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Abstract—The application of compressed sensing (CS) to MRI
enables the acceleration of imaging times. CS can approximate
an original signal from measurements that do not satisfy the
sampling theorem. While CS can reduce the sampling time of
k-space signals by reconstructing an MR image from limited
measurement signals, there are still issues such as reconstruction
time and optimal parameter search due to the CS optimization
algorithm. In contrast, unrolling-based network models that can
learn the parameters of the CS optimization algorithm to appro-
priate values for the subject are proposed, and the reconstruction
performance is improved by applying the model to CS. However,
the unrolling-based network models are trained based on a
specific sampling pattern, and the reconstruction performance is
adversely affected when the reconstruction is carried out using an
untrained pattern. In this study, a sampling pattern augmentation
method that employs multiple sampling patterns for learning
is proposed as a means of developing a model that is not
dependent on specific sampling patterns. Simulation experiments
demonstrated that the reconstructed images using the sampling
pattern augmentation exhibited superior quality compared to
those reconstructed using conventional methods, while requiring
a significantly shorter learning time. Moreover, it was confirmed
that the proposed method yields high reconstruction performance
even when reconstructing with untrained patterns.

I. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive tech-
nique that can provide high-contrast cross-sectional images of
the body. However, the requisite relaxation time for signal
recovery results in imaging times that are typically between
20 and 60 minutes. Consequently, numerous researchers have
explored avenues for accelerate MRI, including parallel imag-
ing [1], [2] and compressed sensing [3], [4]. In recent years,
the reconstruction of under-sampled k-space data obtained by
compressed sensing using deep learning [5] has enabled the
generation of high-quality images in a time-efficient manner,
when compared to traditional iterative reconstruction methods.

The field of deep learning-based reconstruction methods
can be divided into four principal categories. The first cate-
gory comprises image domain-based methods [6]-[9], which
employ an inverse Fourier transform (IFT) to the under-
sampled signal in order to obtain an initial image, which
serves as the primary input to the deep learning process.
The second category comprises k-space based methods [10],
in which an under-sampled signal is directly input to the
deep learning model, and then IFT is applied to obtain the
reconstructed image. However, methods belonging to this
category have not been widely studied due to the potential
for any artifacts introduced by the deep learning to be spread

over the reconstructed image. The third category comprises
iterative unrolling methods [11]-[14], which commence with
an optimization problem whose solution is the image to be
reconstructed. The optimization algorithm is then unrolled into
the deep learning. Notably, the ADMM-Net proposed by Yang
et al. [11] has relatively good reconstruction performance in
the same category. The fourth category comprises methods that
learn the image directly from an under-sampled signal [15].
This category typically necessitates the incorporation of fully
connected layers, resulting in a network of considerable scale.

In the context of deep learning reconstruction methods, the
generation of artifacts resulting from the under-sampling of k-
space data, utilizing a specific sampling pattern, is addressed
through the implementation of a learning process. This enables
the removal of artifacts that may otherwise manifest in the
reconstructed image. In other words, the characteristics of the
artifacts that appear in the reconstructed image are different for
sampling patterns not used in training, which makes effective
artifact removal difficult. Liu et al. proposed a novel sampling
pattern augmentation technique [8], [9], which employs a
combination of multiple sampling patterns during training with
the objective of enhancing robustness in the event of disagree-
ment between sampling patterns. Models trained with different
sampling patterns are capable of estimating and removing a
diverse range of artifacts. In contrast, the network proposed by
Liu et al. is based on image domain-based methods, including
U-Net [16] and Generative Adversarial Networks (GANSs) [17].
It thus appears that there is scope for further enhancement
of reconstruction performance through the incorporation of
sampling pattern augmentation into iterative unrolling models
such as ADMM-Net.

In this paper, we introduce sampling pattern augmentation
to ADMM-Net, which has particularly high reconstruction
capability among iterative unrolling models, with the aim
of developing a model that is robust to changes in sam-
pling patterns. To validate the effectiveness of the proposed
approach, we conducted experimental simulations in which
image reconstruction with sampling pattern augmentation was
compared with that without sampling pattern augmentation,
i.e., using a single sampling pattern. The experimental out-
comes demonstrate the effectiveness and utility of the sampling
pattern augmentation, even in the context of iterative unrolling
models.



II. METHODS
A. ADMM-Net

Compressed sensing is a technique that allows the recon-
struction of an original signal from fewer under-sampled sig-
nals than required by the Nyquist-Shannon sampling theorem,
provided the target signal has sparsity. Thus, compressed sens-
ing can accelerate MRI imaging time by under-sampling the
Fourier transform imaging signals. The ADMM-Net proposed
by Yang et al. was developed by using unrolling ADMM
optimization [18], [19] to train the regularization parameters
of compressed sensing. The reconstructed image p is estimated
by solving the optimization problem as follows:
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where m is an under-sampled signal, P is an under-sampling
matrix, F is the Fourier transform, D; is an undetermined
linear transform, g[-] is a nonlinear regularization function, and
A; is a regularization parameter.

By introducing the independent auxiliary variables z =
{21,22,...,2} in the image domain and using the La-
grangian multiplier /3, the iterations of the ADMM algorithm
are represented as follows:
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where the parameter 7 is an update rate, and r is a penalty
parameter. If I is a unit matrix, these iterations have the
following solutions:
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where H[-] denotes a non-linear transform corresponding to
the gradient of the regularization function g¢[-], and k& denotes
the k-th sub-iteration of z(™. In the solution Z, w1 =1—6r,
o = 0r, \; = d\; where ¢ is the gradient descent step size.
As the ADMM algorithm iterates, the solutions represented
in (3) are updated alternately in the order of R™, Z(®) and
M™),

Figure 1 shows the data-flow graph of ADMM-Net. As
shown in Fig. 1, the n-th stage in the data-flow graph cor-
responds to the n-th iteration of the ADMM algorithm. In
ADMM-Net, the solutions of (3), i.e. R, Z, and M, act as three
kinds of layers. The layers R, Z, and M are the reconstruction
layer, the noise reduction layer, and the multiplier update
layer, respectively, and a set of these layers is treated as a

stage, which is equivalent to a solving step of the ADMM
algorithm in (3). ADMM-Net trains the penalty parameter
r in the reconstruction layers, the convolution filters of the
two convolution layers, which are sub-layers of the noise
reduction layers Z, the multiplier update parameter 7, and the
regularization parameter J;.

In the training of ADMM-Net, under-sampled signals are
input to the network, and the loss between the reconstructed
image output from the network and the full-data image is
calculated. The loss function of the ADMM-Net uses the
normalized mean squared error (NMSE).

B. Sampling Pattern Augmentation

In general, deep learning reconstruction methods employ
a single sampling pattern for model training. It is therefore
challenging to obtain high-quality images from an under-
sampled MR signal using an untrained sampling pattern. By
augmenting the sampling patterns utilized in model training
from a single pattern to multiple patterns as illustrated in Fig. 2,
the constraint imposed by employing a single sampling pattern
in deep learning reconstruction methods can be alleviated. In
the sampling pattern augmentation process, a library containing
N sampling patterns are generated, and a sampling pattern to
be used for each image is randomly selected from the library.
The selected pattern is reselected with each change in epoch.
Accordingly, the number of sampling patterns in the library,
designated as IV, can be expressed as follows:

N = EItrain; (4)

where E and Ii;,i, represent the number of epochs in model
training and the number of training images, respectively. In
this paper, the generated sampling patterns are 1D Cartesian
patterns sampled along the phase-encoding direction. Fig. 3
shows an example of the generated sampling patterns.

C. Experimental Configuration

To verify the effectiveness of the proposed method, we
conducted experimental simulations. In this study, the robust-
ness of the sampling pattern augmentation applied to the un-
rolling model is evaluated and its reconstruction performance
is compared with that of the image domain-based model. In
the experiments, ADMM-Net is used as the unrolling model
method and U-net is used as the image domain-based model,
and 485 T1-weighted MR images of the heads of consenting
volunteers from IXI Dataset [20] were used. 400 randomly
selected images were used for training and the rest were for
testing. All images were 256 x 256 pixels.

In the configurations of ADMM-Net, the number of epochs,
the number of stages, the number of convolution filters, filter
size, the activation function, optimizer, and learning rate were
set to 300, 10, 64, 5 x 5, Rectified Linear Unit (ReLU) [21],
Adam [22], and 1073, respectively. In the configurations of U-
Net, the following parameters were set: the number of epochs,
the number of stages, the number of initial convolution filters,
filter size, the activation function , optimizer, and learning rate.
These were set to 300, 5, 64, 3 x 3, ReLU, Adam, 1074,
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Fig. 2. Training flow of deep-learning reconstruction when under-sampling
with single sampling pattern and the sampling pattern augmentation.

respectively. Furthermore, the reconstructed images by U-Net
are subjected to the data consistency (DC), thereby improving
the quality of the reconstructed images. The reconstructed
image is then subjected to a calculation of the data consistency,
denoted as pp, as follows:

Ppc = FT[Pm + (I - P)FprNet] (5)

where py;_ .; represents a reconstructed image by U-Net. F,
P, and I represent the Fourier transform, a sampling pattern
matrix, and a unit matrix, respectively. m represent the under-
sampled MR signal. Therefore, the quality of the reconstructed
images can be enhanced by replacing the under-sampled points
of the MR signal of p;;_ ., With Pm.

The number of sampling patterns contained in the sampling
pattern library are 400 x 300 = 120000. The sampling patterns
used in the experiments are based on a Gaussian distribution.
The standard deviation of the Gaussian distribution o is as
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Fig. 3. Example of the 1D variable density Cartesian random sampling
patterns. In this example, the matrix size of sampling patterns is set to 256 X
256. The White regions of the library and Pattern 1 to 3 represent under-
sampling points of MR signal, and black regions are zero-filling points.
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follows:
o = 256, 6)

where o denotes a parameter that controls the distribution
of under-sampled MR signals by the sampling pattern.
In addition, the low-frequency components are sampled
continuously because the MR signals have a high
energy concentration in the low-frequency component.
The number of continuous sampling points in the
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Fig. 4. Reconstructed images by each reconstruction method. The images
were reconstructed from the under-sampled MR signal in accordance with a
sampling pattern that had not been trained, as shown in (m). (g)-(1) show
enlarged views of the red rectangle areas in (a)-(f), respectively. (n)-(r) are
the error maps between the full-data and each reconstructed images. (c) was
reconstructed by the model that had been trained with a sampling pattern of
(R, ) = (0.3,0.5). In (d)-(f), the sampling pattern augmentation (SPA) is
employed.

experiments is set to 30. The sampling patterns used
for the sampling pattern augmentation is generated by
setting the sampling rate R and «. In the experiments, R
and « are considered as a parameter set, and the sampling
patterns are generated from 5 parameter sets, i.e., (R,a) €
{(0.2,0.5), (0.3,0.3), (0.3,0.5), (0.3,0.8), (0.4,0.5)}.  Note
that the signal sampling points are determined randomly.

To evaluate the robustness, the proposed model using the
sampling pattern augmentation in ADMM-Net and the con-
ventional model trained with a single pattern were tested by
generating 10 different sampling patterns for testing with the
parameter set used in single pattern learning. As an example,
when the single pattern learning model using the parameter
set (0.2,0.5) is tested, 10 sampling patterns for testing are
generated with the parameter set (0.2,0.5).

The quantitative evaluation of the reconstructed images
was conducted using three metrics: the Peak Signal-to-Noise
Ratio (PSNR) and the Learned Perceptual Image Patch Sim-
ilarity (LPIPS) metric [23]. The LPIPS employs pre-trained
image feature extraction networks comprising comvolutional
neural network (CNN)-based models such as AlexNet [24] and
VGG [25]. The LPIPS metric, which employs a pre-trained
AlexNet model available on GitHub, was used to assess the
results of the experiments. It should be noted that a lower
value of the LPIPS indicates a higher quality of reconstructed
images.

The experimental simulations were performed on a com-
puter with an Intel(R) Core(TM) i9-11900K (3.5 GHz), with
64.0 GB of RAM, and NVIDIA GeForce RTX 3090 GPU
running Windows 10. The software used was Python 3.9.5,
PyTorch 2.3.1, and CUDA ToolKit 12.1.

III. EXPERIMENTAL RESULTS

Figure 4 shows the reconstructed images when the untrained
sampling pattern is used for the reconstruction. Fig. 4(m)
shows the used sampling pattern in this experiment, whose
sampling rate and a parameter o are set to 0.35 and 0.5,
respectively. Table I shows the quantitative evaluation results
of the reconstructed images. In the image reconstruction using
ADMM-Net, a comparison of the reconstruction results with
and without the sampling pattern augmentation indicates that
the image reconstructed by the model with the sampling pat-
tern augmentation is more accurate reproducing the indicated
texture by the arrows than the image reconstructed by the
model trained with a single sampling pattern. As shown in
the quantitative evaluation results, the reconstructed images
with the sampling pattern augmentation have higher PSNR
than those of the single pattern model. On the other hand, the
LPIPS of the reconstructed images with the sampling pattern
augmentation was equal or higher for (R, a) = (0.2,0.5) and
(0.35,0.5), but lower for (R,«) = (0.3,0.5) and (0.4,0.5)
than that of the model trained with the single sampling pattern.

Subsequently, a comparison is conducted between ADMM-
Net and U-Net, with the sampling pattern augmentation. As
shown in Fig. 4, the reconstructed image by U-Net with the
sampling pattern augmentation exhibits a notable degree of
smoothing and a discernible loss of detail structure. Notwith-
standing the enhancement of the reconstructed image quality
through data consistency, no significant improvements were
observed. In contrast, the ADMM-Net with the sampling
pattern augmentation demonstrated superior performance in
preserving detail structure compared to U-Net. As shown in
the quantitative evaluation, the evaluation metrics of ADMM-
Net with the sampling pattern augmentation exhibited better
than those of U-Net.

IV. DISCUSSION

In the sampling pattern augmentation conducted in the
experiments, 120,000 different sampling patterns were used
for model training. This equates to 120,000 artifacts being
learned, with the model parameters optimized to remove these
artifacts. It is therefore hypothesised that the application of
sampling pattern augmentation improves the image quality of
the reconstructed images both quantitatively and qualitatively.

From Fig. 4 and Table I, ADMM-Net with the sampling pat-
tern augmentation has better reconstruction performance than
that of using a single sampling pattern in terms of PSNR. In
the experiments, model training is performed with 300 epochs,
and the model whose reconstructed image quality is the highest
among the 300 models is selected as the model for testing. The
metric that determines the model for testing is PSNR. In other
words, the models are determined such that both the sampling
pattern augmentation and the single sampling pattern have the
maximum PSNR of the reconstructed images. In addition, the
loss functions of ADMM-Net and U-Net are NMSE and MSE,
and the PSNR formula includes MSE. Therefore, the changes
in MSE directly affect the changes in PSNR. Evaluation by
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TABLE I
QUANTITATIVE METRICS COMPARING THE FULL-DATA IMAGES.
(R, o) (0.2, 0.5) (0.3, 0.5) (0.4, 0.5) (0.35, 0.5)
PSNR [dB] LPIPS PSNR [dB] LPIPS PSNR [dB] LPIPS PSNR [dB] LPIPS
ADMM-Net (SPA) 29.02£0.71  0.016£0.008  34.07£0.93  0.016£0.003  37.37+1.13  0.012£0.002  35.74£0.99  0.007£0.002
ADMM-Net (single)  28.90+£0.65  0.038+0.007  33.924+0.97 0.011£0.003  37.22+1.23  0.005+0.002  35.52+1.02  0.007+0.002
U-Net (SPA) 28.06+0.65 0.058+0.011  29.49+0.60  0.045+0.008  30.36+0.59  0.035+0.007  30.03+£0.58  0.03840.007
U-Net (SPA) + DC ~ 28.924+0.67  0.0524+0.011  31.324+0.61  0.0354+0.008  32.984+0.58  0.0244+0.006  32.264+0.59  0.02840.007
TABLE I ..
COMPUTATIONAL COMPLEXITY than those comprising the ADMM-Net model. Therefore,
ADMM-Net demonstrated superior performance in terms of
Training [min]  Reconstruction [ms]  Parameters  poth speed and image quality compared to U-Net.
ADMM-Net (SPA) 24.80 3.59 33,823 In this paper, the experiments were performed on real-valued
ADMM-Net (single) 24.80 3.81 33,823 . . . .
U-Net (SPA) 3001 725.54 22023937 1mages, but the images acquired from MRI are complex images

PSNR has a high affinity with the loss functions such as NMSE
and MSE. As a result, the effectiveness of the sampling pattern
augmentation could be demonstrated in terms of PSNR.

On the other hand, ADMM-Net with the sampling pattern
augmentation exhibits suboptimal performance with respect
to the LPIPS metric. The LPIPS metric can be evaluated in
accordance with human perceptual characteristics. In particu-
lar, LPIPS tends to evaluate more highly an image in which
random noise-like artifacts remain but the detailed structure has
been restored than an image in which the detailed structure has
been destroyed by smoothing through reconstruction. In con-
trast, PSNR is evaluated more highly when the error between
the pixel values of the full data and those of the reconstructed
image is small. Consequently, the evaluation is higher even if
smoothing or blurring has occurred. As previously stated, since
the selection criterion for the test model was PSNR, LPIPS of
the reconstructed image was not necessarily highly evaluated.
Therefore, the evaluation when LPIPS is used as the model
selection criterion is a future issue.

Table II shows the processing times for training and re-
construction, as well as the number of parameters associated
with each model. As shown in the table, it is clear that the
training time, reconstruction time, and number of parameters
remain unaltered when the sampling pattern augmentation is
introduced or excluded. In the sampling pattern augmentation,
a sampling pattern for each image is randomly selected from
the sampling pattern library and reselected with each change
in epoch. In other words, the number of training data remains
constant, in contrast to the data augmentation approach. Fur-
thermore, the sampling pattern augmentation is a form of pre-
processing that occurs before the network input for training.
Therefore, the number of parameters comprising the model
remains unaltered in the presence or absence of the sampling
pattern augmentation.

With regard to the issue of computational complexity, it can
be observed that the reconstruction of ADMM-Net is capable
of begin carried out at a speed that is 190 times faster than
that of U-Net. The U-Net model comprises a multitude of
convolution layers, with a total of 650 times more parameters

with phase components. From practical point of view, it is
necessary to confirm the effectiveness of sampling pattern
expansion also for complex images, and this is a topic for
future work.

V. CONCLUSIONS

In this study, we introduced the sampling pattern augmen-
tation to an iterative unrolling model, specifically ADMM-
Net in order to enhance the robustness of the trained model
in the presence of sampling pattern discrepancies. In the
sampling pattern augmentation, a sampling pattern for each
image is randomly selected from the sampling pattern library
and reselected with each change in epoch. To verify the effec-
tiveness of the sampling pattern augmentation in enhancing
the robustness of the trained model, image reconstruction
experiments were conducted using untrained sampling pat-
terns. As a consequence, the reconstructed images produced by
ADMM-Net with the sampling pattern augmentation exhibited
a higher PSNR than those of the model trained with a single
sampling pattern. In comparison to the image domain-based
model, i.e., U-Net, with the sampling pattern augmentation,
it was confirmed that ADMM-Net with the sampling pattern
augmentation exhibited superior performance in terms of re-
construction speed and quality relative to U-Net.
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