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Abstract—Estimating the Relative Transfer Functions (ReTFs)
of multiple speakers in a noisy reverberant environment are
beneficial to signal processing applications of acoustic scene
analysis, denoising, dereverberation, signal enhancement, and
separation. Whilst most audio applications exploit the covariance
matrix structure of multichannel recordings, estimating ReTF
in the presence of simultaneously active multiple speakers is
still considered to be a challenging problem. In this paper, we
propose a novel method for estimating the ReTF using the
relative transfer matrix (ReTM) of multiple microphones for
multi-talker scenarios, which is suitable for noisy reverberant
rooms. The method is based on the noise-only ReTM, and
calculates the covariance matrices of (i) the first speaker and
noise, and (ii) both speakers and noise at two microphone groups
to reconstruct the ReTF of the second speaker. We demonstrate
the ReTF estimation accuracy using numerical simulation of two
speakers and two noise sources in a reverberant environment.
The proposed method offers an accurate estimation with a low
Hermitian angle. Additionally, the proposed algorithm is shown
to better extract the voice of the successive speaker from the noisy
microphone recordings over various SNR levels using a minimum
variance distortionless response beamformer with improved noise
reduction performance.

I. INTRODUCTION

A relative transfer function (ReTF) is a spatial feature that
describes the acoustic channel between two microphones in
response to a single sound source [1]. Knowledge of desired
sound source ReTF is essential in many spatial signal pro-
cessing applications, such as beamforming, source localization,
speech enhancement, source separation, and acoustic echo
cancellation [1]–[5]. As a result, ReTF estimation of the
target speaker in one or more interfering speakers within a
noisy reverbarant room is an active problem in audio signal
processing.

Many approaches have been developed for estimating the
ReTF of a single active sound source, such as least-squares [1],
[6], [7], covariance subtraction [8], [9] and covariance whiten-
ing [10]–[12], as well as manifold learning [13]. Common to
these approaches is the use of signals’ power spectral density
(PSD) matrices calculated during the (i) noise-only, and (ii)
speech plus noise, time segments for estimating the ReTF.
Despite this, multiple and concurrent speakers scenarios are
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challenging problems as it could instead provide joint subspace
spanning of the ReTF of all speakers [10].

There exist some techniques that generalize the ReTF for
multiple simultaneous sound sources [14], [15]. The recently
proposed Relative Transfer Matrix (ReTM) [15], where re-
ceivers allocate into two multi-microphone groups, is seen
to be well performed when applied to speech enhancement
[16], [17], and speaker separation [18] in a multi-source noisy
reverberant environment.

Several ReTF estimation methods in a multiple and con-
current speaker scenario have been proposed, including (i) an
expectation maximization algorithm that assumes only single
source active at a given time-frequency bin and noise PSD
is time-invariant [19]; (ii) a joint diagonalization method with
simultaneous confirmatory factor analysis [20]; (iii) a more
robust joint diagonalization based on linear algebraic concepts
[21]; (iv) an orthogonal Procrustes problem with a priori
information of the ReTFs [22]; and (v) blind oblique projection
method [23]. Common drawbacks to these approaches are as-
suming W-disjoint orthogonality conditions, and a sufficiently
high signal-to-noise ratio (SNR).

In [24], Gode and Doclo introduce a covariance blocking
and whitening method to estimate the ReTF of the successive
speaker in a noisy reverberant environment from two speakers
activate successively. Alternatively, this paper proposes a novel
method for estimating the ReTF of the second speaker by
utilizing some of the properties of the covariance matrices
imposed by the ReTM within noisy reverberant rooms, thus
neither the estimate of the noise covariance matrix nor the
ReTF of the first speaker requires unlike in [24]. The derivation
of this method is based on the sole assumption that first speaker
and multiple noise sources do simultaneously active in a given
time segment prior to the time segment of the dual-speaker plus
all noise sources as in [24]. Similar to the ReTM, we derive
the proposed method by dividing multiple microphones into
two groups and calculating the covariance matrices between
them for both the single-speaker and dual-speaker segments.
In the sequel, we first formulate the problem and introduce
the ReTM. Secondly, in Section III, we present the new ReTF
estimation method. Then in Section IV, we verify this ReTF es-
timation algorithm of the second speaker via a simulation study
and show increased similarity with the ground truth ReTF



vector in both free-field and high reverberant environments
at low SNR levels. Finally, in Section V, we further evaluate
the noise reduction performance in terms of SNR improvement
when employing the proposed method in a minimum variance
distortionless response (MVDR) beamformer.

II. PROBLEM DEFINITION

In this section, we formulate the problem of estimating the
Relative Transfer Function (ReTF) of the second speaker in a
noisy mixture of two speakers that activate successively. We
first present the system model for the specific scenario, and
then review the Relative Transfer Matrix (ReTM), used by the
proposed ReTF estimation algorithm.

A. System Model

Consider a reverberant environment with two speakers that
are successively activated and L background noise sources.
Let there be Q arbitrary distributed microphones. In the
short time Fourier transform (STFT) domain, we express the
received signal as yq(f, t), q = 1, · · · , Q, and speech signal
at each speaker as S1 and S2, and noise source signals as
Nℓ(f, t), ℓ = 1, · · · ,L. The received signals in matrix form as

y(f, t) = h1(f)S1(f, t) + h2(f)S2(f, t) +HN (f)N(f, t),
(1)

where y(f, t) = [y1(f, t), . . . , yQ(f, t)]
T and {·}T is the

matrix transpose, and h1(f), and h2(f) are the [Q × 1]
vectors of the relative transfer functions (ReTFs) with respect
to a reference microphone of the first and second speaker,
respectively, N(f, t) = [N1(f, t), . . . , NL(f, t)]

T and HN (f)
is the Q by L noise sources transfer function matrix, which
we define next.

The problem discussed in this paper is to estimate the ReTF
vector of the successive speaker, h2(f) from the mixture of
multichannel recordings, y(f, t) assuming a specific scenario
of three time segments with known segment boundaries as (i)
multiple noise sources-only segment (T1), (ii) first speaker and
multiple noise sources (T2), and (iii) first and second speakers
and multiple noise sources (T3) as shown in Fig. 1

B. The Relative Transfer Matrix

Consider two groups of microphones {A} and {B} assigned
with QA and QB microphones, respectively (Q = QA+QB).
yA(f, t), and yB(f, t) are denoted as the vector of microphone
signals for each group, therefore, the received signals at each
microphone group are given as

yA(f, t) = hA1(f)S1(f, t)+hA2(f)S2(f, t)+HAN (f)N(f, t),
(2)

yB(f, t) = hB1(f)S1(f, t)+hB2(f)S2(f, t)+HBN (f)N(f, t),
(3)

where yA(f, t) = [y
(1)
A (f, t), · · · , y(QA)

A (f, t)]T ,
hA1(f) = [h

(1)
A1(f), . . . , h

(QA)
A1 (f)]T , hA2(f) =

[h
(1)
A2(f), . . . , h

(QA)
A2 (f)]T , and HAN (f) is a [QA × L] matrix

with elements defined by the acoustic transfer functions. The
vectors yB(f, t), hB1(f), hB2(f), and HBN (f) are similarly
defined.
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Fig. 1. Illustration of the problem setup.

The relative transfer matrix (ReTM) of noise sources,
R(N)

AB (f), is defined as in [15]

R(N)
AB (f) ≜ HAN (f)HBN (f)†, (4)

where (·)† is Moore-Penrose inverse, assuming the validity,
i.e., QB ≥ L. Thus, at the first time segment T1, we can relate
the received signal at group {A} and {B} using

y
(T1)
A (f, t) = R(N)

AB (f)y
(T1)
B (f, t).

Note that ReTM is defined by the spatial properties of the
sound sources such that it is independent of the sound source
signals. In applications, the ReTM is constant for a stationary
environment.

Assuming a stationary acoustic scenario, the next section
shows how to estimate the ReTF of the successive speaker
from the given multichannel recordings.

III. RETF ESTIMATION WITH RETM

In this section, we propose a method for successive speaker
ReTF estimation that utilizes some of the properties of the
covariance matrices imposed by the ReTM.

A. Noise Sources ReTM

Here, we define the noise sources-only ReTM that will help
for deriving our proposed method. Considering the background
noise-only signals at T1 time segment, we can write the
received signals as

y
(T1)
A = HANN, (5)

y
(T1)
B = HBNN. (6)
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The ReTM of the background noise sources can be esti-
mated using the covariance matrices-based approach [15]. The
background noise covariance matrices of microphone groups
{A} and {B} are given as

P(T1)
AA (f) ≜ E{y(T1)

A (f, t)y
(T1)

∗

A (f, t)},

P(T1)
BA (f) ≜ E{y(T1)

B (f, t)y
(T1)

∗

A (f, t)},
(7)

where E{·} denotes the expectation which can be obtained
by averaging across the time frames, and [·]∗ denotes the
conjugate transpose. With further simplifications as in [15],
we approximate

R(N)
AB (f) ≈ P(T1)

AA (f)
(
P(T1)

BA (f)
)†

. (8)
For convenience, we omit the dependency of time (t) and

frequency (f ) in the rest of this section.

B. Successive Speaker ReTF using Noise ReTM

Following the ReTM, our proposed ReTF estimation method
is also based on covariance matrices between two microphone
groups. In the second time segment, T2, the received signals
at microphone groups {A} and {B} are given as

y
(T2)
A = [hA1 HAN ][S1 N]T , (9)

y
(T2)
B = [hB1 HBN ][S1 N]T . (10)

When all sources are active in the third time segment, T3,
we obtain the received signals at microphone groups {A} and
{B} as

y
(T3)
A = [hA1 hA2 HAN ][S1 S2 N]T , (11)

y
(T3)
B = [hB1 hB2 HBN ][S1 S2 N]T . (12)

Assuming all signal components in both (11) and (12) to be
uncorrelated, the noisy covariance matrices for time segment
T3 of microphone groups {A} and {B}, given as

P(T3)
AA ≜ E{y(T3)

A y
(T3)

H

A }
= [hA1 hA2 HAN ]E{|S1|2} 0 0QA×QA

0 E{|S2|2} 0QA×QA

0QA×QA
0QA×QA

PNN

 h∗
A1

h∗
A2

HH
AN


= hA1E{|S1|2}h∗

A1 + hA2E{|S2|2}h∗
A2 +HANPNNH∗

AN

(13)

where PNN ≜ E{NN∗}.
Similarly, we can write

P(T3)
BA = hB1E{|S1|2}h∗

A1 + hB2E{|S2|2}h∗
A2

+HBNPNNH∗
AN .

(14)

Likewise, the covariance matrices for the time segment T2
of microphone groups {A} and {B}, can be written as

P(T2)
AA = hA1E{|S1|2}h∗

A1 +HANPNNH∗
AN , (15)

P(T2)
BA = hB1E{|S1|2}h∗

A1 +HBNPNNH∗
AN . (16)

We subtract (15) from (13) to remove both the first speaker
and the background noise sources from the noisy mixture at
group {A}. We then express the covariance matrix of the
second speaker at group {A} as

P(T3)
AA −P(T2)

AA = hA2E{|S2|2}h∗
A2,

= E{|S2|2}hA2h
∗
A2,

= E{|S2|2}


h
(1)
A2h

(1)∗
A2 . . . h

(1)
A2h

(QA)∗
A2

...
. . .

...
h
(QA)
A2 h

(QA)∗
A2 . . . h

(QA)
A2 h

(QA)∗
A2


︸ ︷︷ ︸

RAA

, (17)

where RAA is a [QA×QA] matrix of transfer function coeffi-
cients of the second speaker between channels at microphone
group {A}.

Similarly, we subtract (16) from (14) as

P(T3)
BA −P(T2)

BA = E{|S2|2}hB2h
∗
A2,

= E{|S2|2}


h
(1)
B2h

(1)∗
A2 . . . h

(1)
B2h

(QA)∗
A2

...
. . .

...
h
(QA)
B2 h

(QA)∗
A2 . . . h

(QA)
B2 h

(QA)∗
A2


︸ ︷︷ ︸

RBA

, (18)

where RBA is a [QB × QA] matrix of transfer function
coefficients of the second speaker between microphone groups
{B} and {A}.

Consider microphone channels n, and m at microphone
group {A} and {B}, respectively. We propose to divide {n,m}
elements of (17) by (18) to obtain ReTF {n,m} pair with
respect to the second speaker as

ĥ
{n,m}
2 =

E{|S2|2}h(n)
A2h

(n)∗
A2

E{|S2|2}h(m)
B2 h

(n)∗
A2

=
h
(n)
A2

h
(m)
B2

. (19)

From (19), we obtain ReTF vector of the second speaker ĥ2

for n ∈ 1, . . . , QA. Therefore, the ReTF vector of the second
speaker with respect to group {A} as the reference channel at
microphone group {B} can be extracted from the covariance
matrix addition.

Note that similarly, the ReTF of the first speaker, h1 can
be obtained considering the covariance matrices at the time
segments of T1 and T2 as in (17), and (18) and then followed
by covariance matrices division in (19). However, in this paper,
we cover neither the method nor the results of the ReTF of
the first speaker from the noisy mixture.

IV. EXPERIMENTS

This section presents experimental results for the proposed
ReTF estimation algorithm using simulated recordings com-
pared to the ground truth ReTFs.
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A. Experiment Methodology

We utilize an open-source toolbox [25] to model the room
impulse response (RIR) from the sound sources to irregularly
distributed microphones in a 6 × 7 × 3 m rectangular room
with reverberation coefficients (β) of {0, 0.8, 1}. The ideal
room with no reflection (free-space) would have β = 0, and
β = 1 for the total reflection. We note that for a traditional
implementation of a real room, the reverberation coefficients
should be 0 < β < 1. We consider two speech sources, two
background noise sources, and 15 microphones. Two speaker
locations are: Speaker 1: (3 m, 4.5 m, 1.2 m), Speaker 2: (3
m, 2.5 m, 1.2 m) and two background noise sources locations
are: Source 1: (2 m, 0.9 m, 1.8 m), Source 2: (1 m, 6 m, 2.5
m) with respect to the origin position in the left corner of the
room. We convolve the speech sources RIRs with both male
(Speaker 1) and female (Speaker 2) speech utterances from the
TIMIT dataset [26] and noise sources RIRs with vacuum noise,
and music signal. The received signals are down-sampled to
16 kHz and ranged from 5 to −10 dB SNR of background
noise and added with 40 dB SNR of white Gaussian noise
at each microphone. Here, we calculate the background SNR
by averaging SNR at each receiver over all 15 receivers.
Note that the SNR is defined with respect to all sources in
the mixture. The recordings are short-time-Fourier-transformed
with an 8192-point window size. We assign QA = 5 and
QB = 10 number of receivers to groups {A} and {B},
respectively.

We use a distance measure based on the Hermitian angle [9]
between the ground truth ReTF vector h2 and the estimated
ReTF vector ĥ2 of the successive speaker as

Θ(h2, ĥ2) = arccos
( |h∗

2ĥ2|
||h2||2||ĥ2||2

)
,

where arccos(·) denotes inverse of the cosine function, | · |
denotes the absolute value, and ∥·∥2 denotes the ℓ2 norm.

B. Results and Discussion

Fig. 2 shows the real and imaginary parts of the ground truth
and estimated ReTFs of the successive speaker with respect to
the second, and the first channels in the groups {A} and {B},
respectively, for β = 1 at SNR level of 0 dB. We observe
that many ReTF coefficients of both ground truth h2 and
estimated ĥ2 are almost the same over the frequency up to
8 kHz. We discuss the results of these similarities between the
ReTF vectors using the Hermitian angle in Table I.

Table I provides the distance measure results. We first
observe that the proposed successive speaker ReTF estimation
method is seen to have a lower Hermitian angle with the in-
crease of the SNR level for all three reverberation coefficients.
This suggests that the proposed method performs better at high
SNR levels.

Second, we observe that the higher distance measure results
in increased reverberation coefficients. Further, the Hermi-
tian angle had a lower variation in the angles for all three
reverberation coefficients, however, is seen to obtain higher
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Fig. 2. The real and imaginary parts of the successive speaker ReTF obtained
using the proposed method at microphone channel n = 2,m = 1 over the
frequency at SNR level of 0 dB for β = 1.

TABLE I
DISTANCE MEASURE: HERMITIAN ANGLE

FOR VARIOUS SNR LEVELS

SNR
level

Reverberation coefficients
β = 0 β = 0.8 β = 1

5 dB 6.75◦ 8.95◦ 9.21◦

0 dB 8.06◦ 11.94◦ 13.35◦

−5 dB 10.55◦ 17.65◦ 17.86◦

−10 dB 16.86◦ 27.68◦ 26.33◦

variation for the lower SNR conditions. This suggests that the
proposed method is able to accurately estimate the ReTF of
the successive speaker from the noisy multichannel recording
of two speakers’ mixture.

V. APPLICATIONS IN SPEECH ENHANCEMENT

In this section, we employ the minimum variance distortion-
less response (MVDR) beamformer for noise suppression and
examine the performance in terms of the SNR improvement to
evaluate the estimated ReTF vectors of the successive speaker
in Section IV.

The MVDR beamformer requires an estimate of the noise-
only covariance matrix that is equivalent to the received signals
at T1 time segment in (7), and the estimate of the ReTFs of the
second speaker, ĥ2. The weights of the MVDR beamformer
can be expressed as in [27]

w =
P(T1)

AA

−1
ĥ2

ĥ∗
2P

(T1)
AA

−1
ĥ2

, (20)

where (·)−1 denotes the inversion operator, and w is the QA

by 1 filter vector for a given frequency bin. The beamformer
output is given by [28]

z(f, t) = w∗(f)yA(f, t). (21)
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TABLE II
SNR IMPROVEMENT, ∆SNR FOR VARIOUS SNR

LEVELS

SNR
level

Reverberation coefficients
β = 0 β = 0.8 β = 1

5 dB 15.28 dB 12.16 dB 12.51 dB
0 dB 15.02 dB 15.42 dB 16.46 dB
−5 dB 14.46 dB 18.72 dB 18.88 dB
−10 dB 14.57 dB 21.64 dB 21.55 dB

We define the SNR improvement between the input and
output of the beamformer as

∆SNR = SNRout − SNRin,avg,

where SNRout is the filtered output SNR, and SNRin,avg is the
average input SNR among all microphones in group {A}.
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Fig. 3. Spectrogram plots of (a) microphone recordings at microphone
channel 1 of QA, and (b) the extracted speech signals of the second speaker
at 0 dB SNR level for β = 0.8 (T60 = 500 ms).

The spectrogram plots of the mixture and desired speech
signals at the SNR level of 0 dB for β = 0.8 are shown in
Fig. 3. Immediately we observe that the noise is removed and
the voice of speaker 2 is shown to be successfully extracted at
the beamformer output. We share the audio files of both input
and output at the beamformer for β = 0.8 at all SNR levels1.

Table II depicts the SNR improvement at the MVDR beam-
former for the proposed ReTF estimation method as a function
of the reverberation coefficient for β = {0, 0.8, 1} over various
SNR levels. We observe that in both reverberant environments,
the SNR improvements are gradually increasing with decreased
SNR levels. The SNR improvement at the beamformer obtains
almost the same value with increased reverberation. A similar
result with slight degradation is obtained for free-field scenario
with an increased SNR level. As expected, the beamformer’s
output derived using the proposed ReTF estimation method
is seen to be enhanced the successive speaker from the noisy
mixture, illustrated by the high SNR improvement of 12 dB
or above in both free-space and reverberant environments. The

1https://github.com/wnilmini/Successive Speaker ReTF Estimation

results confirm that the proposed ReTF method accurately
enhances the voice of the second speaker in dual-speaker noisy
reverberant rooms.

VI. CONCLUSION

We have proposed a ReTF estimation method for the second
speaker in noisy and reverberant environments with two speech
sources and multiple noise sources where the speech sources
activate successively. The method utilizes the properties of
the covariance matrices between two multichannel microphone
groups imposed by the ReTM. Simulation analysis showed
that the proposed method achieves a low Hermitian angle in
both free-space and reverberant environments with differing
SNR level. The MVDR beamformer which derives via the
estimated ReTFs, is seen to have enhanced the voice of the
successive speaker from the noisy microphone recordings with
decreasing SNR levels. The accuracy of the ReTF estimation
was increased within low reverberant environments, but SNR
improvement was shown to improve with increasing reflection
coefficient. In the future, we plan to extend this algorithm to
the more challenging multiple-speaker scenarios exploiting the
ReTM.
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