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Abstract—Rough-focused recording with an optical laser mi-
crophone allows for recording that is wide ranging and robust
against changes in the position of a vibrating object. However,
the recorded speech suffers from noise due to laser diffusion and
missing signal components. To solve this problem, we propose
a speech enhancement method for rough-focused recordings
that reconstructs a complex spectrum. The conventional speech
enhancement method for rough-focused optical laser microphones
reconstructs only an amplitude spectrogram without considering
phase components, resulting in lower quality speech enhance-
ment. In contrast, the proposed method simultaneously recon-
structs both amplitude and phase components of rough-focused
recordings by reconstructing a complex spectrum. We compared
the method with the conventional method. The results show that
the proposed method performed equivalently to or better than
the conventional method in objective evaluations.

I. INTRODUCTION

The optical laser microphone [1] has attracted attention for
use in acoustic systems capable of recording target speech from
a distance [2], [3]. It measures speech-induced vibration by
irradiating a laser beam onto the surface of a vibrating object
and captures the speech. Generally, acoustic measurements
with this microphone have been conducted with a focused laser
beam to obtain sufficient reflected light. In contrast, a recording
method that operates in an out-of-focus state, called rough-
focused recording [4], has been studied. In rough-focused
recording, the optical laser microphone irradiates the laser
beam over a wide area, allowing for recording that is both
wide-ranging and robust against changes in the position of a
vibrating object. However, the wide irradiation area of the laser
beam results in the reflection of the laser becoming diffused
when measuring acoustic signals, causing noise and missing
signal components in the recorded signal. Therefore, noise
suppression and reconstruction of missing signal components
are the main tasks of speech enhancement for the rough-
focused optical laser microphone.

To address this issue, deep-learning-based speech enhance-
ment for rough-focused recording has been proposed [4]. In
[4], a single model enables speech enhancement for recorded
speech in different rough-focus conditions. Then, the model
reconstructs an amplitude spectrum of clean speech from
one of recorded speech. Therefore, the speech enhancement

performance in [4] is inadequate in that only the amplitude
spectrum of the speech signal is reconstructed while the phase
spectrum is not taken into account.

In this paper, we propose a deep-learning-based speech
enhancement for the rough-focused optical laser microphone
that reconstructs a complex spectrum and discuss the feasibility
of speech enhancement for rough-focused recording with si-
multaneously reconstructed both amplitude and phase compo-
nents. Since the complex spectrum contains both amplitude and
phase components, the reconstruction of the spectrum allows
for phase-aware speech enhancement. The complex-spectrum
reconstruction model is designed on the basis of a previous
study [5]. To improve the performance in reconstructing signal
components in the high-frequency band, we also investigate the
design of the loss function.

The remainder of the paper is organized as follows. In
Section II, we describe speech-quality degradation with the
rough-focused optical laser microphone and related work. In
Section III, we present the proposed method. In Section IV we
present the experiments and the results. Finally, we conclude
the paper in Section V.

II. SPEECH-QUALITY DEGRADATION
IN ROUGH-FOCUSED OPTICAL LASER MICROPHONE

In a rough-focused optical laser microphone, recording
robust against movements of vibrating objects comes at the
cost of degradation in speech quality, as discussed below. In
this paper, we use the spot diameter of the laser beam on a
vibrating object as a metric to represent the state of rough
focus.

Spectrograms of clean speech and recorded speech with the
rough-focused optical laser microphone are shown in Fig. 1.
Fig. 1 (b) shows that signal components in the high-frequency
band (2 to 4 kHz) are missing. Also, Fig. 1 (d) shows that the
recorded speech contains impact and stationary noises. This
is attributed to the decrease in the intensity of reflected light
due to rough-focus recording, resulting in measurement errors
at the detector and subsequent noise contamination [6]. Then,
Fig. 1 shows that the larger the spot diameter, the greater the
degradation in sound quality.

Therefore, to obtain high-quality speech with the rough-



(a) Clean speech (b) Spot diameter: 1 mm

(c) Spot diameter: 60 mm (d) Spot diameter: 180 mm

Fig. 1: Spectrograms of recorded speech with rough-focused
optical laser microphone.

focused optical laser microphone, it is necessary to suppress
the noise and enhance the high-frequency components of the
speech through speech enhancement.

To address the above problems, a previous study [4] pro-
posed deep neural network (DNN)-based speech enhance-
ment by reconstructing a log-power spectrum for rough-focus
recorded speech. In the method [4], rough-focus recorded
speech x ∈ RT is subjected to a short-time Fourier transform
(STFT), and the complex spectrum X ∈ CK×L is calculated
as

X = STFT[x], (1)
where T is the number of samples, L is the number of frames,
K is the number of frequency bins, and STFT[·] represents the
STFT operator, respectively. Then, the amplitude spectrograms
and phase spectrograms of X are denoted as |X| and ∠X.
Next, the log-power spectrogram 10 log10 |X|2 is input to DNN
to obtain 10 log10 |Ŷ|, where 10 log10 |X|2 is the log-power
spectrogram of X, and 10 log10 |Ŷ|2 is the log-power spectro-
gram of enhanced speech. Finally, the amplitude spectrogram
|Ŷ| is calculated from 10 log10 |Ŷ|2, and enhanced speech
ŷ ∈ RT is obtained by performing an inverse STFT (ISTFT)
using |Ŷ| and ∠X.

ŷ = ISTFT[|Ŷ|ej∠X], (2)
where ISTFT[·] represents the ISTFT operator. In (2), the
degraded phase spectrum of the roughly recorded speech is
used as is to calculate ŷ. Therefore, the speech enhancement
performance is insufficient as phase components are not con-
sidered.

III. PROPOSED SPEECH ENHANCEMENT FOR
ROUGH-FOCUSED OPTICAL LASER MICROPHONE

A. Overview of proposed speech enhancement

We focus on the deep complex convolution recurrent net-
work (DCCRN) [5] for its network architecture, which is
designed to handle the complex spectrum. Since the complex

Fig. 2: Overview of training model in speech enhancement for
recorded speech with rough-focused optical laser microphone.

Fig. 3: DCCRN network.

spectrum contains amplitude components and phase compo-
nents, DCCRN enables phase-aware speech enhancement. An
overview of the proposed method is shown in Fig. 2. First, x is
first subjected to STFT, and X is calculated. Next, X is input
to DCCRN, and the complex spectrum of enhanced speech Ŷ
is obtained. In the stage of model training, the error EProp is
calculated using the proposed loss function from the enhanced
speech ŷ and the clean speech y. A detailed definition of the
loss function is given in Section III-C. In the proposed method,
the speech enhancement model with DCCRN is trained by
minimizing the error calculated from EProp for speech recorded
with a rough-focused optical laser microphone.

B. Network architectures

The network architectures of DCCRN and the components
of the complex encoder are shown in Figs. 3 and 4. DCCRN,
originally described in [5], is an encoder-decoder architecture
with two long short term memory (LSTM) layers. As shown in
Fig. 4, the complex encoder consists of complex convolutional
layers, complex batch normalization, and an activation func-
tion (PReLU). In the complex convolutional layers, complex-
valued filters are convolved with the input on the basis of
the rules of complex multiplication. The complex decoder is
composed of the complex convolutional layers, complex batch
normalization, and an activation function (PReLU) as in the
complex encoder. Then, in the complex convolutional layers
of the complex decoder, transposed convolution is performed.
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Fig. 4: Complex encoder.

C. Loss function

Generally, the loss function used in training of the DCCRN
is the scale-invariant source-to-noise ratio(SI-SNR). SI-SNR is
defined as 

ytarget :=
⟨ŷ,y⟩ · y
∥y∥2

enoise := ŷ − ytarget

SI-SNR := 10 log10
∥ytarget∥2

∥enoise∥2
,

(3)

where y is clean speech, ⟨·, ·⟩ denotes the inner product of
vectors, and ∥ · ∥ denotes the Euclidean norm. Additionally,
the loss ESI-SNR is expressed as

ESI-SNR = −SI-SNR. (4)
In this paper, we propose a method using loss function

ESI-SNR and a method using the proposed loss function EProp.
The method of calculating the proposed loss function EProp
is explained as follows. First, ŷ is obtained from x through
a series of processes based on the DCCRN. Next, high-pass
and low-pass filters are applied to both ŷ and y in order to
calculate ŷH, ŷL and yH, yL. In this context, ŷH, ŷL and yH, yL
represent the high-frequency and low-frequency components of
ŷ and y. Then, from ŷH, yH and ŷL, yL, the loss in the high
and low frequency components EH, EL are calculated. Finally,
the total loss is calculated as

EProp = αEH + EL, (5)
where α is the weight of EH. By adjusting α, it is possible to
correct the influence of the low-frequency and high-frequency
components on ESI-SNR. Given the missing components in the
high-frequency band in speech recorded with a rough-focused
optical laser microphone, we believe that using EProp as the
loss function can help the model better focus on reconstructing
high-frequency components.

IV. EXPERIMENTS AND RESULTS

We conducted experiments to evaluate the performance of
the proposed method. In the experiments, we refer to the
training method with the original loss function as Prop. A,
and we refer to that with the proposed loss function as Prop.
B.

Fig. 5: Arrangement of measurement equipment.

TABLE I: Recording conditions.
Reverberation time T60 300 ms
Ambient noise level LA 29.7 dB
Sampling frequency 8 kHz
Quantization 16 bits
Temperature 23.8◦C
Humidity 19.5%

TABLE II: Recording equipment.
Laser doppler vibrometer (LDV) Polytec, VFX-F-110
A/D, D/A converter RME, Fireface UFX
Loudspeaker Fostex, FE83En
Loudspeaker amplifier BOSE, 1705II
Reflective material ONOSOKKI, LV-0012

A. Experimental setups
We recorded a speech dataset using a rough-focused optical

laser microphone. The dataset was divided into two parts to
train and evaluate the speech enhancement model. Specifically,
503 Advanced Telecommunications Research (ATR) phoneme-
balanced sentences [7] (average duration: approximately 11.8
seconds per file) were used as the training data, and 216 ATR
phoneme-balanced words [8] (average duration: 2.1 seconds
per file) were used as the evaluation data. The arrangement of
the equipment used for recording the training and evaluation
data, the recording conditions, and the recording equipment
are shown in Fig. 5 and Tables I and II, respectively. In
this recording, 15,368 utterances from datasets [7], which
include 300 speakers (150 female and 150 male speakers),
were recorded with an optical laser microphone in various
focus settings (spot diameter: 1, 60, 120, and 180 mm) as
the training data. Also, 3,024 utterances from datasets [8],
which include 14 speakers (7 female and 7 male speakers) were
recorded as the evaluation data. The experimental settings for
training of DNN are shown in Table III.

We used the perceptual evaluation of speech quality (PESQ)
[9], log-spectral distance (LSD) [10], and cosine distance
as the evaluation metrics. PESQ is used for speech in the
range of 300–3400 Hz and is highly correlated with subjective
evaluation of speech quality. The PESQ score ranges from
−0.5 to 4.5, where higher scores indicate speech that is more
intelligible to human auditory perception. LSD is a metric that
shows magnitude distortion, where lower scores indicate higher
quality of amplitude components in the evaluated speech.
Cosine distance is a measure of the phase errors, defined as

cosine distance = 1− cos(θClean − θEnh), (6)
where θClean is the phase spectrum of clean speech, and θEnh
is the phase spectrum of enhanced and recorded speech. The
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TABLE III: Experimental settings.

Sampling frequency 8 kHz
Quantization 16 bit
Window function Hamming window
STFT length 512
Hidden layers 5 layers
LSTM layers 2 layers
Epochs 600
Batch size 32
Learning rate 0.0001
Optimizer Adam
Loss function ESI-SNR / EProp
Cutoff frequency in EProp 2 kHz
α in EProp 5

(a) PESQ (b) LSD

(c) Cosine distance

Fig. 6: Evaluation results.

cosine distance score ranges from 0.0 to 2.0, where lower
scores indicate higher quality of phase components in the
evaluated speech.

B. Experimental results and discussion

The evaluation results in terms of PESQ, LSD, and cosine
distance are shown in Fig. 6. From Fig. 6 (c), the cosine dis-
tance of recorded speech and the conventional method (Conv.)
had the same score because enhanced speech with method [4]
is calculated using STFT with the estimated amplitude and the
phase of the recorded speech. Fig. 6 (a) shows that the PESQ
score of the enhanced speech with Prop. A surpassed that of the
enhanced speech with Conv. for the spot diameter of 1 mm. On
the other hand, the PESQ score of the enhanced speech with
Prop. B was lower than both the PESQ score of the enhanced
speech with Prop. A and that with the conventional method.
Therefore, the experimental results for PESQ show that Prop.
A had the highest performance at a spot diameter of 1 mm, and
Prop. A and Conv. performed equivalently at spot diameters

(a) Recorded speech (b) Enhanced (Conv.)

(c) Enhanced (Prop. A) (d) Enhanced (Prop. B)

Fig. 7: Spectrograms of recorded and enhanced speech
(spot diameter: 1 mm)

(a) Recorded speech (b) Enhanced (Conv.)

(c) Enhanced (Prop. A) (d) Enhanced (Prop. B)

Fig. 8: Spectrograms of recorded and enhanced speech
(spot diameter: 180 mm)

other than 1 mm. Fig. 6 (b) shows that the LSD score of the
enhanced speech with Prop. A was comparable to that with
Conv. only for the spot diameter of 1 mm. The LSD score of
the enhanced speech with Prop. B was higher than that with
Conv. for all spot diameters. Therefore, Conv. and Prop. A had
comparable amplitude reconstruction performance at the spot
diameter of 1 mm. However, Conv. had the highest amplitude
reconstruction performance at spot diameters other than 1 mm.
Fig. 6 (c) shows that the cosine distance of the enhanced
speech with Prop. A and that with Prop. B were lower than
that with Conv. for all spot diameters. This indicates that Prop.
A and Prop. B achieved phase reconstruction simultaneously
with amplitude reconstruction at all spot diameters. Despite
reconstructing both amplitude and phase simultaneously at all
spot diameters, the PESQ score only improved with Prop. A at
a spot diameter of 1 mm. This may be caused by the inferior
amplitude reconstruction performance compared to Conv. at
spot diameters other than 1 mm, as indicated in Fig. 6 (b) .

The spectrograms of the recorded speech and enhanced
speech are shown in Figs. 7 and 8. Fig. 7 (b) and Fig. 8 (b)

4



REFERENCES REFERENCES

(a) Clean speech (b) Enhanced (Conv.)

(c) Enhanced (Prop. A) (d) Enhanced (Prop. B)

Fig. 9: Group delay of clean speech and enhanced speech
(spot diameter: 1 mm)

show that method [4] suppressed impact and stationary noises
in the recorded speech and reconstructed the high-frequency
speech components. This could be the reason for the good
scores of method [4] in PESQ and LSD at all spot diameters.
Fig. 7 (c) and Fig. 8 (c) show that Prop. A suppressed both im-
pact and stationary noises and failed to reconstruct the speech
components in the frequency band above 2 kHz. Given the
low requirement for the reconstruction of the high-frequency
components attributable to the slight missing components in
speech recorded at a 1-mm-spot diameter, Prop. A was found
to score well in PESQ and LSD at this diameter. Fig. 7 (d) and
Fig. 8 (d) show that Prop. B suppressed noises in the frequency
band above 2 kHz and reconstructed the high-frequency speech
components. Given the higher performance in enhancing high-
frequency components compared with Prop A, Prop. B shows
the feasibility of improving the performance of reconstructing
high-frequency components through EProp.

The group delay spectrograms [11] of clean and enhanced
speech are shown in Fig. 9. It is known that the group delay
and amplitude have strongly constrained relationships [12],
and it can be confirmed that the group delay spectrogram
has a similar structure to the log-power spectrogram in clean
speech. Figs. 9 (a) and (b) show the distortion of phase
components in the frequency band above 2 kHz. Fig. 9 (c)
shows the reconstruction of the phase components in the
frequency band above 2 kHz with Prop. A. It is clear that
Prop. A achieves phase-aware speech enhancement. As shown
above, the amplitude reconstruction of Conv. and Prop. A is
accurate, while the phase reconstruction is done only by Prop.
A. This could be the reason for the significant improvement
in PESQ score of Prop. A.

In summary, the proposed method improves the quality of
speech recorded with a rough-focused optical laser micro-

phone. However, except for the case with a spot diameter
of 1 mm, the performance of Prop. A is equivalent to or
slightly lower than that of the conventional method. The
reason for this is that the amplitude components could not
be sufficiently reconstructed as a result of considering the
phase components. Additionally, the enhanced speech with
Prop. B, which modified the loss function to reconstruct
high-frequency components, demonstrates the feasibility of
improving the performance of reconstructing high-frequency
components through EProp.

V. CONCLUSION

We proposed a DCCRN-based speech enhancement method
for the rough-focused optical laser microphone. We evaluated
our method by comparing PESQ, LSD, and cosine distance.
Objective experiments showed that the proposed method,
which considers phase components, is superior to the conven-
tional method. In the future, we aim to achieve further high-
quality speech for the rough-focused optical laser microphone
by modifying the loss function and using features other than
the complex spectrum.
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