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Abstract—With the widespread application of deep neural
networks (DNN) in key areas of personal and property security,
the interpretability and trustworthiness of DNN models become
increasingly significant. Concept Bottleneck Models (CBM) are
popular interpretable models in which hidden layer neurons
are trained to predict human-understandable concepts of the
final task. However, existing CBMs encounter low efficiency and
interpretability in the multi-label classification (MLC) of con-
cepts: correlations of concepts are ignored by many CBMs, while
others expressing correlations with complex models have very
limited improvements in the model’s performance. To address the
challenge of massive parameters and limited interpretability in
concept MLC problem, we propose a novel Visual-Projected CBM
(ViP-CBM), which transforms MLC of concepts into an input-
dependent binary classification problem of concept embeddings
using visual features for projection. Our ViP-CBM model reduces
the training parameter set by more than 50% with the number
of training parameters when compared to other embedding-based
CBMs. Experimental results show that our ViP-CBM achieves
comparable or even better performance in concept prediction.

I. INTRODUCTION

As deep neural networks (DNNs) are increasingly used
in scenarios concerning personal and property security such
as healthcare, automatic driving, and financial services, the
trustworthiness and interpretability of DNNs have been in-
creasingly significant, bringing explainable AI (XAI) to the
forefront. Researches on XAI mainly follow two routines:
the post-hoc explanation that looks into already-trained black-
box models, and human-interpretable modeling that aims to
build a DNN with an entirely human-understandable inference
process. Traditional post-hoc explanation methods such as
LIME [1] and SHAP [2] try to identify the most important
parts of the input data that support the model’s decision.
Network Dissection [3] attempts to explain image classification
by convolutional neural networks (CNNs) through features in
the intermediate layers, but cannot align these features per-
fectly with human cognition. In summary, end-to-end trained
black-box DNNs usually cannot be entirely explained in a
human-interpretable way, leading us to achieve interpretability
by model construction from scratch. A natural conceit is
to train models to provide information in the intermediate
layers that support the decisions, which requires step-by-step
design in reasoning with additional supervision. Concept-based
models are popular human-interpretable models that explain
the decisions of models with supporting high-level concepts.
Concept Whitening [4] performs affine transformations in the

Fig. 1. Our ViP-CBM converts multi-label classification of concepts to
unified binary classification of concept embeddings projected by visual

features of input images. ψ(·) denotes the visual feature extractor.

latent space to align axes with concepts of interests, and
research in [5] assigns each layer of a CNN to capture certain
concepts from low-level (e.g., colors, textures) to high-level
(e.g., objects). The above methods provide layer-wise concept
explanations with massive annotation and high training costs.

In this work, we focus on a certain type of interpretable
concept-based model for image classification, the Concept Bot-
tleneck Model (CBM) [6]. CBMs split end-to-end prediction
into two steps: first to predict the concepts and then to predict
classes using only concepts. CBM is a simple and useful
interpretable deep model since it enables humans to understand
the decisions of the model with concept predictions and allows
test-time intervention to improve accuracy in downstream tasks
by correcting false concept predictions.

As the bottleneck of CBM, concept prediction in conven-
tional CBMs usually learn concepts from an N -way binary
classifier for all N concepts. Since the classifier treats all labels
disconnected, correlations between concepts are neglected,
leading to a loss of accuracy, especially in cases where the
concept label set is large and a loss of interpretability as well.
To address this issue, the work in [7] uses an autoregressive
architecture inspired by the classifier chain [8] in multi-label
classification (MLC) to capture correlations among concepts,
which improves concept accuracy and task accuracy signifi-
cantly. ECBM [9] employs an energy-based model to learn
the relevance of concepts through inferences on a probability
graph, where gradient descent is applied to minimize the
energy function for prediction. In summary, current studies on
solving the MLC problems in CBM involve more parameters
and a complex model structure and require extensive samplings
and calculations with limited performance improvements.



To improve the efficiency and interpretability of the MLC
problem in concept prediction, we propose the Visual-
Projecting Concept Bottleneck Models (ViP-CBM). In ViP-
CBM, visual features extracted from the input image are
used as projecting matrices on the concept embedding space.
The projected embedding vectors of the concepts are binary
classified as activated or not by a unified linear classifier, as is
shown in Figure 1. Through the visual projecting (ViP) module
in ViP-CBM, we convert the MLC problem in concept pre-
diction into an input-dependent binary classification problem,
which intuitively explains the classification with the projection
mechanism and attains better interpretability. The contributions
of this work are as follows:

• We propose an interpretable ViP module for image multi-
label classification to convert MLC problems into binary
classification problems in the embedding space of labels.

• We propose ViP-CBM, which reduces the number of
training parameters to that of the minimal scalar CBM,
which is less than 50% of that of other embedding-based
CBMs. Our ViP-CBM achieves similar performance in
both concept prediction and class prediction when com-
pared to other CBMs.

II. RELATED WORKS

In this section, we review related works in CBMs and visual-
semantic embedding that inspire our work.

A. Concept Bottleneck Models

Concept Bottleneck Models (CBM) [6] consists of two parts,
the concept predictor and the class predictor. The concept
predictor predicts human-specified concepts from the input
image, while the class predictor receives predictions from the
concept predictors as input to predict the classes. Earlier stud-
ies in CBMs employ scalar variables in the last layer before
downstream tasks as concept predicting logits or probabilities.
Assuming that the incompleteness of the concept set prevents
the CBM from achieving higher task accuracy, side channels
[7] are introduced in hard CBMs to represent undiscovered
binary concepts to enhance model performance. Coop-CBM
[10] adds a side branch before the concept prediction layer
for immediate task prediction, leading to higher accuracy in
concept prediction. Post hoc CBM [11] predicts concepts by
projecting extracted features on Concept Activation Vectors
(CAVs) trained from other supporting datasets by SVM or
multimodal models, and Label-free CBM [12] further employ
GPT-3 [13] for concept annotation to eliminate the need for
densely annotated data. Both models convert pre-trained black-
box models into CBMs and maintain task accuracy comparable
to the original black-box networks.

To improve the expressivity of concepts in the model,
the Concept Embedding Model (CEM) [14] learns a pair of
positive and negative embeddings for each concept from the
input to extend feature representations to higher dimensions.
ProbCBM [15] and ECBM [9] use individually trained concept
embeddings for concept prediction through their relationship

with features extracted from the original input, the former us-
ing Euclidean distance in space and the latter using Boltzmann
energy models. However, all the above methods introduce
more parameters or even other large models and additional
data to attain higher concept and task accuracy, which makes
model structures and training complicated and increases train-
ing costs, and deviates from the original intent of achieving
interpretability on basic small models by feature supervision.

B. Visual-semantic Embeddings Models

Visual-semantic embedding models exploit label semantic
relationships by leveraging the textural data from the label set
to map visual features into a rich-semantic embedding space
and are frequently used in image-text matching problems.
In image classification with large-number labels, the Deep
Visual Semantic Embedding (DeViSE) model [16] outperforms
conventional one-way models since the latter treats all labels
as disconnected and unrelated. The DeVisE model uses a pre-
trained word2vec [17] model to embed words into vectors
with semantic information preserved such as synonymy and
a pre-trained visual model to extract feature vectors from
input images. Classifying an input image is to assign the most
relevant label to the image based on the similarities between
the image and labels, which is measured by a generalized dot
product of the visual feature vectors and concept embedding
vectors where the metric matrix is trainable.

Visual-semantic embedding models are extended to
sentence-level problems such as image description generation
in [18], [19] using RNNs, and are used in zero- and few-
shot learning due to the continuity of visual space and the
use of unannotated text in [20]. In [21], the DeViSE model
is extended for MLC, where the compatibility of an image
and a label is represented by the embedding vectors projected
by matrices of visual features extracted from the images.
However, this model predicts only the k most possible labels
from the highest k matching scores and does not provide pre-
dictions on the entire set of labels. In summary, all the above
visual-semantic embedding models require a large corpus to
learn semantic embeddings of the label texts from semantic
relations and syntactic components. Furthermore, these seman-
tic embeddings are independent of the final tasks, thus the
performance of the model relies entirely on the training of the
visual part, while the concept part is not involved in improving
performance. On the other hand, BotCL [22] learns a visual-
semantic concept bottleneck in SENN [23] with nonsemantic
embeddings of implicit concepts where concept embeddings
are learnable during training. However, due to self-supervised
implicit concepts in SENN that are not understandable to
humans, BotCL lacks credibility in comparison to CBM and
does not support intervention.

III. THE PROPOSED VIP-CBM METHODS

A. Motivation

To address the challenge of massive parameters and low
interpretability in MLC of concepts, we propose ViP-CBM to
transfer the MLC problem into a binary classification problem
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Fig. 2. Model structure of our ViP-CBM.

of all concept embeddings projected by the visual features of
each input image individually. We modify the model in [21]
and propose the ViP module to predict all concepts where
embeddings are trained simultaneously with visual features.

Our main idea is as follows: The MLC problem in concept
prediction can be transformed into finding bisections of the
concept label set for different inputs, which is equivalent to
finding binary classifications of concept embedding vectors
for different input images in the concept embedding space.
With a well-defined input-dependent projection that projects
different classification surfaces for each input image into a uni-
fied hyperplane, the original concept bottleneck layer, which
individually predicts each concept as positive or negative, can
be transferred into a unified binary classifier for projected con-
cept embedding vectors. By constructing a projection function
based on the visual features, we can build a concept bottleneck
model that predicts concepts from visual-projected concept
embeddings. Therefore, our ViP-CBM leverages both visual
and semantic information from the data, where both visual
and concept representations are learnable.

As a variant of CBM, our ViP-CBM requires a fully
supervised dataset denoted as D =

{
x(i), c(i), y(i)

}N
j=1

with
N data points, K binary concepts and M classes, where the
i-th data point consists of the input x(i) ∈ X , the concepts
c(j) ∈ {0, 1}K and the label y(j) ∈ {1, . . . ,M}.

B. Model Structure

Figure 2 shows the general prediction flow of our ViP-
CBM. Our ViP-CBM includes concept embeddings the visual
projecting (ViP) module, the concept predictor, and the task
predictor, which we will introduce one by one.

Concept embeddings and the ViP module. For concept
embedding, we embed all K concepts {c1, . . . , cK} in Rd

space as {v1, . . . ,vK}. Given an input image x, a backbone
CNN ϕ(·) extracts visual features as a matrix Z = ϕ(x) ∈
Rm×d. We use a nonlinear projection uk = θ(Zvk) ∈
Rm, k = 1, . . . ,K, by adding a nonparametric nonlinear
function θ(·) on a simple linear projection. In this work, we
propose the nonlinear projection as

uk,j = ReLU

(
zTj vk +

zTj
∥zj,·∥2

vk

)
, j = 1, . . . ,m, (1)

where zj ∈ Rd, j = 1, . . . ,m is the j-th row of the matrix
Z and uk,j denotes the j-th element of uk. This projection
function uses ReLU as the activation function and introduces

“normalized linear projections”, which is the latter term of the
inputs of the ReLU function, to increase nonlinearity.

Concept predictor. ViP-CBM converts MLC in concept
prediction into a unified binary classification in projected
concept embeddings u1, . . . ,uK . We propose a linear classifier
with a pair of anchor points for the concept predictor. Define
a pair of trainable anchor points u+,u− ∈ Rm and classify
the concept ck according to the Euclidean distance between its
corresponding projected embedding uk and the two anchors,
which adds nonlinearity to a linear model, with projections of
positive concepts closer to u+ and negative concepts closer
to u−. Inspired by Triplet Loss in [24], the probability of the
concept ck being activated is

p(ĉk = 1|Z,{vi}Ki=1)=σ(a(∥uk−u−∥2−∥uk−u+∥2−mck)), (2)

where σ(·) represents the sigmoid function, a > 0 is a
learnable scaling parameter, mck ≥ 0 is an optional decision
margin depending on true label ck. For example, we can set
mck to a positive constant m to penalize false positives. To
encourage the model to project both activated and inactivated
concepts closer to the corresponding anchors for inputs from
each class, we set the margins as

mck = 1(ck=1)m+ 1(ck=0)(−m),m > 0, (3)

where 1(·) is the instructional function.
Class predictor. To reduce the model parameter set to the

minimum, we use a simple linear classifier as the task predictor
to predict the M final classes. Different from conventional
CBMs, we employ the K projected concept embeddings
[u1, . . . ,uK ] as inputs of the class predictor instead of concept
predictions p(ĉk = 1|Z, {vi}Ki=1), to improve model’s perfor-
mance and smooth the training process by leveraging the richer
information in embeddings.

Training strategy and loss function. Since we calculate
concept probabilities and task probabilities, we apply Binary
Cross-Entropy (BCE) loss to concept prediction and Cross-
Entropy (CE) loss to class label prediction. In this work, we
employ the joint CBM training strategy, which is to train both
concepts and labels simultaneously by minimizing a weighted
sum of the two losses:

L = E(x,c,y) [LCE(y, ŷ) + αLBCE(c, ĉ)] . (4)
C. Parameter Reduction in ViP-CBM

Our ViP-CEM reduces parameters mainly in concept predic-
tion. Consider a minimal CBM with the same backbone CNN
as our ViP-CBM model, binary concepts are predicted from
extracted visual features Z ∈ Rm×d by a simple linear model:

p(ĉk = 1|Z) = σ
(
wT z̄+ b

)
, (5)

where z̄ ∈ Rmd represents the flattened matrix Z, and the
parameters of the linear model are (w, b) ∈ RKmd × R.
In comparison, the parameters in the concept predictor of
our ViP-CEM are ({vi}Ki=1,u+,u−) ∈ RK×d ×Rm ×Rm.
Therefore, the number of training parameters in the concept
predictor in our ViP-CBM is approximately m times less than
that in the minimal CBM.
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In addition, the concept predictor in (2) without margins is
equivalent to a linear classifier in the final decision. Thus, we
can rewrite the concept predicting step with a linear classifier
of the form p(ck = 1|uk) = w̃Tuk + b̃, w̃ ∈ Rm, b̃ ∈ R as
follows, neglecting the nonlinearity in projection:

p
(
ĉk = 1|Z, {vi}Ki=1

)
= σ(w̃T (Zvk) + b̃) = σ(tr[(vkw̃

T )Z] + b̃), (6)

which is similar to (5) with the weight matrix vkw̃
T of rank

1. This reveals that our model uses a rank-1 classifier for
concept prediction while using the two anchors to encourage
the separation of the positive and negative samples, and the
nonlinear function θ(·) to preserve the performance.

When using projected embeddings for class predicting in-
stead of probabilities, the number of parameters of the class
predictor in our ViP-CBM is m times that in the minimal
CBM that predicts classes from scalars, which makes the total
number of training parameters comparable to the minimal
scalar CBM. Nevertheless, due to the parameter reduction in
concept predicting, our ViP-CBM has only less than half as
many training parameters as the minimal CEM and ProbCBM.

IV. EXPERIMENTAL SETUP

A. Datasets

CUB-200-2011. The Caltech-UCSD Birds-200-2011 (CUB-
200-2011) [25] dataset contains 11,788 images of 200 subcat-
egories belonging to birds annotated with 312 binary concepts.
We use the preprocessed dataset in [6] where the number of
concepts is reduced to K = 112 and concepts are denoised
to class-level, which means images from the same class share
the same concept annotations. Concept labels in CUB-200-
2011 are of the form ”{general concept}::{detail}”, so that
we can naturally group concepts into 28 groups based on the
general concepts, with the largest group having 6 concepts.

AwA2. Animals with Attributes 2 (AwA2) [26] dataset
contains 37,322 images of 50 categories of animals with 85
binary attributes, e.g., color, stripe, etc. AwA2 provides a
category-attribute matrix that contains concept labels for each
category so that concepts are also class-level. We artificially
summarize these 85 concepts into 30 groups of color, pattern,
habit, etc., with the largest group having 14 concepts.

B. Experimental Setup

Data augmentation. For data augmentation, we first per-
form color jittering and random horizontal flipping on the
images, then resize them to 256 × 256. We randomly crop
the images with a scale of (0.8, 1.0) and resize images from
CUB to 224× 224 and images from AwA2 to 256× 256.

ViP-CBM model settings. The visual feature extractor of
our ViP-CBM is shown in Figure 3. We use a ResNet34 [27]
pre-trained on ImageNet-1k [28] as the backbone and extract
outputs of the layer before the global average pooling with a
size of (512, l, l) where l denotes the side length of the feature
map. We then use a 1 × 1 convolution layer with d channels
and flatten the outputs to get a feature representation of size (d,
l2), where d is the dimension of concept embeddings. Then we

Fig. 3. Detailed structure of the visual feature extractor in ViP-CEM.

use a Fully Connected (FC) layer to reduce the l2-entry inputs
to m entries to get the feature matrix Z ∈ Rm×d. The settings
of the concept and class predictor follow the descriptions in
Section III-B. We set symmetric margins following (3) with
m = 0.1 to test the effects of margins.

Baselines. We compare our ViP-CBM to conventional joint
CBM, CEM, and ProbCBM with equivalent parameters. For
all baseline models, we use the same pre-trained ResNet34 and
1×1 d-channel convolution layer to get a feature representation
of size (d, 7, 7) and flatten it to a 49d dimensional vector.
For baseline CBM, we use a 2-layer MLP for the concept
predictor with a hidden layer size of 128 and apply ReLU as
the activation function. We use a linear model to predict class
labels directly from concept predictions as the class predictor.

For baseline CEM, we use a simple linear model to predict
the positive and negative d-dimensional embeddings of each
concept to align the dimensions with our model. We use a
shared scoring function and linear class predictors as in [14].

For baseline ProbCBM, we use a linear model to generate
K visual embeddings of d dimensions from the original
features of size (d, l, l), and learn K pairs of positive and
negative anchors for concept prediction in the embedding
space of d dimensions. since our only concern is the model’s
performance, we omit the sampling step and refine the class
predictor to a simple linear model where the inputs are the K
visual embeddings for this work.

Hyperparameters settings. We set the weight between the
two losses α = 5. We use an SGD optimizer with a learning
rate of 0.01 for the CUB dataset and 0.002 for the AwA2
dataset, both with momentum of 0.9 and weight decay of 5×
10−4. We train 400 epochs on the training split and compare
model performance on the test split for the CUB dataset, and
250 epochs for the training split of the AwA2 dataset.

C. Metrics

We use class accuracy as the criterion of the model’s task
performance. Denote the k-th concept prediction of the i-th
sample as c

(i)
k ∈ {0, 1}. For the MLC of concepts, we define

two metrics as follows.
• To evaluate the model’s accuracy on each concept indi-

vidually, we use the Hamming score (HS):

HS =
∑N

i=1

∑K
k=1 1(ĉ

(i)
k =c

(i)
k )

/NC. (7)

• To evaluate the model’s ability to predict all concepts
correctly, we use the exact match ratio (EMR):

EMR =
∑N

i=1 1(ĉ(i)=c(i))/N. (8)

4



TABLE I
PERFORMANCE OF OUR VIP-CBM IN COMPARISON WITH OTHER BASELINE CBMS FOR CUB AND AWA2 DATASETS

Model CUB AwA2
Hamming Score Overall EMR Min Group EMR Class Accuracy Hamming Score overall EMR Min Group EMR Class Accuracy

scalar-CBM 0.9529±0.0004 0.4270±0.0069 0.7819±0.0027 0.7197±0.0033 0.9708±0.0006 0.7816±0.0040 0.8288±0.0020 0.8782±0.0046
CEM 0.9506±0.0003 0.3887±0.0078 0.7651±0.0026 0.7186±0.0048 0.9696±0.0007 0.7646±0.0035 0.8288±0.0020 0.8794±0.0028
ProbCBM 0.9517±0.0010 0.4032±0.0132 0.7743±0.0058 0.7268±0.0113 0.9704±0.0008 0.7798±0.0084 0.8366±0.0049 0.8822±0.0026
ViP-CBM (ours) 0.9496±0.0009 0.3784±0.0223 0.7646±0.0037 0.7169±0.0048 0.9702±0.0010 0.7857±0.0055 0.8403±0.0047 0.8818±0.0031

+margin 0.9500±0.0013 0.3898±0.0090 0.7670±0.0053 0.7115±0.0075 0.9701±0.0009 0.7906±0.0071 0.8431±0.0047 0.8807±0.0037
LP 0.9398±0.0014* 0.3647±0.0148* 0.7248±0.0337* 0.6462±0.0463* 0.9692±0.0006 0.7741±0.0037 0.8335±0.0050 0.8801±0.0024

TABLE II
COMPARISON OF THE NUMBER OF TRAINING PARAMTERS

Model scalar-CBM CEM ProbCBM ViP-CBM (ours)

Training Params # 254296 744681 746185 289625

We can also use group EMR to evaluate the model’s per-
formance on each concept group. In summary, we use the
Hamming score to measure the individual concept accuracy,
EMR for all concepts to represent the overall concept accuracy,
and the minimum group EMR to evaluate concept prediction
in the hardest group.

V. EXPERIMENTAL RESULTS

A. Model Performance

We set embedding dimensions d = 32 and the dimension
of the projected space m = 12 for the experiments. We
add additional ablation studies of margins and nonlinearity,
denoting ViP-CBM using margins as “+margin” and ViP-CBM
using linear projection uk = Zvk in ViP module as “LP”.
We conduct experiments with 5 different random seeds on
the CUB dataset and 4 on the AwA2 dataset to compute the
average scores and standard errors, marked as “mean±std” in
our results. Table II shows that our model has only 40% of the
training parameters of other embedding-based CBM, which is
comparable to the scalar-CBM.

Table I shows the performance in concept and class pre-
diction of our ViP-CBM and other baseline models. For each
metric, we mark the highest score in bold, the second highest
in purple, and the third highest in cerulean. Note that we
directly use the output of the backbone CNN of size (d, l,
l) as the visual features for the baseline models as described
in Section IV-B, which is larger than the visual features used
in our ViP-CBM, suggesting that we are comparing with larger
CBMs than we proposed in Section III-C.

For the experiments on the CUB dataset with a relatively
large concept set and a small amount of data, due to the
reduction of parameters and rank in concept prediction, our
ViP-CBM model underperforms CBM significantly in overall
concept accuracy but is comparable to CBM in individual
concept accuracy and class accuracy with a loss of less than
0.003. Our ViP-CBM achieves comparable or slightly superior
performance to CEM with low embedding dimensions and
slightly inferior performance to ProbCBM by less than 0.015
in overall concept accuracy and class accuracy. Compared to
CEM which learns 2K embeddings in total for each input
image and ProbCBM which requires 2K concept anchors
in total with K individually extracted visual features of d
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Fig. 4. t-SNE plot of the original visual features Z and concept
representations u by both linear and nonlinear projections.

dimensions to embed in each concept space, our ViP-CBM
learns only K concept embeddings independent to inputs and
the dimension of projected space m is much smaller than
K. Thus, our ViP-CBM improves the efficiency of concept
learning with concept representations of the same dimensions.
For the experiments on the AwA2 dataset with fewer concept
and class labels and a larger amount of data, our ViP-CBM
model ranks third in individual concept accuracy and second
in all other metrics, and outperforms CEM by over 0.02 in
concept overall accuracy and over 0.002 in class accuracy.

The ablation study for margins shows that symmetric mar-
gins in ViP-CBM enhance the overall accuracy for concepts
and the stability for different initializations, consistent with
our intent to penalize projected embeddings close to the
classifying surface. In the ablation study of nonlinearity in
visual projection, we mark a “*” on some of the results of the
“LP” model to show that more than half of the experiment
failed due to gradient explosion in training, indicating that
nonlinearity in visual projection also allows larger learning
rates, which increase the convergence speed and stability in
training. Besides, the results of the successful experiments also
prove that nonlinearity is necessary to bridge the performance
gap due to the reduction of parameter numbers.

B. Interpretability

To reveal the interpretability of our ViP module proposed
for MLC on a certain label set, we look into the spatial
distributions of the projected concept embeddings. With the hy-
pothesis of the continuity of visual feature space, the projected
embeddings should cluster by class regardless of concept
labels. For AwA2 dataset with class-level concepts, we select
3 concepts “black”, “white” and “blue” and 2 classes “cow”
and “dophin”, where “black” and “white” are positive for
“cow” and “white” and “blue” are positive for “dophin”. We
visualize the spatial distributions of the original visual features
Z and the linear and nonlinear projected embeddings of the 3
concepts u by visual features of images from both 2 classes
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in the test dataset using a 2-dimensional t-SNE [29] plot, as is
shown Figure 4. Original visual features are clearly clustered
in Figure 4a, and so are projected embeddings in Figures 4b
and 4c. In Figures 4b and 4c, projected embeddings of each
concept for inputs in the same class (represented by points
with labels in each column of the legend) are clearly separated
from each other, indicating the separation in original concept
embeddings v. Clusters of common activated concept “white”
overlap significantly, indicating that the ViP module gathers
the same concepts in the projected space for all input images
containing the concept. Furthermore, activated and inactivated
concept embeddings are much more separated in Figure 4c
than in Figure 4b, which reveals that nonlinear projection
enhances performance in concept prediction.

VI. CONCLUSIONS

We propose ViP-CBM to reduce the number of parameters
and enhance interpretability in the MLC problem in concept
learning for CBMs. Experiments show that our ViP-CBM,
whose number of training parameters is comparable to a
minimal scalar CBM, achieves comparable performance to
conventional CBMs, and outperforms CEM in concept learning
with low embedding dimensions. The interpretability of ViP-
CBM is also shown in experiments by visualizing the projected
space. Our ViP-CBM is a low-parameter substitution for
embedding-based CBMs with more interpretability.
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