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Abstract—The Relative Transfer Matrix (ReTM), recently in-
troduced as a generalization of the relative transfer function
for multiple sources and multiple microphones, shows promising
performance when applied to speech denoising and speaker
separation in a noisy reverberant room. This work utilizes the
ReTM to propose a novel framework for drone noise suppression.
Difficulties in noise cancellation for drone audition applications
arise due to its self-generated noise that causes an adverse noisy
environment of low Signal-to-Drone Noise Ratio (SDNR) levels.
In this paper, we divide the drone on-board microphones into two
multichannel groups to approximately estimate the drone noise
from one group to the other with known drone noise ReTM for
denoising. We demonstrate the ReTM spatial mapping ability
in both indoor and outdoor experiments using hovering drone
on-board microphone recordings with low average magnitude
spectrum error. Finally, we validate the method in a real-life
environment for source signal enhancement over different SDNR
conditions and offer both improved speech intelligibility and
signal-to-distortion ratio.

I. INTRODUCTION

Making drones hear is a fundamental requirement of drone
audition functions, such as sound source localization [1]-[5],
source separation [6], source tracking [7], [8], and signal
enhancement [9]-[13]. However, (i) its self-generated noise,
and (ii) on-board microphones being closer to the drone
noise sources compared to the desired sound source on the
ground, cause a highly adverse noisy environment with an
extremely low signal-to-drone noise ratio (SDNR) (defined as
the power ratio between the source signal and the drone noise)
level [14]. As a result, drone noise reduction is in itself an
active problem in acoustic signal processing that enables drone
audition applications, e.g., search and rescue missions.

Many early drone noise reduction approaches are based on
the beamforming [9], [15]-[19]. Other popular algorithms are
spatial filtering-based methods [20], [21], blind source separa-
tion [20], [22], [23], spherical sector harmonics-based methods
[24], as well as supervised approaches including template-
based approaches [25], correlation matrix-based methods [26],
and reference-based methods [27], [28]. Recently favored are
machine learning-based techniques, the well-known form of
supervised approaches, for drone noise suppression [29]-[32].
For example, a denoising autoencoder based on fully convolu-
tional neural networks to cancel drone noise was discussed
in [32]. While these methods suppress the drone noise in
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low SDNR levels, they suffer from difficulties in obtaining
an accurate estimate of the drone noise signals from on-
board multichannel recordings due to the contribution of the
noise source signals. This paper utilizes the recently proposed
Relative Transfer Matrix (ReTM) [33], which is defined as
the generalization of the relative transfer function for multiple
simultaneous sound sources and multiple microphones, to pro-
pose a signal-independent solution that solely depends on the
drone noise sources position in a static acoustic environment
for drone noise cancellation.

ReTM is a new spatial feature containing relevant cues of the
multiple sound sources, and independent of the emitted source
signals, is defined by allocating the receivers into two multi-
microphone groups [33]. Related works [34]-[36] highlight the
promising performances of the ReTM methods when applied to
speech enhancement, and speaker separation in a multi-source
noisy reverberant environment.

In this paper, we present a novel algorithm for drone
noise reduction at very low SDNR levels using the ReTM.
The derivation of this method is similar to [34] in a room
scenario that exploits covariance matrices of the multiple noise
sources-only signals by dividing the receivers into two multi-
microphone groups based on the ReTM presented in [33].
Compared to [34], the proposed algorithm is (i) applied for
drone noise estimation, (ii) analyzed the estimation accuracy
in terms of the average magnitude spectrum error using two
drone acoustic datasets, i.e., DREGON [37] and AVQ dataset
[11] in indoor and outdoor environments, respectively, and (iii)
presented the speech denoising performance at extreme SDNR
conditions (< —10 dB). We verify the proposed method’s
applicability for source enhancement via a real-life experiment
conducted outdoors, and show increased speech intelligibility
and signal-to-distortion ratio (SDR) over differing SDNR level.

II. PROBLEM FORMULATION

Let there be ) microphones mounted on a drone capturing
the sound produced by a target speech source. The signal
received by the ¢! microphone due to the source in time
domain is

L
m(n) = dy(n) * s(n) + 3 hge(n) xven), (D)

(=1
where d,(n) is the drone-related impulse response from the
sound source to the ¢*" microphone, s(n) is the source signal,
vg(n) is the drone noise due to the ¢*" motor, hye(n) is the



impulse response from the ¢** motor to the ¢'" microphone
and L is the number of motors on the drone and ‘x’ is the
convolution operator.
In the short-time Fourier transform (STFT) domain, (1) can
be written as
L
My(f,t) = dg(£)S(f,t)+ > Ho o HVe(f,1), ()
=1
where My (f,t), S(f,t), and Vi(f,t) are the STFTs of mgq(n),
s(n) and v,(n), respectively, d,(f) is the drone-related transfer
function [38] for the ¢'" microphone, H,((f) is the noise
transfer function and ¢ and f are the frame and frequency
indices, respectively with ¢t € {1,..., T} and f € {1,..., F}
where T" and F' are the number of time frames and frequency
bins, respectively. We simplify (2) further and can be expressed
in matrix form as

M(f,t) = d(f)S(f,t) + H(/)V(, 1), 3

where M(f,t) = [M1(f,t),..., Mgo(f,t)]T and {-}T is the
matrix transpose, and d(f), is the [Q X 1] vector of drone-
related transfer functions, H(f) is the @) by £ drone noise
sources transfer function matrix, and V(f,t) are the £ drone
noise source signals that similarly defined.

The problem discussed in this paper is to suppress the drone
noise by estimating the relative transfer matrix (ReTM) of the
L drone noise sources from the received microphone signals,
which we explain next.

III. DRONE NOISE ESTIMATION AND REDUCTION WITH
RELATIVE TRANSFER MATRIX

This section uses the ReTM to propose a drone noise reduc-
tion algorithm. We first briefly review the ReTM presented in
[33], which divides the multiple microphones into two groups
to relate the signal received at the first microphone group to
the second. We then blindly estimate the drone noise sources
ReTM using covariance matrices. Finally, we utilize the drone
noise ReTM to map the drone noise from one group to the
other for denoising.

A. Drone Noise Sources Relative Transfer Matrix

Consider two microphone groups, {A} and {B} with Q4
and Qg microphones, respectively (QQ = Qa + Qp). Let
Ma(ft) = MV (f,0), -+, MSD(f,6)]7, and Mp(f,t) =
[Ml(B)(f, ), ,Mgi)(f, t)]T denote the vector of micro-
phone signals for each group. The received signals at each
microphone group in matrix form can be written as

The drone noise sources ReTM, R 45(f), can be defined
as in [33]
Rap(f) 2 Ha(f)Hp(f)T, (6)

where (-)T is Moore-Penrose inverse, assuming the validity,
i.e., QB Z L.

Consider the received signals by microphone groups when
the speech is inactive (S(f,t) = 0), then the drone noise-only
signals can be obtained from the received signals. Following
the ReTM mapping as in [33], we can relate the drone noise
signals received by microphone group {A} with ReTM as

MY (f,t) = Rap(f)MY (£, 1). )

Note that R ap(f) is defined by the spatial properties of
the noise sources such that it is independent of the sound
emitted by the drone motors and propellers. In drone audition
applications, the R ap(f) is constant for a drone hovering
scenario.

We note that it is typically straightforward to estimate
the ReTM in (6) by assuming that segments of recording
containing the drone noise-only signal when the drone flying in
the hovering manoeuvre above the ground prior to the speech
source being active, which we present in next subsection.

B. Blind Estimation of the ReTM from Received Signals

Here, we process the received signals in (4), and (5) when
the speech source is inactive to estimate the drone noise
sources ReTM that will be the building block of our proposed
drone noise reduction algorithm.

Formatting the ReTM estimation using covariance matrices
of

P 2 BMY (£,0MY (£,1)},
PYLH) 2 BIMY (f,oMY (f,0)},

where E{-} denotes the expectation which can be obtained
by averaging across the time frames, and then with further
simplifications as in [33], we approximate

T
Ras(f) = P (PEA) - ©)

We observe from (9) that the drone noise sources ReTM
(Rap(f)) only relies on the estimation of the covariance
matrices of the drone noise-only signals (no active speech),
and does not require the number of noise sources in the
mixture. The common approach is to obtain the noise-only
segments using a Voice Activity Detection (VAD) algorithm,
however, due to drones being loud these algorithms are not
recommended. In practice, the drone noise-only segments can
be isolated by initiating to activate the speech source after the
drone broadcasts a specific signal, such as a tone. Although
blind estimation of ReTM is used in this paper, the proposed
method can also be implemented by pre-trained or semi-blind
estimation.

The next section proposes how to suppress the drone noise
to enhance the target speech captured by a hovering drone.

®)

C. Drone Noise Suppression using Drone Noise Sources ReTM

Assuming that the drone noise sources ReTM, R ap(f) is
accurately estimated, thus, we can approximately calculate the
drone noise signals at microphone group { A} by following the
ReTM mapping in (7), we approximate that

Rap(/)MY (f,t) ~ Ha(f)V(/,1). (10)



We can subtract (10) from the received signals/noisy speech
at the microphone group {A} to remove the drone noise from
the group {A} microphone signals as

MA(fat)_RAB(f)MB(f7t)%dA(f)S(fvt% (1T)
thus, enhancing the target speech. However, in practice, the
approximation of (10) is not accurate. To make the exposition
concise, we omit the dependency of time (¢) and frequency (f)
in the rest of this section.

However, we accomplish a ‘distorted” version of the target
speech signal S by expanding the left side of (11), such that
S =M.a — RapMs,
=daS+H4V — RAB(dBS +HgV),
=dsS+H4V —RpdpS —RagHBV,
——
Hx
=daS+HAV — R gdpS —H4V,
=daS —RapdsS,

= [d4 — Rapds]S,

distortion

12)

where S is a @4 % 1 vector consists () 4 copies of estimated
target speech signal S. We obtain a complete suppression
of the drone noise from the received signals in (12), along
with an accurate estimate of drone noise source ReTM, R 4.
However, we note that this is a ‘distorted’ version of the target
speech signal S in terms of both the drone noise sources
transfer matrix and transfer function of the speech source, but
in future, the ReTM may be exploited using multiple copies
of denoised speech to do further enhancement.

IV. EXPERIMENTS

In this section, we illustrate the proposed method’s perfor-
mance using real-life multichannel recordings of a hovering
drone from two publicly available drone acoustic datasets; (i)
DREGON [37], and (ii) AVQ [11]. The experimental proce-
dures and results are described. First, the DREGON dataset
was used to measure the drone noise estimation performance
in an indoor environment. Second, the AVQ dataset was
examined to analyze the algorithm performance in an outdoor
environment.

The proposed method’s performance is analyzed using a
qualitative metric in terms of the average magnitude spectrum
error of the first microphone in group {A} as in [33]

MY () = MV ()P
MR

where Ml(A)( f,t) denotes the estimated drone noise signal at
the first microphone of the group {A} calculated using (7)
with the drone noise sources ReTM, which we will refer to
as ‘remote’ signals from here on. We note that microphones
are randomly grouped as group {A} and {B}, such that no
microphone picks twice [33]. But in the future, we discuss the
microphone group selection to provide a complete analysis of
the performance variation.

e(f) = mean 10logyq

A. Indoor Environments

1) Experimental Recordings: We used hovering audio sig-
nals (‘DREGON_hovering_nosource_room2.wav.”) of the ‘In
Flight Noise-Only Recordings’ from the DREGON dataset in
[37] conducted in a 10 x 10 x 2.5 m rectangular room (Tgy =
150 ms). These recordings were made with a flying drone
without any speech sources. The DREGON dataset has a con-
stellation of 8 microphones in a cubic-shaped structure placed
below the motor-propeller plane of the drone. We assigned
4 microphones on the bottom (channels {0,2,4,6}) to group
{A}, and 4 microphones on the top (channels {1,3,5,7}) to
group {B}. The audio recordings were processed directly in
the short-time Fourier domain for a 2'® window size, 44.1
kHz sampling, and 10 second duration that was long enough
to satisfy the multiplicative transfer function [39].

2) Results: We discuss the magnitude spectrum error of
the drone noise estimation using the ReTM in Fig. 1 and
reconstruction of the drone noise signals at microphone group
{A} in Fig. 2. Fig. 1 shows the magnitude spectrum of the
measured signal Ml(A), and remote signal Ml(A) for a single
time frame as well as their error averaged over all time frames.
We observe that there is no difference between Ml(A) and
Ml(A), which is equivalent to being a perfect mapping. This
is further confirmed by a very low error observed throughout
the frequency band of 20 — 16k Hz. The results suggest that
the drone noise sources ReTM exactly map the drone noise
source’s spatial properties and accurately estimate the drone
noise signals at the microphone channel 0.
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Fig. 1. Magnitude spectrum and error averaged over time for in flight noise-
only recordings from the DREGON dataset [37].

We present both time domain and spectrogram plots of the
measured and remote signals in Fig. 2. Strong similarity is once
again shown for hovering recordings confirming the accuracy
of the estimated drone noise sources ReTM. We share a link
to the audio files on GitHub'.

B. Outdoor Environments

1) Experimental Recordings: We utilized an AVQ dataset
[11] recorded outdoors from a fixed drone position on a

Thttps://github.com/wnilmini/Re TM_Source_Enhancement/tree/main/
Drone%20noise%20Estimation
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Fig. 2. Measured and remote drone noise signals at channel 0 at microphone
group {A}: (a,c) measured signals, (b,d) remote signals, (a,b) time domain
plots, and (c,d) spectrogram plots.

tripod at the height of 1.8 m with two static speech sources
(scenario: ‘subset 1”). We selected microphone recordings from
the ‘sequence 2’, drone noise-only signals with a constant
speed of 100% for ReTM mapping. The AVQ dataset has
8 microphones in a circular array located 15 cm above the
body of the drone. We assigned 4 channels {4, 8,1, 6} to group
{A}, and 4 channels {3,5,7,2} to group {B}. The 30 second
long audio recordings were processed directly in the short-time
Fourier domain for a 220 window size, 44.1 kHz sampling rate.

2) Results: Fig. 3 displays the magnitude spectrum error
of the drone noise estimation using the ReTM for the out-
door environment. A similar result is also obtained for the
AVQ dataset as the DREGON dataset despite being outdoors,
supporting that the drone noise sources ReTM is modeled
correctly. As intended, both time domain and spectrogram plots
of the remote signals in Fig. 4 are also seen to be an accurate
estimate of the measured signals.
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Fig. 3. Magnitude spectrum and error averaged over time for in flight noise-
only recordings from the AVQ dataset [11].

These results suggest that the drone noise at microphone

group { A} can be accurately estimated using the drone noise at
microphone group {B} with the drone noise sources ReTM in
both the indoor and outdoor environments. This method can be
easily generalized to different types of drones using the drone
noise-only recordings obtained when the drone is stationary
e.g., hovering manoeuvre. In the next section, ReTM-based
drone noise reduction algorithm will perform for a target
speech enhancement.
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Fig. 4. Measured and remote drone noise signals at channel 4 at microphone
group {A}: (a,c) measured signals, (b,d) remote signals, (a,b) time domain
plots, and (c,d) spectrogram plots.

V. APPLICATION IN SOURCE SIGNAL ENHANCEMENT

This section briefly examines the proposed drone noise
reduction algorithm in an outdoor environment in the presence
of a speech source at very low SDNR conditions (< —10
dB). Our intention is to analyze the speech enhancement
performance over different SDNR levels in terms of signal
distortion and speech intelligibility. We evaluate the quality
of the enhanced speech using objective measures, (i) Signal-
to-Distortion Ratio (SDR), using the BSS-Eval toolbox [40]
and (ii) the Short-Time Objective Intelligibility score (STOI)
[41]. We want to iterate that we do not consider comparing the
proposed algorithm with baseline methods in this paper as our
main focus here is to quantify the signal distortion introduced
by the ReTM, in such a case, we expect that the proposed
method can be performed lower STOI value than the state-of-
the-art methods as in [10].

We used the AVQ dataset in [11] for the evaluation. The
multichannel time-domain recordings are produced by adding
the drone noise signals recorded at the microphone array sepa-
rately (discussed in Section IV-B) with speech-only recordings
from the ‘sequence 4’ of the same subset. Then, the speech-
only recordings are scaled to simulate different SDNR levels
from —30 dB to —15 dB with an increment of 5 dB. We
also used the same parameter settings and microphone group
selection as in Section IV-B.
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Fig. 5 shows the time-domain and spectrogram plots of
the recorded and enhanced signals at the channel 4 (remote
channel) of the microphone group {A} at SDNR level of
—20 dB. Immediately we observe that the proposed method
significantly reduced the strong drone noise in the mixture
signal (Fig. 5b & d). Additionally, a clear preservation of
the speech spectrum is observed at the lower frequencies in
Fig. 5d. We share a link to the enhanced signals?.
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Fig. 5. Recorded and enhanced signals at channel 4 at microphone group
{A} at SDNR level of —20 dB: (a,c) recorded signals, (b,d) enhanced signals,
(a,b) time domain plots, and (c,d) spectrogram plots.

TABLE I
SIGNAL ENHANCEMENT PERFORMANCE
EVALUATION USING IMPROVEMENTS IN
SDR AND INPUT/OUTPUT STOI FOR
VARIOUS SDNR LEVELS

SDNR SDR STOI (%)

level (dB) Input | Output
—15dB 2.04 20.55 | 47.86
—20dB | —5.19 | 19.44 | 43.08
—25dB | —6.88 | 17.14 | 40.15
—30dB | —8.73 | 15.75 | 36.43

We will now examine the speech enhancement performance
with the proposed drone noise reduction algorithm over —30
dB and —15 dB SDNR range. Table I depicts the improvements
in SDR and input/output STOI scores as a function of SDNR
levels. We observe that both the SDR and STOI performance
have degraded with worsening SDNR condition. However, the
STOI improvement is nearly double compared to the input
scores over all SDNR levels. Again, SDR is slightly better
with higher SDNR levels. Here we reiterate that this is due
to distortion introduced with the drone noise sources ReTM
in (12). In contrast, from the informal listening, we find
that the enhanced speech signals are able to greatly increase
the understandability of the speech content compared to the

Zhttps://github.com/wnilmini/ReTM_Source_Enhancement/tree/main/
Source%20Enhancement
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recorded signals. The results confirm that the proposed method
better enhance the source signal in extreme noisy environments
although both STOI and SDR are gradually degrading with
decreased SDNR level.

VI. CONCLUSION

This paper proposed a novel algorithm to reduce the drone
noise for drone audition applications using ReTM. We separate
the multiple microphones mounted on a drone into two multi-
microphone groups to estimate the drone noise from one
group to the second. Extensive experimental studies using both
indoor and outdoor real-life datasets confirmed the accuracy
of the proposed method. This was shown by the very lower
magnitude spectrum error obtained for the full frequency
band. STOI and SDR values were shown to be improved
for speech enhancement at very low SDNR levels in outdoor
environments. In the future, the ReTM may be exploited
using multiple copies of enhanced speech together filtering
approaches to minimize the spectral distortion further.
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