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Abstract—Acoustic emotion recognition (AER) is a challenging
yet crucial area in affective computing. Despite the clear impor-
tance of perceiving vocal emotion blends with varying intensities
for understanding the emotional complexity of everyday life,
most existing studies remain limited to single-label emotion
classification tasks. This paper introduces a novel acoustic task
for blended emotion estimation in speech (BEES), which aims
to capture the intricate emotional distributions of co-existing
emotions with varied intensities in voices. The BEES task stands
out by defining a precise reference for the emotion intensity of
vocal blends, introducing innovative evaluation metrics and pro-
viding robust baseline results. Additionally, our study highlights
the significant impact of self-supervised learning representations,
voice naturalness, and gender on BEES performance. By ad-
dressing the limitations of traditional AER methods and offering
a comprehensive framework for analyzing blended emotions, this
work paves the way for advanced computational AER systems
capable of handling the complexity of vocal emotion blends.

I. INTRODUCTION

Emotion is a psychological state brought on by neuro-
physiological changes, variously associated with thoughts,
feelings, and behavioral responses [1]. It can function to
communicate positively important information to individuals
in significant external events, such as values and ethics [2].
Also, it is sometimes internally regarded as part of a mental
illness and thus possibly of negative value, for instance, anxiety
or depression [3]. There is widespread evidence supporting
that emotion is of vital importance for social competence,
decision-making, and well-being [4]. Within its research area
of interest, acoustic emotion recognition (AER) aims to give
machines emotional intelligence underlying how humans feel
emotionally towards their voice has drawn great attention and
could be beneficial to wide applications such as customer care
service, human-machine interaction, and many others [5], [6].

Most of the existing works toward AER can be regarded
as a single-label classification task, assuming that each voice
stimulus only evokes a dominant emotion [7]–[9]. Despite
substantial progress made in this area, these works however
over-simplify the complexity of human emotions and neglect
the ambiguity and subjectivity that lie in them. Historically

and today, advances in psychology research substantiate the
existence of the expression and perception of emotion-blends,
indicating that humans can frequently experience more than
one emotion at the same time [10]–[13]. For instance, Juslin
et al. (2021) conducted a study capturing naturalistic vocal ex-
pressions in a field setting [14]. Speakers themselves provided
the ground truth of emotional expressions in each recording,
revealing that 41% of the recordings depicted situations where
blended emotions were experienced. Also, other nonverbal
communication research has further investigated various types
of blended emotional experiences such as the co-activation of
happiness and sadness [13], fear and happiness [15], disgust
and amusement [16], as well as hope and fear [17]. It is
grounded that treating AER as a single-label classification
problem is oversimplified and lacks practical applicability.

To address acoustical emotion-blends estimation, multi-
label learning has been extensively investigated, which usually
selects a threshold for the output of a classifier, then labels
emotions with scores higher than the threshold as existing
and the others as not existing [18], [19]. Unfortunately, these
methods failed to estimate the intensity of each specific
emotion. On the other hand, recent advancements in machine
learning suggest the existence of label distribution learning
which can be promising to represent the degree to which each
label describes the instance [20], [21]. For any instance, the
sum of the description degrees of all labels is one, indicating a
full description of this instance. Inspired by the above studies,
we first introduce an acoustic task for BEES, assuming each
voice stimulus contains a blend of multiple emotions with
varying intensities. Specifically, we label each stimulus by an
emotion vector, where each element corresponds to a specific
emotion and the value of each element is the intensity of
that emotion. In this context, the emotion vectors can be
interpreted as emotion distributions, and BEES aims to map
human voices to their corresponding emotion distributions by
maximizing the similarities between distributions obtained by
human evaluations and system estimations.



To our knowledge, this paper takes one step beyond current
AER algorithms and is the first attempt at BEES to investigate
machine learning-based emotion-blends estimation in human
voices. The main contributions of this paper are multi-fold:
(1) we introduce an important human assessment criterion to
produce blended emotion references in voice stimulus, (2)
we identify efficient evaluation metrics to assess the BEES
performance, (3) we discuss the effects of acoustic features,
emotion production styles, and genders on the BEES perfor-
mance. The remainder of this article is structured as follows:
Section 2 outlines the utilized data and human assessment
methodology for identifying blended emotion references in
human voices. Section 3 presents the foundational acoustic
features of self-supervised learning representations (SSLs),
estimation methodologies, and evaluation metrics applied to
the tasks of BEES. Section 4 provides an elaborate breakdown
of the BEES results along with corresponding discussions.
Finally, Section 5 presents pivotal conclusions drawn from this
study.

II. BLENDED EMOTION ESTIMATION IN SPEECH

A. Emotional Speech Database

We use the popular IEMOCAP corpus for this study for the
following four reasons [22]. First, the evaluators annotating the
IEMOCAP corpus were allowed to tag more than one emo-
tional category per speech stimulus, to account for mixtures
of emotions such as frustration and anger, etc, which are fre-
quently observed in real-life scenarios. Secondly, IEMOCAP
defines N-category labels by carefully balancing the trade-
off between the number of emotion categories, providing a
more accurate and detailed emotional description with higher
agreement among evaluators. It contains nine categorical labels
of emotion, including anger (ang.), sadness (sad.), happiness
(hap.), disgust (dis.), fear (fea.), and surprise (sur.) which are
known as basic emotions, plus frustration (fru.), excited (exc.),
and neutral (neu.) states. Third, this corpus was deliberately
chosen to contain two different emotion production styles.
The spontaneous speech subset supports application-oriented
research on authentic emotions, while the acted speech subset
allows for state-of-the-art emotion categorization comparisons.
Fourth, in contrast to existing emotional databases mainly
contain only isolated sentences or short dialogs, without taking
into account the discourse context, which is known to be an
important component. The IEMOCAP corpus was designed
from a dialog perspective, eliciting sequential emotions with
adequate context. Most interestingly, from an application point
of view, this corpus is well-suited for studying the dynamic
progression of blended emotions, enabling the detection of
when and how a user’s blended affective state changes, which
can contribute to improving human-computer interactions. This
corpus has 12 hours of speech data from ten subjects and is
pre-segmented into shortcuts, resulting in a total of 10,039
utterances. Three different evaluators assessed each utterance
using the aforementioned nine categorical labels of emotion.
It is worth noting that only 22.8% of the utterances in the

IEMOCAP corpus are pure examples of a single perception
category. Significantly, the remaining 77.2% of utterances
present blends of different emotions, which in turn confirms
its capability to approach BEES.

B. Task Definition

In contrast to the majority of existing studies in AER,
BEES takes a further step by estimating the intensity of each
emotion that may concurrently exist in an individual voice
stimulus. Different measures have been developed to capture
the simultaneity and the subjective experience of emotion-
blends [11], [23]. We start by giving a more formal definition
of emotional intensity following [24], [25], namely inferring
the concurrent experience and intensity of blended emotions by
quantifying the frequency with which individuals experience
each measured emotion.

Formally, let emoMat be a matrix of experienced and tagged
emotional labels for the nth voice stimulus given by three
evaluators.

emoMat =

ϵn1,1 ϵn1,2 · · · ϵn1,λ
ϵn2,1 ϵn2,2 · · · ϵn2,λ
ϵn3,1 ϵn3,2 · · · ϵn3,λ

 (1)

More specifically, each row of the emoMat is correspond-
ingly given by the ith evaluator and λ is the number of emotion
classes. Each element of the emoMat is defined as:

ϵni,λ =

{
1, if a specific emotion is experienced,
0, otherwise.

(2)

The BEES then calculates the ρnλ as a reference to the
emotional vector of the intensity of a specific categorical label
λ in the nth voice stimulus as follows:

ρnλ =

∑
emoMat (:, λ)∑

i

∑
λ emoMati,λ

(3)

Figure 1 shows an example of the ρλ relative to two voice
stimuli in the IEMOCAP corpus. The X-axis represents the

Fig. 1: Two voice stimulus examples with different ρλ from the
IEMOCAP corpus (left: Ses02M impro02 F011.wav; right:
Ses02F impro05 F005.wav). Rather than a dominant emotion,
human voices often evoke multiple emotions with different
perception intensities.
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nine kinds of emotions and the Y-axis represents the ρλ of
each kind of emotion. Note that ρnλ denotes the proportion
that λ accounts for in a full emotion distribution of the nth

voice stimulus. This differs from the probability of λ being the
correct emotion label for the nth voice stimulus. Probability
distribution implies that only one emotion label is correct for
each sentence, whereas BEES allows for the possibility of
multiple emotions co-exist within a single voice.

Specifically, the goal of BEES to identify the component
of intensity in terms of each specific emotion λ, ρnλ, can be
formulated by computing the optimal parameter θ∗ via solving
the problem as follows:

θ∗ = argminθ

N∑
Dist(ρnλ, ρ̂

n
λ) (4)

where Dist(·) is the distance function measuring the similarity
of the predicted emotion intensity, ρ̂nλ, and the ground truth
intensity ρnλ. Additionally, N is the total number of voice
stimuli in the IEMOCAP corpus.

III. BASELINE APPROACHES

The overall architecture of BEES is shown in Fig. 2, starting
from the human voices and ending with its emotion distribu-
tion estimation. The subsequent sections detail the BEES as
follows: Section 3.1 introduces the acoustic features that we
used to represent voices. Section 3.2 defines a deep neural
network-based baseline model to estimate emotion intensity
distribution. Section 3.3 provides the metrics to evaluate the
BEES performance.

A. Acoustic Features

An important issue in the design of a BEES system is
the extraction of suitable features that best reflect different
emotions and their intensities and should be robust against
other speech diversities of speaking styles, speakers, genders,
etc. While deep learning started in this field in the early 2010s,
a widespread trend exists to explore the neural representation
of acoustics [26], [27]. Within its areas of interest, SSLs have
recently gained considerable attention due to their advances in
capturing many acoustic characteristics comprehensively and
reliably [26], [28]. The importance of the SSLs of speech is
increasingly evident in AER, and also many others, like speech

Fig. 2: Illustration of the BEES system. Given a voice eval-
uated with emotional intensities, our approach represents the
voice with a vector matrix using SSLs and then employs a
deep neural network-based estimator on it. The mean square
error loss is applied to blended emotion estimation.

TABLE I: The BEES results in terms of MCS values to the
emoMat references for the overall evaluated emotion intensity
obtained by using different SSLs. The top performance is
highlighted, and ↑ indicates “the larger the better”.

Features MCS ↑
Data2vec 0.7190
Unispeech 0.6886
HuBERT 0.7087
Wav2vec 2.0 0.6888
WavLM 0.7303

recognition [29], speaker diarization [30], gender recognition
[31], and more [32], [33]. Five SSLs applied to BEES are
thus explored in this work including Wav2vec 2.01, HuBERT2,
WavLM3, Unispeech4, and Data2vec5 based on their top
performance in well-known benchmarks such as the Speech
processing Universal PERformance baseline (SUPERB) [34],
and the Holistic Evaluation of Audio Representations [35], as
well as recent SER studies [36], [37]. Given that the larger
models in general deliver superior performances, achieving
state-of-the-art scores on SUPERB tasks [34]. This study
therefore approaches MER using large Wav2vec 2.0, HuBERT,
WavLM, Unispeech, and Data2vec models, where the last
hidden states are transformed into 1024-dimensional vectors
for individual speech. For consistent input audio processing,
all models are uniformly sampled at 16kHz.

B. Model Configuration

For all SSLs, we employed the same deep neural network-
based estimator. We conducted experiments using a hybrid
model by combining a bidirectional gated recurrent unit (Bi-
GRU) with a deep neural network. To be more explicit, the
BiGRU is utilized to process the acoustic features of SSLs
in both forward and backward directions, it could capture
contextual information effectively, which is crucial for under-
standing the dynamic nature of vocal emotion. The bidirec-
tional nature of the BiGRU exhibits robustness to variations in
voice stimuli, including differences in speaking rate, accent,
and pronunciation [38], [39], enabling it to adapt to diverse
speaking styles and linguistic nuances inherent in different
speakers. This BiGRU is set to two layers with 256 units and
a dropout rate of 0.5. In the training process, the optimizer is
set to the Adam optimizer with a learning rate of 0.0001. In
particular, this study follows [40], which uses a global average
pooling layer instead of a fully connected layer to obtain the
SER results. Most notably, this study uses the loss function of
mean square error for BEES tasks. Experiments are conducted
to estimate blended emotional states via leave-one-speaker-out
cross-validation, where we use all utterances of each speaker
once as the test set and each time use the utterances of their
pair as the validation set.

1https://huggingface.co/facebook/wav2vec2-large
2https://huggingface.co/facebook/hubert-large-ls960-ft
3https://huggingface.co/microsoft/wavlm-large
4https://huggingface.co/microsoft/unispeech-sat-large
5https://huggingface.co/facebook/data2vec-audio-large-960h
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TABLE II: The BEES results in terms of CCC and MAE values to references for the evaluated emotion intensity considering
each specific emotional state in the emoMat obtained by different SSLs. ↑ indicates “the larger the better” and indicates ↓ “the
smaller the better”.

Features ang. dis. exc. fea. fru. hap. neu. sad. sur.
CCC ↑

Data2vec 0.6581 0.0140 0.5465 0.0487 0.4305 0.4575 0.4250 0.6839 0.3815
Unispeech 0.5633 0.0304 0.3900 0.1952 0.2106 0.2498 0.2933 0.5519 0.2158
HuBERT 0.6592 0.0084 0.5573 0.0044 0.4520 0.4437 0.4350 0.6220 0.0477
Wav2vec 2.0 0.6181 0.0213 0.4631 0.0145 0.3724 0.3473 0.3758 0.6144 0.3166
WavLM 0.6788 0.0682 0.5976 0.0167 0.5028 0.5188 0.4764 0.6651 0.4327

MAE ↓
Data2vec 0.1130 0.0060 0.1163 0.0223 0.2251 0.0928 0.1866 0.0950 0.0224
Unispeech 0.1438 0.0245 0.1413 0.0157 0.2382 0.1184 0.2120 0.1111 0.0268
HuBERT 0.1206 0.0133 0.1201 0.0223 0.2108 0.1003 0.1789 0.1027 0.0437
Wav2vec 2.0 0.1307 0.0084 0.1229 0.0216 0.2204 0.1123 0.1976 0.1100 0.0316
WavLM 0.1039 0.0070 0.1142 0.0178 0.1954 0.0980 0.1770 0.1059 0.0238

C. Evaluation Metrics

The mean cosine similarity (MCS), concordance correlation
coefficient (CCC), and mean absolute error (MAE) between a
system’s estimations and human evaluations, are calculated as
three metrics, in order to evaluate the BEES performance. In
particular, the MCS is merely a preferred metric to evaluate
the BEES results, in view of the fact that BEES explores the
intensities of multiple emotions that co-exist simultaneously
as an emotional vector, where smaller MAE and greater CCC
measure the agreement between the outputs of the system and
the ground truth considering each specific emotional intensity
individually might not result in a good BEES performance.

Formally, ρ̂nλ represents the estimated intensity reference
value for a specific emotion λ in the emoMat of the nth

voice stimulus from the IEMOCAP corpus, as determined by
a BEES system, and the corresponding value of that given by
three human estimators is ρnλ. The MCS, CCC, and MAE are
accordingly obtained by:

MCS =
1

N

N∑
1

∑
λ ρ

n
λρ̂

n
λ√∑

λ (ρ
n
λ)

2
√∑

λ

(
ρ̂nλ

)2 (5)

CCC =
2℘σρ̂n

λ
σρn

λ

σ2
ρ̂n
λ

+ σ2
ρn
λ
+
(
µρ̂n

λ
− µρn

λ

)2 (6)

MAE =
1

N

N∑
1

| ρnλ − ρ̂nλ | (7)

where µ(·) and σ2
(·) are the mean values and variances, re-

spectively, and ℘ is the correlation coefficient. Notably, MCS
and CCC assign values that trend to 1 for a closer system’s
estimation to human evaluations; and MAE assigns values
that trend to 0 for a better BEES performance of a system’s
estimations.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we introduce the BEES baseline using the
IEMOCAP corpus and present the main results in Tables I
and II. Table I clearly demonstrates that the MCS value

Fig. 3: The ρλ distributions for each specific emotion.

consistently turned out to receive a notable gain from the
wavLM in comparison with that of other SSLs, providing the
highest MCS reaching up to 0.7303. The main reason might
be first attributed to the fact that the WavLM utilizes utterance
mixing augmentation by adding both interfering speech and
noise during the training process. This augmentation strategy
significantly contributes to enhancing the model’s robustness
by exposing it to a more diverse array of inputs. Secondly,
given that WavLM extends the HuBERT framework by in-
tegrating a gated relative position bias into the Transformer
structure, it is poised to introduce advancements in effectively
managing relative positions within the sequence that have been
shown to play a vital role in conveying emotional information
[41]–[43].

Moreover, Table II details the BEES results obtained using
different SSLs, with CCC and MAE values provided for each
specific emotion, respectively. It highlights that estimating
emotional intensities for disgust, fear, and surprise poses
notably greater challenges compared to other emotional states.
Figure 3 shows a data visualization, illustrating that such
difficulty in estimating these three emotions mainly stems from
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TABLE III: Comparison results of MCS values on genders
(male vs. female) and voice naturalness (acted vs. sponta-
neous). n.s. indicates that the MCS results do not differ
significantly between male and female voices; * indicates
that the MCS results differ significantly between acted and
spontaneous voices (p<0.05).

MCS Gendersn.s. Voice naturalness∗
male female acted spontaneous

Data2Vec 0.7187 0.7194 0.7380 0.6982
Unispeech 0.6875 0.6898 0.6884 0.6888
HuBert 0.7100 0.7072 0.7293 0.6860
Wav2vec 2.0 0.6932 0.6840 0.6943 0.6828
WavLM 0.7293 0.7314 0.7422 0.7172

their limited distribution of emotional intensity, which results
in an unbalanced data problem recognized as one of the main
obstacles in the field of machine learning [44].

For further analysis, Table III summarizes two aspects of
the BEES results in terms of MCS values, focusing on the
impact of genders and voice naturalness. It is important to note
that the t-test conducted on all SSLs indicated no statistically
significant difference in performance between male and female
voices (p=0.56). This observation shows the potential of SSLs
in effectively characterizing gender diversity in acoustic emo-
tion analysis, a task known for its complexity in many emotion
studies [45], [46]. Additionally, as reasonably expected, the
MCS values were significantly higher for the acted voices
compared to the spontaneous ones (p<0.05), which aligns with
findings from prior studies [4], [46]. These results are primarily
attributed to the acted voices generally exhibiting fewer clear
emotions with higher intensities, while the spontaneous ones
tend to be more ambiguous and imprecise, which may be
harder to estimate and thus limit their performance.

V. CONCLUSIONS

This paper introduces a groundbreaking acoustic task for
BEES, addressing the limitations of traditional single-label
classification approaches in AER. Our task is well-matched
with the general psycho-evolutionary theory of emotion, which
posits that human emotions often comprise blends of dif-
ferent emotions with varying intensities. We have offered a
straightforward and easily replicable guide for investigating
BEES. Future research endeavors could delve into exploring
dynamic shifts in BEES within conversational dialogues, pro-
viding deeper insights into real-time emotional fluctuations.
Moreover, there is promising potential for studying the intricate
interplay between emotions and related psychological phenom-
ena, such as stress and depression detection. This proposition
not only paves the way for pioneering research in AER but also
holds considerable promise for applications in mental health
analysis. We hope that BEES will inspire further research and
development, leading to powerful emotional agents capable of
nuanced emotional understanding and response.
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