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Abstract—Speech enhancement models are developed to im-
prove quality and intelligibility of speech for numerous daily
applications. With the rapid development of technology, the
neural network based speech enhancement models show signifi-
cantly improved performance. The subband-based models focus
on local spectral patterns and achieve outstanding results with
fewer parameters. In this paper, we propose a subband-based
composite model named Band-Split Inter-SubNet. It adopts the
new constant-Q band-split setting to mimic human auditory per-
ception. The proposed model demonstrates superior performance
to other state-of-the-art models on the DNS Challenge - Inter-
speech 2021 dataset. Detailed analyses on experimental results
demonstrate that the proposed band-split setting is effective,
and the influence of neighboring frequency bins on the center-
frequency bin across different frequency bands varies slightly.

I. INTRODUCTION

In daily life, noise interference is one major factor hin-
dering human speech communication and automatic speech
recognition. It degrades both speech quality and intelligibil-
ity. The goal of speech enhancement models is to eliminate
the interference of noise on speech. Conventional speech
enhancement methods primarily adopt statistical theories to
suppress stationary noise. With the advancement of technology,
neural network (NN) based methods have shown significantly
improved results in many complex and challenging situations,
such as in low signal-to-noise ratios (SNRs) and reverberant
conditions. At present, NN-based speech enhancement models
are mainly implemented in the time domain or the frequency
domain. The time-domain models [1], [2] directly generate a
clean audio waveform from the noisy audio waveform. The
frequency-domain models either directly predict the spectro-
gram of clean speech [3] or predict relevant masks, such as
the ideal binary mask (IBM) [4], the ideal ratio mask (IRM)
[5], and the complex ideal ratio mask (cIRM) [6][7], from
the noisy spectrogram. Considering system robustness and
computational complexity, frequency-domain models are more
widely used than time-domain models.

Recently, the frequency-domain subband-based speech en-
hancement models [8], [9] have shown excellent performance
in monaural speech enhancement. This approach is based on
the idea that nearby frequency components are more influential
and effective in distinguishing speech from noise than far-away
frequency components. There are mainly two types of subband

speech enhancement models, i.e., band-split [10], [11] and
neighboring-frequency [12] models, as shown in Fig. 1. The
band-split models divide the full frequency band into multiple
subbands, with each subband processed independently. This
allows for the capture of more local information. However, this
type of model is limited by treating each band as a separate
channel, preventing sharing information across bands. Conse-
quently, various modules have been developed to enhance the
interaction between channels to alleviate this limitation.

Fig. 1. Subband models: (Top) Band-split model; (bottom) neighboring-
frequency model.

On the other hand, the neighboring-frequency models pre-
dict the center-frequency bin by considering its neighboring
frequency bins as additional information. However, due to the
lack of fullband information, this type of models can be less
effective in conditions where local time-frequency features
are not well-observed. To tackle this problem, neighboring-
frequency models incorporating fullband information have
been developed [13], [14], [15], enabling models to cap-
ture both local and global features. Not surprisingly, this
combination results in increased number of model parame-
ters and complexity. To reduce the complexity, Chen et al.
[16] proposed a novel lightweight framework named Inter-
SubNet, which comprises an interactive SubInter module to
effectively captures global and local spectral patterns. Inspired
by concepts of both types of subband models, we propose



Fig. 2. The architecture of the proposed Band-Split Inter-SubNet model, which is extended from Inter-SubNet [16].

a combinational model, named Band-Split Inter-SubNet, to
leverage the influence of neighboring frequency bins on the
center-frequency bin across different frequency bands. The
contributions of this paper can be summarized as follows:

1) We propose a combinational subband model from two
types of models to achieve better performance.

2) Rather than the uniform splitting setting, we use the
constant-Q band-split setting by mimicking human au-
ditory perception to achieve better performance.

The rest of the paper is organized as follows. In Section 2,
we introduce related work and the proposed Band-Split Inter-
SubNet model. The experimental setup including datasets,
training setup and baseline models are introduced in Section
3. In Section 4, we present results and discussions. Lastly, we
conclude the paper in Section 5.

II. PROPOSED MODEL

A. Problem formulation

The signal model in the short-time Fourier transform (STFT)
domain for monaural speech can be written as

X(t, f) = S(t, f) +N(t, f) (1)

where t and f are the indexes of time frame and frequency bin,
respectively. X(t, f) , S(t, f) and N(t, f) denote the complex
spectrograms of noisy speech, clean speech, and interference
noise.

The architecture of the proposed Band-Split Inter-SubNet
model is depicted in Fig. 2. It is composed of two stacked
SubInter-LSTM (SIL) blocks and one linear layer. The SIL
block has been shown effective in Inter-SubNet [16]. It can
capture global spectral information while maintaining the
ability to focus on local spectral patterns. The “G-norm” in-
dicates group normalization [17]. The magnitude spectrogram
|X| ∈ RF×T and the real part and the imaginary part of cIRM
(MR and M I ) are the input and the output of the model,
respectively, where F and T denote the numbers of overall
frequency bins and time frames.

We concatenate the i-th frequency bin |Xi| ∈ R1×T with
the 2× n neighboring frequency bins to form a subband unit
bi by the ”unfold” operation:

bi = [|Xi−n|, · · ·, |Xi|, · · ·, |Xi+n|] ∈ RFs×T (2)

where Fs = 2n+ 1.

B. Band-Split SubInter module

Fig. 3. Detailed structure of the Band-Split SubInter module.

The proposed Band-Split SubInter module shown in Fig.
2 is detailed in Fig. 3, which is slightly different from the
original SubInter module in the Inter-SubNet framework [16].
Instead of using the same linear layer for all subband units,



the subband units of all frequencies are firstly divided into
NB bands and the subband units of each band are processed
by each linear layer separately and merged together as the
subband features {hi}Fi=1, which contain local information
from neighboring frequencies. After that, the subband features
{hi}Fi=1 are concatenated with global features h̃, obtained by
averaging local subband features followed by the second linear
layer, and sent to the third linear layer. At the end, the final
output subband features {b̂i}Fi=1 are obtained by applying a
residual connection between the input subband features and
the extracted subband features.

C. Setting for splitting bands

Typical band-split models split bands uniformly along the
linear-frequency axis, i.e., all bands have the identical fre-
quency bandwidth. In this paper, we propose a new band-
split setting, as shown in Fig. 4 to mimic human auditory
perception, which is more akin to a logarithmic frequency
scale. Similar to the constant-Q transform, each bandwidth is
half that of the previous band from high to low frequency.
The first band is derived by splitting the fullband with the
highest frequency of FB Hz in half. And then, the second
band is obtained by splitting the remaining frequencies ranging
from 0 Hz to 1

2FB Hz in half, and so on. The lowest two
bands have the same bandwidth of 2−NB+1×FB Hz when we
split the fullband into NB bands. Compared with the uniform
band-split setting, this new setting can effectively divide the
low-frequency region into more bands without significantly
increasing the number of model parameters.

Fig. 4. Setting for splitting bands. The fullband is split in a way similar to
the constant-Q transform.

III. EXPERIMENTAL SETUP

A. Datasets

The proposed model was trained and evaluated on a subset
of the Deep Noise Suppression Challenge (DNS Challenge) In-
terspeech 2021 dataset [18]. The clean speech dataset contains
562.72 hours of clips from 2150 speakers. The noise dataset

includes 181 hours of 65302 clips from over 150 classes.
Moreover, we randomly select and add room impulse responses
from the openSLR26 and openSLR28 datasets [19] to 75% of
the clean speech. Then, we mix clean or reverberant speech
with noise at SNRs ranging from -5 to 20 dB to generate noisy
speech. To evaluate models’ performance, we used the public
test set from DNS Challenge, which contains synthesized clips
of two classes, namely with and without reverberations. It
includes 150 noisy clips with SNRs ranging from 0 to 20 dB.

B. Training setup

We followed the settings of DNS Challenge for model
training. The speech waveforms with 16 kHz sampling rate
were converted into STFT spectrograms using the Hanning
window with the window length of 32 ms and the frame shift
of 16 ms. Adam optimizer was adopted with the learning
rate of 1e−3 and the mean square error (MSE) and PReLU
were used as the loss function and the activation function.
The number of neighboring frequency bins on each side n
was set to 15 and the number of bands NB was set to 5. The
number of frames of input and output sequences was set to
192 frames (approximately 3 s) in training. Compared models
were evaluated by the common speech enhancement metrics
WB-PESQ [20], NB-PESQ [21], STOI [22], and SI-SDR
[23]. The following statements describe particular settings for
the proposed model, inspired from the baseline Inter-SubNet
model [16], and its variants.

Band-Split Inter-SubNet (prop): This is the basic version
of the proposed model. The Band-Split SubInter module con-
tains 93 and 307 hidden units in the first and the second SIL
blocks, respectively. Both LSTMs in the first and the second
SIL blocks are built with 384 hidden units.

Band-Split Inter-SubNet (lin): This is the proposed model
with the uniform band-split setting in the linear-frequency axis.
The performance of this variant is examined to see if the
proposed constant-Q band-split setting offers benefits.

Band-Split Inter-SubNet (+): This is the plus version of
the proposed model. In the basic version, the frequency band
splitting is only applied in the first linear layer of the Band-
Split SubInter module. In the plus version, the frequency band
splitting is applied to all linear layers.

IV. RESULTS AND DISCUSSIONS

As shown in Table I, the performance of the plus version is
not significantly different from that of the basic version with
NB = 5. Therefore, we conclude that splitting the frequency
band only in the first linear layer of the SubInter module is
enough to achieve the optimal performance. Furthermore, we
observe the proposed constant-Q band-split setting provides
more benefits to performance than the uniform band-split
setting under all conditions in terms of all metrics. The
score differences under non-reverberant conditions are quite
noticeable.

Comparison results between the baseline model and the
proposed model indicate that band splitting is effective but not
significantly so, suggesting that the influence of neighboring



TABLE I
DENOISING PERFORMANCE COMPARISON AMONG BAND-SPLIT MODELS

Model
Band-Split

(Scale)
NB

#Para

(M)

With Reverb Without Reverb

WB-PESQ NB-PESQ STOI SI-SDR WB-PESQ NB-PESQ STOI SI-SDR

Noisy - - - 1.822 2.753 86.62 9.03 1.582 2.454 91.52 9.07

Inter-SubNet [16] - - 2.29 3.207 3.659 93.98 16.76 2.997 3.504 96.61 18.05

Band-Split Inter-SubNet (prop) log 2 2.41 3.216 3.656 93.90 16.64 2.995 3.497 96.53 17.98

Band-Split Inter-SubNet (prop) log 3 2.54 3.223 3.651 93.97 16.66 3.005 3.501 96.63 18.10

Band-Split Inter-SubNet (prop) log 4 2.66 3.221 3.666 93.92 16.77 2.987 3.495 96.54 17.99

Band-Split Inter-SubNet (prop) log 5 2.78 3.230 3.665 94.03 16.80 3.023 3.509 96.77 18.23

Band-Split Inter-SubNet (prop) log 6 2.90 3.229 3.659 93.95 16.71 3.005 3.502 96.71 18.19

Band-Split Inter-SubNet (lin) linear 5 2.78 3.228 3.657 93.91 16.80 2.989 3.494 96.54 18.13

Band-Split Inter-SubNet (+) log 5 3.75 3.222 3.662 94.04 16.84 2.995 3.506 96.72 18.27

frequencies on the center frequency bin does not vary greatly
across different frequency ranges. In addition, the primary
distinction between the uniform splitting and the proposed
constant-Q splitting lies in the low-frequency range. Specifi-
cally, the uniform splitting produces the lowest frequency band
from 0 to 1600 Hz, while the constant-Q splitting produces the
band from 0 to 500 Hz. The superior performance from the
constant-Q splitting suggests that lower-frequency bands have
a more profound impact on model performance. The poorer
performance observed with NB = 6 compared to NB = 5
may be attributed to overly meticulous division of the low-
frequency range, leading to sub-optimal results.

Additionally, we conducted a detailed analysis on results of
the proposed model with NB = 5 across different SNRs. The

box plots of four scores under reverberant and non-reverberant
conditions are illustrated in Fig. 5 and Fig. 6, respectively.
These box plots show that the proposed model makes an
improvement from the baseline model in overall performance
under both reverberant and non-reverberant conditions at low
SNRs (< 5 dB). However, there is a trade-off, as scores of
some metrics exhibit slight compromises at high SNRs. We
speculate that by logarithmically splitting the frequency bands,
the model can effectively learn the characteristics of each
band, especially the low-frequency band, thereby enhancing its
robustness in low SNR environments. However, this band-split
approach also sacrifices some overall coherence across the full
frequency band, which explains why the proposed model does
not perform as well at high SNRs compared to the baseline

Fig. 5. Box plots of denoising scores of the proposed and baseline models across different SNRs under reverberant conditions.



Fig. 6. Box plots of denoising scores of the proposed and baseline models across different SNRs under non-reverberant conditions.

model.

Finally, Table II shows the performance of the proposed
model and other state-of-the-art models developed in recent
years. Compared with other models, the proposed model shows
superb performance in the denoising task with fewer model
parameters. It is because the proposed model with the constant-
Q band-split setting effectively highlights the distinctions be-
tween bands, resulting in superior model performance.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a composite model named Band-
Split Inter-SubNet. In addition, we adopt a new constant-Q
band-split setting to mimic human auditory perception. Results
demonstrate that the proposed model outperforms the original
Inter-SubNet model. The new band-split setting enhances the
robustness at low SNR conditions with slightly increased
number of model parameters. The Band-Split SubInter module
effectively learns the characteristics of each band and captures

TABLE II
DENOISING PERFORMANCE COMPARISON BETWEEN THE PROPOSED MODEL AND OTHER STATE-OF-THE-ART MODELS

With Reverb Without Reverb
Model Year

#Para

(M) WB-PESQ NB-PESQ STOI SI-SDR WB-PESQ NB-PESQ STOI SI-SDR

Noisy - 1.822 2.753 86.62 9.03 1.582 2.454 91.52 9.07

DCCRN-E [24] 2020 3.7 - 3.077 - - - 3.27 - -

Conv-TasNet [2] 2020 5.08 2.750 - - - 2.730 - - -

PoCoNet [25] 2021 50 2.832 - - - 2.748 - - -

DCCRN+ [8] 2021 3.3 - 3.300 - - - 3.330 - -

TRU-Net [26] 2021 0.38 2.740 3.350 91.29 14.87 2.860 3.360 96.32 17.55

CTS-Net [27] 2021 4.99 3.020 3.470 92.70 15.58 2.940 3.420 96.66 17.99

FullSubNet [13] 2021 5.64 3.057 3.584 92.11 16.04 2.882 3.428 96.32 17.30

FullSubNet+ [14] 2022 8.67 3.177 3.648 93.64 16.44 3.002 3.503 96.67 18.00

FS-CANet [15] 2022 4.21 3.218 3.665 93.93 16.82 3.017 3.513 96.74 18.08

Inter-SubNet [16] 2023 2.29 3.207 3.659 93.98 16.76 2.997 3.504 96.61 18.05

Band-Split Inter-SubNet (prop) 2024 2.78 3.230 3.665 94.03 16.80 3.023 3.509 96.77 18.23



local patterns. Compared with other state-of-the-art models,
the proposed model shows better performance on denoising
under both reverberant and non-reverberant conditions. How-
ever, the proposed model demands high computations such
that developing simpler modules and more efficient band-split
settings still require further effort. In the future, we will explore
new band-split settings and refine our modules to reduce
model parameters and computations. Nevertheless, applying
the model to real-time noise reduction remains a challenging
task.
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