory with optimal polynomial
projections,” Advances in Neural Information Orocess-
ing systems (NIPS), vol. 33, pp. 1474–1487, 2020.

[16] K. Goel, A. Gu, C. Donahue, and C. Ré, “It’s raw! audio
generation with state-space models,” in International
Conference on Machine Learning (ICML), PMLR, 2022,
pp. 7616–7633.

[17] E. Nguyen, K. Goel, A. Gu, et al., “S4nd: Modeling
images and videos as multidimensional signals using
state spaces,” arXiv preprint arXiv:2210.06583, 2022.

[18] A. Gu and T. Dao, “Mamba: Linear-time sequence
modeling with selective state spaces,” arXiv preprint
arXiv:2312.00752, 2023.

[19] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Lan-
guage modeling with gated convolutional networks,” in
International Conference on Machine Learning (ICML),
PMLR, 2017, pp. 933–941.

[20] H. Mehta, A. Gupta, A. Cutkosky, and B. Neyshabur,
“Long range language modeling via gated state spaces,”
arXiv preprint arXiv:2206.13947, 2022.

[21] W. Hua, Z. Dai, H. Liu, and Q. Le, “Transformer quality
in linear time,” in International Conference on Machine
Learning (ICML), PMLR, 2022, pp. 9099–9117.

[22] D. Hendrycks and K. Gimpel, “Gaussian error linear
units (gelus),” arXiv preprint arXiv:1606.08415, 2016.

[23] K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[24] X. Liu, J. Pool, S. Han, and W. J. Dally, “Efficient
sparse-winograd convolutional neural networks,” arXiv
preprint arXiv:1802.06367, 2018.

[25] Y. Li, J. Hu, Y. Wen, et al., “Rethinking vision trans-
formers for mobilenet size and speed,” in Proceedings
of the IEEE/CVF International Conference on Computer
Vision (CVPR), 2023, pp. 16 889–16 900.

[26] Y. Li, G. Yuan, Y. Wen, et al., “Efficientformer: Vision
transformers at mobilenet speed,” Advances in Neu-
ral Information Processing Systems (NIPS), vol. 35,
pp. 12 934–12 949, 2022.

[27] T. Van Ede, R. Bortolameotti, A. Continella, et al.,
“Flowprint: Semi-supervised mobile-app fingerprinting
on encrypted network traffic,” in Network and dis-
tributed system security symposium (NDSS), vol. 27,
2020.

[28] W. Zheng, C. Gou, L. Yan, and S. Mo, “Learning to
classify: A flow-based relation network for encrypted
traffic classification,” in Proceedings of The Web Con-
ference 2020, 2020, pp. 13–22.

[29] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic,
“Robust smartphone app identification via encrypted
network traffic analysis,” IEEE Transactions on Infor-
mation Forensics and Security (TIFS), vol. 13, no. 1,
pp. 63–78, 2017.

[30] A. Panchenko, F. Lanze, J. Pennekamp, et al., “Website
fingerprinting at internet scale.,” in NDSS, 2016.

[31] K. Al-Naami, S. Chandra, A. Mustafa, et al., “Adaptive
encrypted traffic fingerprinting with bi-directional de-
pendence,” in Proceedings of the 32nd Annual Confer-
ence on Computer Security Applications, 2016, pp. 177–
188.



[32] J. Hayes and G. Danezis, “K-fingerprinting: A ro-
bust scalable website fingerprinting technique,” in
25th USENIX Security Symposium (USENIX), 2016,
pp. 1187–1203.

[33] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep
fingerprinting: Undermining website fingerprinting de-
fenses with deep learning,” in Proceedings of the 2018
ACM SIGSAC conference on computer and communica-
tions security, 2018, pp. 1928–1943.

[34] C. Liu, L. He, G. Xiong, Z. Cao, and Z. Li, “Fs-
net: A flow sequence network for encrypted traffic
classification,” in IEEE INFOCOM 2019-IEEE Con-
ference On Computer Communications, IEEE, 2019,
pp. 1171–1179.

[35] M. Shen, J. Zhang, L. Zhu, K. Xu, and X. Du, “Accurate
decentralized application identification via encrypted
traffic analysis using graph neural networks,” IEEE
Transactions on Information Forensics and Security
(TIFS), vol. 16, pp. 2367–2380, 2021.

[36] K. Lin, X. Xu, and H. Gao, “Tscrnn: A novel clas-
sification scheme of encrypted traffic based on flow
spatiotemporal features for efficient management of
iiot,” Computer Networks, vol. 190, p. 107 974, 2021.

[37] M. Lotfollahi, M. Jafari Siavoshani, R. Shirali Hossein
Zade, and M. Saberian, “Deep packet: A novel approach
for encrypted traffic classification using deep learning,”
Soft Computing, vol. 24, no. 3, pp. 1999–2012, 2020.

[38] H. Y. He, Z. G. Yang, and X. N. Chen, “Pert: Pay-
load encoding representation from transformer for en-
crypted traffic classification,” in 2020 ITU Kaleido-
scope: Industry-Driven Digital Transformation (ITU K),
IEEE, 2020, pp. 1–8.

[39] R. Zhao, M. Zhan, X. Deng, et al., “Yet another
traffic classifier: A masked autoencoder based traffic
transformer with multi-level flow representation,” in
Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI), AAAI Press, 2023, pp. 5420–5427.

[40] A. Gu, I. Johnson, K. Goel, et al., “Combining recurrent,
convolutional, and continuous-time models with linear
state space layers,” Advances in Neural Information
Processing Systems (NIPS), vol. 34, pp. 572–585, 2021.

[41] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long
sequences with structured state spaces,” arXiv preprint
arXiv:2111.00396, 2021.

[42] R. E. Kalman, “A new approach to linear filtering and
prediction problems,” 1960.

[43] Y. Xu, J. Cao, K. Song, Q. Xiang, and G. Cheng,
“Fasttraffic: A lightweight method for encrypted traf-
fic fast classification,” Computer Networks, vol. 235,
p. 109 965, 2023.

[44] A. Gu, A. Gupta, K. Goel, and C. Ré, “On the pa-
rameterization and initialization of diagonal state space
models,” arXiv preprint arXiv:2206.11893, 2022.

[45] A. Gupta, “Diagonal state spaces are as effec-
tive as structured state spaces,” arXiv preprint
arXiv:2203.14343, 2022.

[46] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Mal-
ware traffic classification using convolutional neural net-
work for representation learning,” in 2017 International
conference on information networking (ICOIN), IEEE,
2017, pp. 712–717.

[47] G. D. Gil, A. H. Lashkari, M. Mamun, and A. A.
Ghorbani, “Characterization of encrypted and vpn traffic
using time-related features,” in Proceedings of the 2nd
international conference on information systems secu-
rity and privacy (ICISSP), SciTePress Setúbal, Portugal,
2016, pp. 407–414.

[48] A. H. Lashkari, G. D. Gil, M. S. I. Mamun, and
A. A. Ghorbani, “Characterization of tor traffic using
time based features,” in International Conference on
Information Systems Security and Privacy (ICISSP),
SciTePress, vol. 2, 2017, pp. 253–262.

[49] C. Liu, W. Wang, M. Wang, F. Lv, and M. Konan,
“An efficient instance selection algorithm to reconstruct
training set for support vector machine,” Knowledge-
Based Systems, vol. 116, pp. 58–73, 2017.

[50] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, et al.,
“Toward generating a new intrusion detection dataset
and intrusion traffic characterization.,” ICISSP, vol. 1,
pp. 108–116, 2018.

[51] P. Izsak, M. Berchansky, and O. Levy, “How to
train bert with an academic budget,” arXiv preprint
arXiv:2104.07705, 2021.

[52] Y. Liu, M. Ott, N. Goyal, et al., “Roberta: A robustly
optimized bert pretraining approach,” arXiv preprint
arXiv:1907.11692, 2019.


