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Abstract—Previous research on articulatory synthesis has 
partially implemented and verified the speech synthesis systems 
that mimic the human vocalization process. This study proposes a 
speech synthesis system that more faithfully replicates the human 
vocalization process by constructing a model that generates 
speeches from the international phonetic alphabet (IPA) sequence 
through articulatory movement data. For training and evaluating 
this model, we used the ATR phoneme-balanced 503 sentence 
electromagnetic articulography (EMA) database that contains 
pair data of speech and EMA data of a male Japanese speaker. 
The experimental results showed that using articulatory 
movement data as intermediate information improved the quality 
of synthesized speeches regarding objective scores such as mel-
cepstral distortion (MCD), phoneme error rate (PER), and 
perceptual evaluation of speech quality (PESQ). In particular, the 
effectiveness of using articulatory movement data was confirmed 
in the case of speech where articulation points were included in 
the EMA database. 
 

1. INTRODUCTION 
Human beings generate speech by converting linguistic 

information into movements of the articulatory organs such as 
the lip and tongue, thereby controlling the airflow. This fact 
shows that considering articulatory movements on speech 
synthesis has the potential to improve the quality of synthesized 
speeches. Although many text-to-speech (TTS) systems 
express the movements of articulatory organs with Mel-
spectrogram, which illustrates the resonant frequency 
generated from the organs, Mel-spectrogram is the final result 
of articulation that can be directly converted to waveform with 
the vocoder. Modeling the movements of articulatory organs 
between text and Mel-spectrogram can more accurately 
simulate the human speech production process; thus, 
potentially improving the quality of the generated speeches. 

Based on this background, there have been some studies 
regarding the relationships between articulatory movements, 
linguistic information, and speech. There are several types of 
articulatory movement data, with three notable examples: first, 
real-time magnetic resonance imaging (rtMRI), which 
measures the movements of the articulatory organs using an 
MRI device [1-3]. Although recording rtMRI data is costly, it 

is characterized by its ability to capture the movements of the 
entire articulatory organs. Second, electromagnetic 
articulography (EMA), which measures the movements of the 
articulatory organs using coils attached to them [4-7]. Although 
EMA data do not include data on vocal fold movements, it is 
characterized by its high sampling rate and spatial resolution. 
Third, ultrasound tongue imaging (UTI), which uses ultrasound 
to measure the movements of the tongue [8,9]. UTI captures 
only the movements of the tongue but it is characterized by its 
ease of measurement. These studies generated articulatory 
movement data from linguistic features or speech from 
articulatory movement data. Thus, these studies have only 
partially implemented and evaluated speech synthesis systems 
that mimic the human vocalization process. 

In this study, we propose a model that synthesizes speech 
from linguistic features through articulatory movement data, 
using EMA data as the articulatory movement. We compared 
three models; (1) generating Mel-spectrogram from the 
international phonetic alphabet (IPA) sequence through 
estimated EMA, (2) directly generating Mel-spectrogram from 
the IPA sequence, and (3) generating Mel-spectrogram from 
both the IPA sequence and estimated EMA. We confirm the 
effectiveness of using articulatory movement data with some 
objective scores such as Mel-cepstral distortion (MCD) [10], 
phoneme error rate (PER), and perceptual evaluation of speech 
quality (PESQ) [11] to evaluate the quality of generated 
speeches. We also analyzed which position of articulation data 
was effective for speech generation and which phones 
benefited from the information on articulatory movement data. 

 
2. RELATED WORK 

2.1 EMA data generation from the IPA 
We have proposed a method for generating EMA data from 

the IPA [12]. IPA is a symbol that contains a wealth of 
articulatory information which is defined in terms of 
articulation method and position of articulation. Each phone in 
any language is represented as a symbol of the IPA. EMA 
[13,14] is an instrument that measures the articulatory 
movement using a coil attached to the articulatory organs, and 
is characterized by its ability to capture the movements of 
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articulatory organs at a high sampling rate and spatial 
resolution. 

In [12], EMA data is generated from IPA using the 1DCNN-
based SENet [15]. In this model, the receptive field, which is 
the input window width that affects the output, was optimized 
for generating EMA data from the IPA sequence. Additionally, 
dedicated models were constructed for each articulatory organ, 
and the final outputs were generated by combining the outputs 
of these multiple models as an ensemble model. This model 
enabled the generation of EMA data with high accuracy and 
speed. 

 
2.2 Speech synthesis from EMA data 

Kim et al. proposed a multi-speaker speech synthesis model 
from EMA data and speaker embedding through the Mel-
spectrogram [16]. The proposed model consists of four 
modules; the first is an encoder consisting of the residual 
connections and CNN layers. The second is a generation model 
of 𝐹!  and energy consisting of linear and CNN layers. The 
errors of 𝐹! and energy were used as the loss during training. 
The third is a model for generating the Mel-spectrogram, which 
consists of the Conformer [17]. The fourth is a vocoder that 
accepts Mel-spectrogram as input. This model uses the hifi-
GAN [18] as a vocoder. The model showed high scores in both 
subjective and objective evaluations. 
 
 

3. PROPOSED MODELS 
The structure of the proposed model is shown in Fig. 1. To 

verify the effectiveness of using EMA data and the IPA 
information separately, we created three types of models: (1) 
EMA, which uses EMA data as intermediate information, (2) 
IPA, which generates speech directly from the IPA sequence, 
and (3) IPA+EMA, which uses both EMA and IPA sequence as 
the intermediate information and the input, respectively. For all 
models, hifi-GAN was used as the vocoder for generating 
speech from the Mel-spectrogram. 

 
3.1 (1) EMA Model 

The EMA Model first outputs EMA data from the IPA 
sequence and then generates a Mel-spectrogram from the 
output EMA data. IPA is considered as a suitable input for the 
EMA data generation model because it contains a wealth of 
articulatory information. In this model, the EMA generator, 
which generates EMA data from the IPA, consists of a 
1DCNN-based SENet, and the Mel generator, which generates 
Mel-spectrogram from EMA data, is composed of the model 
proposed by Kim et al. [16], which learns losses including 𝐹!. 

 
3.2 (2) IPA Model 

The IPA Model directly generates a Mel-spectrogram from 
the IPA sequence only. This model is the same as the Mel 
generator in the (1) EMA Model.  

 
3.3 (3) IPA+EMA Model 

The IPA+EMA Model first outputs EMA data from the IPA 
sequence and then generates a Mel-spectrogram from the 
output EMA data along with the IPA. The models that output 
EMA data from the IPA sequence and that generate Mel-
spectrogram from the EMA data are the same as the EMA 
generator and Mel generator in the (1) EMA Model, 
respectively. The EMA data and IPA are combined in the 
Integration block, and this combined data is used as input to the 
Mel generator. 

 
4. EXPERIMENT  

In the experiment, we compared three models: (1) EMA, (2) 
IPA, and (3) IPA+EMA by using four evaluation metrics 
regarding the quality of the synthesized speeches. 

 
4.1 Datasets 

4.1.1 EMA database [19] 
The EMA database contains IPA labeling, EMA, and speech 

data of the ATR phoneme-balanced 503 sentences [20] spoken 
by one male Japanese speaker. In the experiment, 450 sentences 
were used as training data, 27 sentences as validation data, and 

Fig. 1 Structure of speech synthesis model 
from the IPA sequence through EMA data. 
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26 sentences as test data, and were used for learning the EMA 
generator and Mel generator and fine-tuning the hifi-GAN. 

Ninety-six IPA phones were included in the database and 
were preprocessed by converting them into one-hot vectors. 
EMA data consists of 12 dimensions of the back-forth and up-
down movement data of six points on the mid-sagittal plane: 
the upper lip, lower lip, lower jaw, tongue tip, tongue body, and 
tongue dorsum. We preprocessed these data by normalizing 
them to range from -1 to 1. The speech data were transformed 
such that the Mel-spectrogram had 60 dimensions. 

 
4.1.2 JVS corpus [21] 

The JVS corpus contains speech data of ATR phoneme-
balanced 503 sentences spoken by multiple Japanese speakers. 
In the experiment, only the data from male speakers were used 
for pre-training the hifi-GAN, with 5732 sentences as training 
data and 636 sentences as verification data. This is because the 
EMA database contains only the data from one male speaker. 
The speech data were transformed such that the Mel-
spectrogram had 60 dimensions. 

 
4.2 Evaluation metrics 

As evaluation metrics, we used 𝐹!  Root Mean Squared 
(RMSE) to measure the accuracy of 𝐹!  estimation. Haverst 
[22] was used to extract 𝐹! . Additionally, to evaluate the 
quality of the synthesized speech, we used MCD [10], PER and 
PESQ [11]. PER was calculated with the speech recognition 

model Julius [23]. Lower values of 𝐹!RMSE, MCD, and PER 
indicate better evaluation, whereas higher values of PESQ 
indicate better speech quality. 

 
5. RESULTS AND DISCUSSIONS 

5.1 Overall results 
Table 1 summarizes the overall experimental results. For all 

evaluation metrics, the (3) IPA+EMA Model showed the best 
results. The addition of EMA data as intermediate information 
enabled more accurate modeling of vocal tract characteristics, 
resulting in improved speech quality. However, 𝐹!RMSE was 
33.47 (Hz), indicating that synthesized speech cannot be 
considered natural. This is because EMA data do not contain 
information about the vocal folds, which are closely related to 
𝐹!. 

Fig. 2 shows the difference images of Mel-spectrograms 
between the target speech and the synthesized speeches. White 

Table 1 𝑭𝟎RMSE, MCD, PER, and PESQ of 
synthesized speeches. 

 
Model 𝐅𝟎RMSE 

(Hz) 

MCD 

(dB) 

PER PESQ 

(1)	EMA 39.34 13.36 0.26 1.09 

(2)	IPA 35.73 10.58 0.10 1.11 

(3)	IPA+EMA 33.47 10.27 0.09 1.12 

 

Fig. 4 Scatter plot (blue) and regression line (green). 
(a) : “MCD of all phonemes” and “RMSE of tongue 

body back-forth position” in the EMA. 
(b) : “MCD of all phonemes” and “RMSE of tongue 

dorsum back-forth position” in the EMA. 

Fig. 3 Heatmap of Pearson correlation coefficients between 
the MCD and the RMSE of EMA data in the (3) 
IPA+EMA Model. “UL” means upper lip, “LL” means 
lower lip, “LJ” means lower jaw, “TT” means tongue tip, 
“TB” means tongue body, “TD” means tongue dorsum, 
“BF” means back-forth, and “UD” means up-down. 

Fig. 2 Difference images of Mel-spectrograms 
between proposed models and ground truth. 
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areas indicate where the Mel-spectrogram of the target speech 
was not accurately reproduced. Comparing the three models 
using the difference images, we can observe that the Mel-
spectrogram of the speech synthesized from the (3) IPA+EMA 
Model exhibited the best reproducibility. However, none of the 
models accurately reproduced the target Mel-spectrogram 
around the 2.5 seconds. The sound at this point is [a], and the 
issue may be attributed to amount of articulatory movement; 
further analysis is required. 

Fig. 3 shows the Pearson correlation coefficient between the 
RMSE of EMA data and the MCD in the (3) IPA+EMA Model. 
Focusing on the MCD of ALL phonemes, the correlation 
coefficient with the RMSE of the tongue body back-forth 
position (TB-BF) was the highest at 0.66, and the correlation 
coefficient with the RMSE of the tongue dorsum back-forth 
position (TD-BF) was the second highest at 0.55. Fig. 4 shows 
the scatter plot and regression line for the two pairs that 
recorded high correlation coefficients in Fig. 3. Fig. 4 (a) and 
(b) show the graphs which were depicted from the data of TB-
BF and TD-BF, which showed the two best performances. The 
scatter plot and correlation coefficient indicate that the higher 
the accuracy of the estimation tongue body or dorsum back-
forth position in the EMA, the better the MCD values for all 
phonemes. This is because MCD is an index of vocal tract 
characteristics, and the back-forward movement of the tongue 
has a significant effect on the shape of the vocal tract. 

 
5.2 MCD for each phoneme category 

Table 2 compares three models by the MCD of vowels, 
consonants, semivowels, and silence. The MCD of vowels, 
consonants, and silence was the best with the (3) IPA+EMA 
Model. However, that of semivowels was the best with the (2) 
IPA Model. The test data included only the semivowels [j] 
(voiced palatal approximant) and [w] (voiced labial–velar 

approximant), both of which are articulated at the palate as the 
point of articulation. However, because the EMA data do not 
contain information about the palate, the EMA data used as 
intermediate information was considered to be noise, leading to 
this result. 
 
5.3 MCD for each vowel 

Table 3 compares the three models using the MCD of 
single vowels. The MCD of [a], [o], and [e] was the best with 
the (3) IPA+EMA Model. These three vowel sounds were 
either open or close-mid vowels. Fig. 5 shows boxenplots that 
display the standardized EMA data categorized by vowels in 
the test data. The EMA data was standardized for each 
measurement point and converted from 12 dimensions to one 
dimension. From these plots, it can be observed that the data 
distribution is scattered in the order [a], [o], [e], [i], [ɯ]. That 
is, the articulatory movements are more intense in [a], [o], and 
[e] compared to [i] and [ɯ]. Therefore, three open or close-mid 
vowel sounds had a certain amount of articulatory movement, 
and the accuracy of MCD was improved by using the EMA data 
as intermediate information. However, the MCDs of [i] and [ɯ] 

Table 2 MCD for each phoneme category. 

Model MCD(dB) 

 vowel consonant  semivowel silence 

(1) EMA 12.03 13.86 12.30 18.05 

(2) IPA 9.85 10.68 9.99 11.63 

(3) IPA+EMA 9.69 10.37 11.06 11.07 

 Table 3 MCD for each vowel. 

Table 4 MCD by vowel IPA. Model MCD(dB) 

 [a] [o] [e] [i] [ɯ] 

(1) EMA 10.92 11.46 10.18 14.04 12.66 

(2) IPA 9.97 9.79 8.81 10.34 10.04 

(3) IPA+EMA 9.55 9.50 8.52 10.41 10.49 

 

Fig. 5 Boxenplot of standardized EMA data 
for each vowel in test data. 

Fig. 6 Scatter plot (blue) and regression line (green). 
(a): “MCD of [o]” and “RMSE of the lower jaw back-
forth position” in the EMA. 
(b) : “MCD of [e]” and “RMSE of the lower lip back-
forth position” in the EMA 
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were the best with the (2) IPA Model. These two vowel sounds 
were close vowels, and Fig. 5 indicates that close vowels have 
less articulatory movement. Thus, the MCDs in these two 
vowel sounds were not improved by using the EMA data as 
intermediate information. 

Focusing on the MCD for each vowel in Fig. 3, the 
correlation coefficient between the MCD and RMSE of the 
lower jaw back-forth position of [o] ([o]-LJ-BF) was the 
highest at 0.72, and the correlation coefficient between the 
MCD and RMSE of the lower lip back-forth position of [e] ([e]-
LL-BF) was the second highest at 0.68. Fig. 6 (a) and (b) show 
the scatter plots and the regression lines which were depicted 
from data [o]-LJ-BF and [e]-LL-BF, respectively. The results 
indicate that the higher the accuracy of the estimation lower jaw 
or lower lip back-forth position in the EMA, the better the MCD 
values of [o] or [e]. The vowel [o] is a close-mid back rounded 
vowel, pronounced with lip rounding. Because the lower jaw 
moves to create lip rounding, a high correlation was obtained. 
Fig. 7 shows boxenplots that display the standardized EMA 
data of [e] categorized by measurement points of EMA in the 
test data. Focusing on the mean values, LL-BF, UL-BF, and LJ-
BF in this order, were the farthest from the mean value of zero. 
In other words, compared to other sounds except [e], the 
articulatory organs of these EMA points moved in unique 
positions. Therefore, it is considered that a high correlation 
coefficient between the MCD and [e]-LL-BF was observed. 
Additionally, [e]-UL-BF and [e]-LJ-BF also showed relatively 
high correlation coefficients when compared to other vowels. 

However, the correlation coefficients between the MCD of 
close vowels [i][ɯ] and the RMSE of EMA data were lower 
compared to those of open or close-mid vowels. This indicates 
that no correlation between the estimation accuracy of the EMA 
data and MCD of close vowels existed. This may also be owing 
to the less articulatory movement of close vowels. 

 
5.4 MCD for consonant categories 

Table 4 compares three models using the MCD of each 
consonant articulation point. The MCD of labiodental, palatal, 
bilabial, alveolar, and velar sounds was the best with the (3) 
IPA+EMA Model. These sounds involved the lips or tongue as 
the place of articulation, which could be supplemented with 
EMA data, resulting in improved MCD.  

 However, the MCD of the retroflex and glottal sounds was the 
best with the (2) IPA Model. Retroflex sounds are pronounced 
when the curled tongue approaches the hard palate. The EMA 
data do not contain information about the hard palate and the 
tongue movements are complex. Thus, the accuracy of MCD in 
the sounds was not improved by using the EMA data as 
intermediate information. Additionally, EMA data do not 
contain information about the glottis which is the articulation 
point of the glottal sound [h]; hence, the (2) IPA Model had the 
best results in the MCD of glottal sounds. 
 

6. CONCLUSIONS AND FUTURE WORK 
In this study, we evaluated three models for generating 

speeches from IPA sequences through EMA data, which 
contains a wealth of information about articulatory movement. 
Experiments confirmed that using EMA data as intermediate 
information improves the quality of the synthesized speech. In 
particular, the effectiveness of using EMA data as intermediate 
information was confirmed in the case of speech where 
articulation points were included in the EMA data.  

However, even when using EMA data, the estimation 
accuracy of 𝐹!  was low. Therefore, in the future, we will 
investigate methods to accurately estimate 𝐹! using EMA data 
as input. 

 
 
 

Model MCD(dB) 

 Labiodental Palatal Bilabial Alveolar Velar Retroflex Glottal 

(1) EMA 17.59 13.78 14.11 12.60 14.85 15.37 17.58 

(2) IPA 12.65 10.20 10.68 10.38 11.68 11.10 10.83 

(3) IPA+EMA 11.24 9.26 10.08 10.08 11.65 11.31 11.17 

 

Table 4 MCD of consonants categorized by articulation points 

Fig. 7 Boxenplot of standardized [e]-EMA data for each 
EMA point of measurement in test data. 
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