
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

A Study on Multimodal Fusion and Layer Adapter
in Emotion Recognition

Xiaohan Shi∗,Yuan Gao†, Jiajun He∗, Jinyi Mi∗, Xingfeng Li‡, Tomoki Toda∗
∗ Nagoya University, Japan.

E-mail: {xiaohan.shi, jiajun.he, mi.jinyi}@g.sp.m.is.nagoya-u.ac.jp, tomoki@icts.nagoya-u.ac.jp
† Kyoto University, Japan.

E-mail: gao.yuan.75x@st.kyoto-u.ac.jp
‡ City University of Macau, Macau.

E-mail: xfli@cityu.edu.mo

Abstract—Multimodal emotion recognition (MER) is a rapidly
evolving field aimed at integrating information from various
modalities, such as speech and text, to deepen our understanding
of emotions. However, challenges in feature extraction and fusion
hinder further advances in MER performance. To address these
challenges, we propose different modality representations to
capture emotional information comprehensively. Additionally, we
introduce a novel layer adapter and multimodal fusion method to
explore modality-dependent and modality-invariant interactions
in MER. Extensive experimental results show the effectiveness
of our approach, achieving state-of-the-art results with an ab-
solute improvement of 1.89% over the baseline. The significant
improvements validate the effectiveness of our proposed method
in enhancing the MER system.

I. INTRODUCTION

Emotion recognition is a growing field driven by the ad-
vancements in human-computer interactions (HCI) [1]. Earlier
research focused mainly on using speech signals for emotion
recognition, but recent studies show that unimodal systems
are inadequate for complex HCI contexts. To improve emo-
tion recognition accuracy, recent studies advocate integrating
diverse modalities, including textual and visual data, to foster a
comprehensive understanding of human emotional states [2]–
[4]. Multimodal emotion recognition (MER) has applications
in various domains, including social media analytics [5], mar-
ket research [6], and enhancing customer service experiences
[7]. Through its interdisciplinary implications, MER holds
promise in uncovering novel insights into human emotional dy-
namics, thereby paving the path for innovative solutions across
a myriad of practical domains. Despite substantial progress,
two key challenges remain: extracting effective acoustic and
lexical features for distinguishing emotions and developing
suitable fusion methods to integrate multiple modalities in
emotion recognition. This study endeavors to address each
of these challenges, aiming to model the emotion recognition
process in a multimodal context.

In MER, most features are employed in the speech and text
modalities as these modalities predominantly promote emotion
recognition within existing datasets. For example, Majumder
et al. [8] propose a multimodal sentiment analysis approach
based on hierarchical fusion and context modeling, enhancing

sentiment recognition accuracy and robustness. Chuang et al.
[9] introduce a multi-modal deep learning model for integrat-
ing speech and text data, achieving significant performance
improvements in emotion recognition tasks.

In recent years, with the emergence of self-supervised learn-
ing (SSL) models, more researchers have shifted towards using
pre-trained SSL features instead of traditional deep learning
features to enhance the performance [10]. For example, Zou et
al. [11] incorporated multiple acoustic features, including Mel-
frequency cepstral coefficients, spectrograms, and Wav2vec 2.0
embeddings, for categorical emotion recognition, achieving a
7.03% improvement compared to using Wav2vec 2.0 embed-
dings alone. Additionally, Padi et al. [12] present a MER
framework using mel-spectrogram and fine-tuning pre-trained
BERT models, providing complementary emotional insights
from the speech and text modalities.

Motivated by these findings, this paper focuses on extracting
multimodal emotion features by integrating general speech
and text self-supervised representations and context represen-
tations from the automatic speech recognition (ASR) module
to enhance the MER system. Fusion methods are another key
aspect of this task. In the literature, feature-level and decision-
level fusion are widely used for multimodal systems. For
instance, Yoon et al. [13] proposed a deep dual recurrent neural
network to encode audio-text sequences, then concatenated
their outputs to predict the emotion. Similarly, Pepino et al.
[14] designed multiple dual RNNs to represent audio-text se-
quences and compared feature-level fusion and decision-level
fusion approaches, highlighting their comparable performance.
In contrast, our study introduces a fusion method at both the
feature level and decision level, integrating a multi-level fusion
module to extract discriminative features for MER.

Our contributions can be summarized as follows:
• We propose a novel feature extraction approach for

learning multimodal emotion information by leveraging
multimodal self-supervised representations.

• We introduce a multimodal fusion module that compre-
hensively integrates modality-dependent and modality-
invariant emotional information from both speech and text
modalities.



Fig. 1. The overall architecture of our proposed method.

• Our experimental results demonstrate that the proposed
approach effectively addresses MER tasks.

II. PROPOSED METHOD

In this section, we outline our MER system and detail
the multimodal fusion method. As depicted in Fig. 1, the
network comprises four primary components: an ASR module
for extracting textual and contextual information from raw
speech, two embedding modules for encoding self-supervised
representations, a multimodal fusion module for integrating
modality-dependent and modality-invariant emotional informa-
tion, and an emotion prediction module for predicting the
emotion label.

A. Model Description

As depicted, raw audio utterances are directed into an
acoustic feature encoder to extract self-supervised representa-
tions. Simultaneously, an ASR module is employed to obtain
textual and contextual information. The transcripts then un-
dergo a textual feature encoder to extract text self-supervised
representations. These different modality representations are
subsequently combined using the proposed multimodal fusion
method, streamlining the final emotion recognition process.

B. Problem Formulation

The overall system can be expressed as the function
f(S, T, C) = L, where each of the speech and context
features S = (s1, s2, · · · , sm) and C = (c1, c2, · · · , cm)
consists of m frames extracted from an utterance. The text
modality T = (t1, t2, · · · , tn) represents the original ASR

hypotheses of an utterance, comprising n tokens. The model
output L ∈ {l1, l2, · · · , le}, where e represents the emotional
categories.

C. Embedding Module

1) Speech Representations: To obtain a comprehensive un-
derstanding of acoustic features, we employ a pretrained SSL
model, WavLM [15], as our speech self-supervised encoder.

WavLM employs a hybrid architecture consisting of convo-
lutional neural network layers and a transformer encoder to
capture speech features and contextual information effectively.
We denote HS = (h

(1)
S , h

(2)
S , · · · , h(m)

S ) to represent the
speech self-supervised representations, where m denotes the
number of frames extracted from an utterance.

2) Context Representations: To acquire comprehensive in-
formation regarding contextual information from speech, we
employ ASR representation as context features. In this study,
we leverage Whisper [16] as our ASR module. Whisper is a
supervised model specifically designed to transcribe spoken
language into text. It has been trained on a diverse dataset
comprising approximately 680,000 hours of speech collected
from the web.

Whisper adopts an encoder-decoder transformer architec-
ture; the encoder encodes the mel spectrogram information,
and the decoder generates text as a sequence of words. In
whisper, first, the raw audio inputs are converted to a log-
mel spectrogram by the action of the feature extractor. Then,
the Transformer encoder encodes the spectrogram to form
a sequence of encoder-hidden states. Finally, the decoder
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autoregressively predicts text tokens, conditional on both the
previous tokens and the encoder’s hidden states.

We denote HC = (h
(1)
C , h

(2)
C , · · · , h(m)

C ) to represent the
context representations from whisper encoder layer, where m
denotes the number of frames extracted from an utterance.

3) Text Representations: To acquire comprehensive infor-
mation regarding lexical features, we leverage a pretrained
SSL model, RoBERTa [17], as our text encoder. RoBERTa
is an extension of the bidirectional encoder representations
from the transformers model, which is specifically designed
to address challenges related to long-range dependencies, and
finely tuned for various natural language processing tasks.
Pretrained on extensive corpora, including a dataset comprising
58 million tweets, RoBERTa exhibits exceptional contextual
understanding, thereby enhancing text-related tasks. We de-
note HT = (h

(1)
T , h

(2)
T , · · · , h(n)

T ) to represent the text self-
supervised representations, where n denotes the number of
tokens extracted from an utterance.

4) L-adapter module (LA): To harness intermediate repre-
sentations from the initial fine-tuning stages, layer adapters
establish pathways from each encoder from the speech and text
self-supervised model. Each layer adapter comprises a Fully
connected (FC) layer, succeeded by a non-linear activation
function and layer normalization, as illustrated in Fig. 1b. The
application of the layer adapter results in adapted representa-
tions, computed as follows:

αl
S( or αl

T ) = FC((H l
S) or H l

T ) (1)

for l = 1, 2, . . . , L in the encoder, and the weighted sum of
the adapted representations is computed as:

H∗
S( or H∗

T ) =

L∑
l=1

wlα
l
S( or αl

T ) (2)

This is fed into the emotion recognition classification, where
wl are learnable weights.

D. Multimodal Fusion (MF) Module

Inspired by [18], our MF is composed of two Multi-Level
Fusion (MLF) blocks. The objective is to facilitate the learning
of modality-dependent representations and modality-invariant
representations.

In this section, we provide an in-depth explanation of the
operation of each MLF block.

MLF Block adheres to the structure of a standard trans-
former layer, incorporating two cross-attention modules, and
residual connections.

Initially, we employ three multi-head transformer layers to
derive speech, text, and context representations.

H ′
S( or H ′

T , H
′
C) = Transformer(H∗

S( or H∗
T , HC)) (3)

Then, two MLF blocks are used to derive speech, text self-
supervised representations, and context representation. This is
achieved by utilizing H ′

S (or H ′
T ) as queries and H ′

T (or H ′
S)

as keys and values within the first cross-attention block.

Q1 = H ′
S ( or H ′

T ),K1 = H ′
T ( or H ′

S), V1 = H ′
T ( or H ′

S).
(4)

HT
S ( or HS

T ) = Cross-Attention(Q1,K1, V1). (5)

Next, the first cross-attention block output is used as queries
and H ′

C as keys and values within the second cross-attention
block.

Q2 = HT
S ( or HS

T ),K2 = H ′
C , V2 = H ′

C . (6)

HST
C ( or HTS

C ) = Cross-Attention(Q2,K2, V2). (7)

Finally, we adopt Max pooling to obtain a 1-dimensional
vector for each output. The final speech, context and text
representations (HST

C , HTS
C , H ′

C) are concatenated and written
as follows:

HSTC = HST
C ⊕HTS

C ⊕H ′
C . (8)

E. Emotion Classification Module
Emotion classification is conducted using the output repre-

sentations HSTC of the MF module, which is subsequently
passed through a FC layer and a SoftMax activation function.

P (yemo|HSTC) = SoftMax(FC(HSTC)). (9)

where yemo is the predicted emotion classification.
The loss function LEmotion Classification is formulated using

cross-entropy:

LEmotion Classification = − 1

N

N∑
i=1

C∑
c=1

yic log(ŷic) (10)

where N denotes the total number of samples, C is the count
of emotion classes, yic is the ground truth label for sample
i and class c, and ŷic is the predicted probability of class
c for sample i. This loss function penalizes the model based
on the discrepancy between predicted probabilities and ground
truth labels across all samples and classes, facilitating accurate
classification.

III. EXPERIMENTAL SETUP

A. Dataset
The Interactive Emotional Dyadic Motion Capture (IEMO-

CAP) database is a widely utilized corpus in MER [19]. It
contains 12 hours of audiovisual data, including audio, video,
and textual transcriptions from 10 speakers. In each session,
one male and one female performed a series of scripts or
improvisational scenarios. For each utterance, three annotators
assigned the categorical labels. Following common practice,
we merged ’happy’ and ’excited’ into a single emotion class la-
beled ’happy’. We implemented the common practice of merg-
ing “happy” and “excited” into one emotion class “happy”;
thus, the emotion labels in this dataset are happy (29%), sad
(20%), angry (20%), and neutral (31%).
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B. Experimental Procedure
We conduct two experiments in this study. Experiment 1

examines the impact of different modality representations on
MER by comparing our approach with previous studies:

• SAWC [20]: This method modifies the importance
weights based on confidence measures, thereby reducing
the impact of ASR errors by focusing on relevant speech
segments.

• RMSER-AEA [21]: This approach incorporates comple-
mentary semantic information, adjusts for ASR errors
via an auxiliary task, and combines text and acoustic
representations for SER.

• SAMS [22]: This approach utilizes high-level emotion
representations as supervisory signals to establish a multi-
spatial learning framework for each modality, facilitating
cross-modal semantic learning and the exploration of
fusion representations.

Meanwhile, we provide ablation experiments for each modality
representation by visualizing the feature distributions using
t-distributed stochastic neighbor embedding (t-SNE) [23], as
shown in Fig. 2.

In Experiment 2, we explore the performance of the pro-
posed fusion methods, namely Layer Adapter (LA) and Multi-
modal Fusion (MF), across different combinations of modality
representations.

C. Implementation
Our deep learning models were developed using Python

3.7 and PyTorch 1.11.0. The speech self-supervised encoder
was initialized using the WavLM-base model1, producing
speech self-supervised representations with a dimensionality
of 768. For the text self-supervised encoder, we utilized the
RoBERTa-base model2, which has a hidden size of 768, 12
attention layers, and 12 attention heads. The context encoder
was initialized using the Whisper-small model3, resulting in
context representations with a dimensionality of 768. The word
error rate (WER) is 33.87% on the IEMOCAP dataset. the
WavLM and RoBERTa models were fine-tuned, while the
Whisper model was frozen during the training process. We
used the Adam optimizer [24], with a dropout rate of 0.5 and
a weight decay of 1e-5 to avoid overfitting and ensure model
generalization. During training, we used a batch size of 32 and
trained for 30 epochs.

D. Evaluation
To evaluate our results on the IEMOCAP dataset, which

lacks a standard train/dev/test split, we adopt a leave-one-
section-out cross-validation approach, consistent with prior
studies [25]–[27]. We assess categorical MER performance
using Unweighted Average Recall (UAR) and F1 scores,
metrics commonly employed in experiments with imbalanced
data to gauge performance [28]–[30] across the four discrete
emotional labels.

1https://huggingface.co/microsoft/wavlm-base
2https://huggingface.co/FacebookAI/roberta-base
3https://huggingface.co/openai/whisper-small.en

IV. RESULTS AND DISCUSSION

To analyze the different modality representations for MER,
we compare the recognition performance of single modality
and multimodal system, as shown in Table 1.

TABLE I
COMPARISON RESULTS OF OUR PROPOSED METHOD AND PREVIOUS MER

STUDIES.

Modality Model UAR (%) F1 (%)

Single modal
Speech (WavLM) 63.55 64.26
Text (RoBERTa) 69.29 68.77

Context (Whisper) 71.66 70.85

Multimodal

SAWC [20] 76.6 -
RMSER-AEA [21] 76.4 -

SAMS [22] 76.6 -
Proposed 77.73 77.24

w/o Speech 74.81 74.71
w/o Text 67.21 67.01

w/o Context 76.31 76.29

The effectiveness of incorporating features from multiple
modalities is evaluated. The results demonstrate the effective-
ness of multi-modal feature extraction. The improvements in
UAR and F1 scores were 14.18% and 12.98% respectively,
when compared to using only speech representation. When
compared to using only text representation, the improvements
are 8.44% and 8.47%, respectively, and compared to using
only context representation, the improvements are 6.07% and
6.39%, respectively. Furthermore, compared with the MER
previous studies, our proposed model achieves a 1.13% ab-
solute improvement in UAR. Ablation results indicate that
the most critical representation is the text representation, with
its removal causing a 10.52% and 10.23% decrease in UAR
and F1 scores, respectively. On the other hand, the context
representation has the least impact on performance, leading
to a 1.42% and a 0.95% decrease in UAR and F1 scores,
respectively. These results highlight the significant role of
multimodal representations in enhancing MER performance.
The text modality is particularly influential. The minor impact
of context representation suggests that its contribution is not
as pivotal as that of speech and text. Furthermore, the feature
distributions under the different modality representations and
the proposed method are visualized using t-SNE, as depicted
in Fig. 2. This visualization provides additional evidence
supporting the effectiveness of our proposed method.

To analyze the effects of MF and LA on MER, we compared
their performance across different modalities in detail, as
shown in Table 2.

The results indicate that the combination of MF and LA
yields superior performance compared to using only either
MF or LA. Specifically, when utilizing speech and text repre-
sentations, the observed improvements in UAR and F1 scores
are 2.45% and 2.64%, respectively, compared to using only
MF. With LA, these improvements are 1.75% and 3.08%,
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Fig. 2. The t-SNE visualization of different modality representations on IEMPOCAP session 2.

TABLE II
COMPARISON OF MER PERFORMANCE OBTAINED BY THE PROPOSED MF

AND LA FUSION METHODS.

Model Method UAR (%) F1 (%)

Speech + Text

- 72.27 72.06
MF 73.86 73.65
LA 74.56 73.21

MF + LA 76.31 76.29

Speech + Context

- 65.04 64.39
MF 66.89 66.59
LA 66.74 66.94

MF + LA 67.21 67.01

Text + Context

- 72.65 72.20
MF 73.86 73.65
LA 73.90 73.65

MF + LA 74.81 74.71

Speech + Text + Context

- 75.84 75.59
MF 76.83 76.24
LA 77.61 77.05

MF + LA 77.73 77.24

respectively. In the speech and context representations, the
enhancements in UAR and F1 scores are 0.32% and 0.42%,
respectively, when using only MF, and 0.47% and 0.07%,
respectively, with LA. For text and context representations, the
improvements in UAR and F1 scores are 0.95% and 1.06%,
respectively, with MF, and 0.91% and 1.06%, respectively,
with LA. Finally, when employing speech, text, and context
representations, the observed enhancements in UAR and F1
scores are 0.9% and 1%, respectively, with MF, and 0.12%
and 0.19%, respectively, with LA. In summary, our analysis
highlights that the combination of MF and LA consistently
improves MER performance across various modality combi-
nations.. This finding highlights the significant potential of
integrating multimodality representation to achieve robust and
reliable emotion recognition.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a multimodal self-supervised
representation extraction and fusion approach to capture emo-
tional information comprehensively. In the proposed method,
we introduce a novel layer adapter to explore modality-
dependent and modality-invariant interactions in MER. Our

findings reveal that the proposed representations across dif-
ferent modalities perform better than single-modality repre-
sentations. Moreover, our novel layer adapter and modality
fusion method for integrating modality-invariant emotional
information consistently achieves higher accuracy in MER.

For future research, we advocate for further exploration of
innovative modality fusion methods to further enhance the
accuracy of MER.
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