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Abstract—Multichannel source separation plays an important
role in audio and speech signal processing. With recent ad-
vancements in deep neural networks (DNN), numerous DNN-
based beamforming algorithms have been developed. To lever-
age spatial information, a time domain filter-and-sum network
(FaSNet) was introduced, and the transform average concatenate
(TAC) technique was subsequently adopted to further enhance
separation performance. FaSNet captures spatial information by
assessing cosine similarity between different channels; but this
approach may have limited spatial resolution and could exhibit
bias in noisy, reverberant environments, thereby potentially
compromising performance. Motivated by the efficacy of the
generalized cross-correlation (GCC) method in achieving reliable
source localization in adverse environments, this paper introduces
a learnable cross-correlation (LCC) module for FaSNet and
FaSNet-TAC. By offering improved flexibility and robustness
across diverse environments, LCC enhances source separation
performance, which is validated by several simulations.

Index Terms—Multichannel source separation, neural net-
work based beamfroming, spatial information, learnable cross-
correlation.

I. INTRODUCTION

Separating different source signals in noisy and reverberant
environments [1]–[3] is of vital importance. Beamforming
is one of the most widely used methods to address this
problem [4]–[7]. With recent advancements in deep neural
networks (DNN), numerous DNN-based beamforming algo-
rithms have been proposed [8]–[10]. As shown in [3], [7],
[11], incorporating spatial information can help significantly
improve the separation performance. To this end, a filter-
and-sum network (FaSNet) [12] was proposed. The original
FaSNet comprises several Temporal Convolutional Network
(TCN) modules [13], which are employed to separate source
signals. Additionally, cosine similarity modules are utilized
to capture spatial information. To further enhance separation
performance, TCN modules are replaced with dual-path re-
current neural network (DPRNN) modules [14], [15]. More-
over, the transform average concatenate (TAC) technique was
adopted [15]. TAC first transforms each channel’s feature into
a latent space and then the average of transformed features is
concatenated into following blocks.

While FaSNet [12] and FaSNet-TAC [15] have demon-
strated promising separation performance, they rely on cosine
similarity to extract spatial information, which may suffer
from limited spatial resolution and bias in noisy, reverberant

Fig. 1. Structures of: (a). two-stage FaSNet, (b). single-stage FaSNet-TAC.

environments. Generalized cross-correlation (GCC) is one of
the most widely used methods in source localization [16]–
[20]. GCC modifies the cross-correlation through a frequency
domain weight function. There is a number of member algo-
rithms in the GCC family, which consider different weight
functions and their proprieties depend on the weight func-
tions. For example, phased transform (PHAT) [21] is robust
to reverberation while Roth processor [22] and smoothed
coherence transform (SCOT) [23] are robust to noise. Inspired
by the principles in GCC, we propose to design in this
paper a learnable cross-correlation (LCC) module, in which
a time domain convolution function is learned as the weight
function from input data adaptively. By replacing the cosine
similarity with the proposed LCC module, we derive two
new frameworks, i.e., LCC-FaSNet and LCC-FaSNet-TAC.
These frameworks offer enhanced separation performance,
particularly in scenarios where two target speakers are closely
distributed, due to LCC’s ability to achieve higher spatial



Fig. 2. The structure of the proposed LCC module.

resolution. Moreover, as the LCC module dynamically learns
the weight function from input data, the proposed frameworks
are anticipated to outperform conventional approaches across
diverse environments.

The remainder of the paper is organized as follows. In
Section II, we present a brief overview of the cosine similarity
feature used in the original FaSNet and FaSNet-TAC methods.
We then introduce the proposed LCC module in Section III. In
Section IV, we present the training configuration and compare
the proposed methods with their conventional counterparts.
Finally, we draw the conclusion in Section V.

II. COSINE SIMILARITY FEATURE

Incorporating spatial information properly is shown to be
an effective approach to improve source separation perfor-
mance [3], [7]. In this paper, we consider the original two-
stage FaSNet structure [12] and single-stage FaSNet-TAC
structure [15], both of which incorporate DPRNN modules.
As depicted in Fig. 1 (a) and Fig. 1 (b), FaSNet and FaSNet-
TAC extract the spatial information using the cosine similarity
feature [12], [15], which is named normalized cross-correlation
(NCC). Mathematically, NCC is defined as

NCCs1,s2 =
sT1 s2

||s1||2||s1||2
, (1)

where s1, s2 are two signal vectors and || · ||2 denotes ℓ2 norm.
For the two-stage FaSNet, in the initial stage, a single mi-

crophone is selected as the reference. The NCCs between the
signals picked up by the other microphones and the reference
microphone are computed to estimate the target signal. In the
subsequent stage, the NCCs between the microphone signals
and the estimated target signal are employed to further enhance
the separation performance. While for the single-stage FaSNet-
TAC, NCCs are only calculated at the beginning and the spatial
information are maintained with TAC blocks.

III. PROPOSED LEARNABLE CROSS-CORRELATION
MODULE

While FaSNet and FaSNet-TAC have demonstrated promis-
ing separation performance, they rely on cosine similarity to

extract spatial information, which may suffer from limited
spatial resolution and bias in noisy, reverberant environments.
To circumvent this limitation, we introduce a new, lightweight
LCC module in this work. The LCC module, as illustrated in
Fig. 2, is a dual-layer convolutional neural network operating at
the time-domain frame level. It first partitions the input signals
xi, i = 1, ..., N , into short frames (named “chunk”) with a
frame length of L and a hop size of H ∈ [0, L− 1], i.e.,

xi,t = xi[tH : tH + L− 1], (2)

where t is the frame index. We additionally form a signal
vector at the corresponding time index, referred to as the
“context”, consisting of extra W immediate future and past
samples relative to xi,t, i.e.,

cj,t = xj [tH −W : tH + L+W − 1]. (3)

For simplicity, we omit the frame index t in subsequent
discussions, as it is unambiguous. Following input signal
segmentation, we utilize a pair of convolutional layers with
shared parameters, labeled as Conv1(·), to encode both the
context signal cj and the chunk signal xi. Subsequently, in
order to preserve the dynamic range of subsequent neural
network inputs, we scale their outputs to the range [−1, 1]
using the tanh(·) function. Mathematically, this process is
expressed as

cej = tanh
[
Conv1(cj)

]
,

xei = tanh
[
Conv1(xi)

]
,

(4)

where cej ∈ ROc1×(2W+L−Ic1+1) denotes the encoded con-
text signal, Ic1 and Oc1 denote, respectively, the number of
input and output channels of the first convolutional layer
(In this paper, we set Ic1 = Oc1 = L for simplicity in
computation), xei ∈ ROc1×1 is the encoded chunk signal.

Subsequently, the encoded vector is squared and passed
through the GCC extractor (a single convolutional layer), de-
noted as Conv2(·), to dynamically adjust its information in the
Oc1 dimension. The ReLU activation function is then applied
to remove negative values, and the square root operation is



TABLE I
EXPERIMENTAL RESULTS BASED ON A 6-ELEMENT CIRCULAR MICROPHONE ARRAY WITH DIFFERENT SPEAKER ANGLES.

Model # Parameters
SDRi (dB) SI-SNRi (dB)

Speaker angle
Overall

Speaker angle
Overall

<15◦ 15-45◦ 45-90◦ >90◦ <15◦ 15-45◦ 45-90◦ >90◦

FaSNet 3.70M 4.77 5.50 6.18 6.59 5.81 2.93 3.58 4.15 4.48 3.83

+LCC (proposal) +4.22K 5.02 5.96 6.75 7.05 6.26 3.99 4.84 5.57 5.79 5.11
FaSNet-TAC 2.76M 8.48 10.55 12.19 12.88 11.06 7.75 9.85 11.49 12.23 10.48

+LCC (proposal) +4.22K 9.69 11.58 12.98 13.60 12.09 8.94 10.87 12.28 12.94 11.39

TABLE II
EXPERIMENT RESULTS BASED ON A 6-ELEMENT CIRCULAR MICROPHONE ARRAY WITH DIFFERENT OVERLAP RATES

Model # Parameters
SDRi (dB) SI-SNRi (dB)

Overlap rate Overlap rate

<25% 25-50% 50-75% >75% <25% 25-50% 50-75% >75%

FaSNet 3.70M 7.98 5.87 4.57 3.54 5.60 3.88 2.85 1.94

+LCC (proposal) +4.22K 8.74 6.21 4.85 3.80 7.31 5.11 3.86 2.84
FaSNet-TAC 2.76M 15.82 10.70 8.74 7.17 14.97 9.98 8.02 6.48

+LCC (proposal) +4.22K 16.63 11.51 9.59 8.18 15.98 10.79 8.86 7.45

performed to yield the corresponding Pearson coefficient-like
term [24], [25], i.e.,

gcj =
√
ReLU

[
Conv2(ce2j )

]
,

gxi =
√
ReLU

[
Conv2(xe2i )

]
.

(5)

Finally, the learnable cross-correlation feature is calculated
with following equation:

cj,p = ci[p : p+ L− 1]

fi,j,p =
xic

T
j,p

∥gcj,p∥2∥gxi∥2

, j = 1, ..., 2W + 1, (6)

where p ∈ [0, 2W − Ic1 + 1] represents the position of the
focused same-length segment in cj .

IV. EXPERIMENT

In this section, we provide a detailed description of the
training configuration and conduct several simulations in both
noisy and reverberant environments. To validate the effective-
ness of the proposed LCC module, we conduct a comparative
analysis of the proposed networks exclusively against their
conventional counterparts, i.e., FaSNet and FaSNet-TAC. The
proposed module could also be integrated into other networks.

A. Dataset

The target signals are randomly selected from Lib-
riSpeech [26]. Noise signals from CHiME3 [27] are chosen to
control the signal-to-noise ratio (SNR). The sampling rate for

both target and noise signals is 16 kHz. We consider scenarios
where there are two target speakers with the relative signal-to-
interference ratio (SIR) ranging from 0 dB to 5 dB. One point
noise is added and the corresponding SNR is set to range from
−5 dB and 30 dB.

We consider a room with randomly sampled dimensions,
where the length and width fall between 3 and 10 m, and
the height ranges from 2.5 to 4 m. The reflection coefficients
of all the room surfaces are assumed identical and they
are randomly generated to achieve a reverberation time T60

ranging from 100ms to 500ms. A uniform circular array
with a radius of 5 cm and consisting of 6 omnidirectional
microphones, is utilized. The array is positioned randomly
within the room, ensuring that the minimum distance between
the array center and each wall is 0.5m. Speaker positions
are then sampled to ensure the average speaker angle relative
to the microphone center is uniformly distributed between 0◦

and 180◦. Noise source position is sampled without additional
constraints. Subsequently, the microphone observation signals
are generated by convolving the speech and noise source sig-
nals with their corresponding room impulse responses (RIRs)
generated using the toolbox gpuRIR [28], which is based on
the image model [29] and adding the results together with the
specified SIR and SNR values. In total, 100,000, 10,000, and
5,000 4-second-long utterances are generated as the training,
validation, and evaluation sets, respectively.

B. Experimental configuration

Using the generated datasets, we trained and tested the
proposed LCC-FaSNet and LCC-FaSNet-TAC, as well as the
original baseline models without LCC. The training objective



Fig. 3. Performance of the compared methods in noisy and reverberant environments: (a) SDRi of FaSNet, (b) SDRi of LCC-FaSNet, (c) SDRi of FaSNet-TAC,
(d) SDRi of LCC-FaSNet-TAC, (e) SI-SNRi of FaSNet, (f) SI-SNRi of LCC-FaSNet, (g) SI-SNRi of FaSNet-TAC, and (h) SI-SNRi of LCC-FaSNet-TAC. The
horizontal axis represents T60 and the vertical axis represents SNR (dB).

is scale-invariant SNR (SI-SNR) [30]. Models were trained
using the Adam [31] optimizer with a momentum of 0,
batch size of 8, and 120 epochs. The initial learning rate
was set to 2 × 10−3. If the loss did not decrease after 3
consecutive epochs, the learning rate was halved. Training
was halted either when the learning rate did not decrease
for two successive epochs or when the maximum number of
iterations was reached. The model with the lowest loss on the
validation set was chosen for testing and results recording. All
experiments were conducted on an NVIDIA A40 with 48 GB
of GPU memory.

C. Results and Discussions
Before examining performance, we analyze the additional

memory cost of the proposed LCC module. As shown in
Tab. I and Tab. II, the proposed LCC module contributes only
4.22 k to the parameter count, which is less than 0.2% of
the parameter volume of the baseline models. Specifically, for
FaSNet, LCC utilizes an additional 4.22 k (0.11%) parameters,
and for FaSNet-TAC, LCC uses only 0.15% more parameters.

Now, we investigate the separation performance with varia-
tions in the angle between two target speakers. Besides SI-SNR
improvement (SI-SNRi), we also show signal-to-distortion
ratio improvement (SDRi) [32]. The results are shown in Tab. I.
As seen, the proposed methods consistently outperform their
conventional counterparts across all cases. Furthermore, the
TAC technique significantly improves separation performance.
Notably, as the angle between the two speakers decreases,
especially below 15◦, the proposed frameworks achieve no-
tably superior separation performance. This improvement is

attributed to the limited spatial resolution of cosine similar-
ity, which leads to performance degradation in FaSNet and
FaSNet-TAC. Conversely, the proposed LCC module offers
higher spatial resolution, thereby enhancing separation perfor-
mance. Additionally, as seen in Tab. II, the proposed methods
achieve superior separation performance across various overlap
ratios between the two speakers, indicating the suitability of
the LCC module for diverse applications.

Moreover, segmented tests were conducted across different
SNR levels and T60 values. The results are presented in
Fig. 3 where darker colors indicate larger gain under the
current conditions, while lighter colors signify less gain. It
is evident that the proposed methods consistently outperform
their counterparts across all configurations, which validates the
robustness and flexibility of the proposed LCC module.

V. CONCLUSION

Separating source signals in noisy and reverberant envi-
ronments is an important task in audio signal processing. In
the so-called FaSNet and FaSNet-TAC, cosine similarity is
chosen to represent the inter-channel feature. However, this
choice possesses limited spatial resolution and may not be
optimal across varied environments. To take full advantage
of spatial information, in this paper, we designed a learnable
cross-correlation (LCC) module, which dynamically generates
a weighted correlation from input observations. We integrated
the proposed module into FaSNet and FaSNet-TAC. Sim-
ulations confirm that the proposed LCC module enhances
separation performance, particularly in scenarios with closely



distributed target speakers, owing to its high resolution. Fur-
thermore, improvements are observed across different overlap
ratios, SNR levels, and reverberation levels, underscoring the
robustness and flexibility of the proposed LCC module.
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