
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Prediction-error-based Adaptive SpecAugment for
Fine-tuning the Masked Model on

Audio Classification Tasks
Xiao Zhang∗ Haoran Xing∗ Mingxue Song∗ Daiki Takeuchi† Noboru Harada† Shoji Makino∗

∗ Waseda University, Japan
E-mail: zhang x07@toki.waseda.jp, haoranxing@suou.waseda.jp, smx shue@toki.waseda.jp, s.makino@waseda.jp

† NTT Corporation
E-mail: daiki.takeuchi.ux@hco.ntt.co.jp, noboru.harada.pv@hco.ntt.co.jp

Abstract—Spectrogram augmentation (SpecAugment), a data
processing method that enlarges datasets without adding new
samples, has been widely employed in the fine-tuning process of
the masked model for audio classification. In the conventional
SpecAugment, the positions of time masking and frequency
masking, which directly determine the available information that
the model can learn from, are selected randomly. As a result, the
random position masking in the conventional SpecAugment may
prevent the model from fully utilizing the input information. To
this end, we propose a Prediction-error-based Adaptive SpecAug-
ment (PEAS), which incorporates two auxiliary tasks based on
reconstruction and then introduces a mask position selector in the
fine-tuning process for the masked model. Rather than masking
at random positions, the proposed PEAS generates masks on
the parts of the spectrograms that are hard to reconstruct for
the model. Masking these positions forces the model to learn
more generalized audio features, which can effectively prevent
the model from learning classification labels by identifying
individual special features. Besides, to accelerate the learning of
audio features during the early training epochs, we progressively
increase the proportion of adaptive masks. Experimental results
demonstrate that our proposed PEAS can match or outperform
both the conventional method and random masking strategy on
the ESC-50 and Speech Commands V2 datasets.

I. INTRODUCTION

The audio classification task aims to enable the machine
to automatically recognize and distinguish between different
kinds of sounds. Classifying audio segments into predefined
categories [1] provides useful information for understanding
audio content, which is crucial in several domains, including
speech recognition [2], environmental sound classification [3],
emotion recognition [4], etc.

Spectrogram augmentation (SpecAugment) [5] is a regular-
ization technique used for audio data processing, aiming to
improve the performance of large-scale deep neural network
(DNN) models on small datasets [6] [7]. This paper focuses on
two groups of SpecAugment strategies [8] [9]: time masking
and frequency masking. These techniques simulate scenarios
where some data is lost during actual data acquisition, thereby
forcing the model to extract meaningful features from incom-
plete input data.

However, conventional time masking and frequency masking
strategies still have limitations due to the predefined random

strategy of masked position selection. These positions of masks
directly determine the available audio information for feature
extraction, which is highly correlated to the performance of
audio classification. The random masking strategy prevents
the model from fully utilizing the limited data to obtain
generalized audio features. Thus, we propose a Prediction-
error-based Adaptive SpecAugment (PEAS) that encourages
the model to mask where it is most beneficial.

The related work Hard Patches Mining (HPM) [10] in
Computer Vision (CV) employs a new training paradigm for
Masked Visual Modeling (MVM), which enables the model
to identify patches that are difficult to reconstruct, namely,
hard patches. It introduces two processes: patch reconstruction
and hard patch prediction. They use two models with the
same structure: a student model mainly to reconstruct patches
and a teacher model mainly to identify the hard patches,
respectively. The teacher model can identify the parts of the
images that are hard to reconstruct and mask these parts during
the pretraining process, thereby bootstrapping the performance
of masked image modeling across various downstream tasks.
HPM method has proven that hard patches often contain more
specific features, and masking these patches can compel the
model to discern finer differences between various classes
using more generalized image features, thereby enhancing the
stability and performance of the model. Since HPM has shown
superior performance and considering the similarity between
visual images and spectrograms, the HPM idea can be extended
to the fine-tuning process of the masked model for audio
classification tasks.

Although the HPM method is expected to improve the
performance of masked models during fine-tuning, its high
training cost and the complex update mechanism for two
models limit its application on low-resource terminals. To
solve this issue, we employ aforementioned two processes as
auxiliary tasks on one masked model during the fine-tuning
process inspired by the concept of Multi-Task Learning (MTL)
[11], which can decrease the number of parameters and save
training time. In addition, block masking has proven effective
in SpecAugment, thus we mask consecutive time frames and
frequency bins as well. These two auxiliary tasks share the



same parameters, serving for spectrogram reconstruction and
hard block prediction, respectively.

To determine which blocks to mask in the spectrograms, we
propose a mask position selector. In PEAS strategy, each of the
masks has a block shape along the time and frequency axes,
respectively. The blocks with a larger mean prediction error are
desired to be masked. The proposed PEAS enables the model
to identify the hard blocks in the input spectrograms, which are
believed to have specific information for audio classification.
Thus, masking these parts is expected to force the model to
learn more generalized features from the input spectrogram,
thus improving the efficacy of the masked model for audio
classification tasks.

We apply Self-Supervised Audio Spectrogram Transformer
(SSAST) [12] as the backbone of proposed PEAS. SSAST is
a masked model that significantly improves performance on
various downstream tasks in the filed of audio classification
without the need for large amounts of labeled data. Moreover,
SSAST also includes generative masked spectrogram patch
modeling as one of the joint training tasks, which is the same
as one of our proposed auxiliary tasks.

The rest of this paper is organized as follows: Section II
provides an overview of related work; Section III details the
proposed methodology; Section IV presents the experimental
setup and discusses the results; and concludes the paper in
Section V.

II. RELATED WORK

A. Time masking and Frequency Masking for SpecAugment

SpecAugment, which is commonly used in various fields [5]
[13] [14], can enhance the generalization ability of models at
a low cost. Specifically, time masking and frequency masking
proposed in [5] can be regarded as an augmentation policy
that acts on spectrograms directly. The positions of masks on
the spectrogram are important, as they determine the available
information for the model to learn. However, SpecAugment
selects the starting point from a uniform distribution of the
given parameters and generates masks with a random width.
This random masking in both consecutive time frames and fre-
quency bins is inefficient for obtaining the input information.

B. Hard Patches Mining for Masked Image Modeling

Hard Patches Mining (HPM) [10] is an approach for masked
visual modeling initially deployed in CV pretraining. It has
been demonstrated that patches with higher predicted losses
are often more discriminative, and thus masking these patches
brings a hard situation. HPM introduces two collaboratively
trained models. The student model reconstructs the masked
patches, while the teacher model predicts the positions of
hard patches and generates masks. This iterative process drives
the model to continuously generate and tackle difficult tasks,
thereby enhancing its overall comprehension of the visual
content. The findings in HPM have demonstrated superior
performance based on the ViT model, which is a Transformer-
based model used for image classification tasks. Therefore,
HPM is supposed to be suitable for the masked model with

Transformer structure in the audio classification task as well,
which takes the spectrograms as input. It is proved that
HPM can integrate with existing frameworks and improve
performance consistently.

C. Multi-Task Learning

The Multi-Task Learning (MTL) [15] method simultane-
ously leverages the common information from multiple related
tasks to enhance the generalization ability and learning effi-
ciency of the model. By using a shared module for feature
extraction, models can efficiently learn the common features,
which are then fine-tuned through task-specific layers. The
model proposed in [16] utilizes cross-task knowledge for fea-
ture extraction from spectrograms and adopts a convolutional
neural network with a multi-task learning scheme for different
subtasks, which effectively reduces the computational cost of
multi-task.

D. Self-Supervised Audio Spectrogram Transformer

Self-Supervised Audio Spectrogram Transformer (SSAST)
[12] is a self-supervised pretrained model designed for audio
classification tasks. It not only matches but often exceeds the
performance of previous supervised models. Also, it exhibits
enhanced generalization capabilities. SSAST introduces two
auxiliary tasks for joint pretraining, i.e., reconstruction and
discrimination of masked patches. It uses both audio and
speech datasets for pretraining, which allows it to achieve
good performance on both audio classification and speech
recognition tasks.

III. PROPOSED METHOD

To improve the classification ability of the masked model,
we propose a Prediction-error-based Adaptive SpecAugment
(PEAS) using a generative masking strategy to calculate the
mask positions in the fine-tuning process. In our work, we
utilize two auxiliary tasks to calculate the mean prediction
errors of each time and frequency blocks, which indicate the
positions that are hard to reconstruct, and then generate masks
on hard positions via a mask position selector. The overall
architecture of the proposed model is shown in Fig. 1.

A. Auxiliary Tasks for MTL Model

The two auxiliary tasks are designed as spectrogram recon-
struction and hard block prediction, respectively. Unlike the
HPM method, which employs auxiliary tasks on two different
models with a same structure, the proposed adaptive masking
strategy conducts both tasks on a single model to aid audio
classification based on the MTL method.

The first auxiliary task is to reconstruct the original spec-
trogram. Its process is illustrated as step 1 in Fig. 1. The
target of this auxiliary task involves reconstructing the input
spectrogram and calculating the reconstruction error to evalu-
ate the reconstruction quality. The value of the reconstruction
error can be mapped to the concept of reconstruction difficulty.
For each point in spectrograms, a larger reconstruction error



Fig. 1. Overview of the PEAS model process over one training epoch. In Step 1, the reconstruction error erec is calculated using the original spectrogram. In
Step 2, the prediction error epred is derived from erec. Finally, Step 3 involves the audio classification task, utilizing a masked spectrogram as input. Each step’s
input is the output from the preceding step.

indicates a greater prediction deviation, implying increased
difficulty in accurate reconstruction.

Assuming that the input spectrograms are 3D tensors with
the shape [B,H,W ], where B denotes the batch size, H
represents the input frame length, and W represents the
number of input mel bins. In each iteration, we reconstruct
the spectrograms and calculate the point-wise error using the
Squared Error (SE) from the input spectrograms.

erec = (G(E(x))− x)2, (1)

where x is the original spectrograms, E is the encoder and G
is the generation layer. erec denotes the reconstruction error.
As a result, the reconstruction error erec has the same shape as
the input spectrogram x.

The second auxiliary task is to predict the reconstruction
difficulty of blocks, as depicted in picture (ii) in Fig. 2 (b).
The objective of this task is to enable the model to accurately
indicate which positions in the spectrogram have the largest
reconstruction error. Subsequently, the model is supposed to
generate masks at these positions. We use the point-wise SE
function between the true reconstruction error and predicted
value of reconstruction error as the output named prediction
error for the hard block prediction task:

epred = (G(E(erec))− erec)
2, (2)

where epred indicates prediction error.
The final classification task and two auxiliary tasks intro-

duced above are employed on a pretrained SSAST-base model
provided in [12]. The update of the model mainly relies on
the loss of the main classification task. We use the masked

spectrograms as input to predict the audio labels and update
the whole model using the cross-entropy (CE) loss or binary
cross-entropy (BCE) loss, while the auxiliary tasks indirectly
bootstrap the training of the classification task by generating
masks. This approach prevents the model from using special
information to learn classification labels, thus improving the
model’s learning ability and generalization performance. Even
if the model parameters are not directly updated with the
loss from the auxiliary tasks, these tasks can still act as a
regularizer through the masking strategy, preventing the model
from overfitting.

B. Mask Position Selector

With the auxiliary tasks, the mask position selector is
designed to identify hard blocks in the spectrograms and
generate masks at those positions. As depicted in picture (iii)
in Fig. 2 (b), we compute the average error for each block
along the time frames and frequency bins separately, using
the expected maximum mask width as a unit of calculation
with a stride of 1, and then we rank the results. This allows
the model to identify the predicted time and frequency blocks
with higher average errors, i.e., the blocks that are hard to
reconstruct. Generating masks with similar shape to those of
the SpecAument method in these blocks can maximize the
coverage of difficult information.

IV. EXPERIMENT

We validated the proposal for audio classification on the
ESC-50 dataset and the Speech Commands V2 (SC-V2)
dataset. The SSAST model was employed as the backbone of
the audio classification model, along with the aforementioned



Fig. 2. The comparison between the conventional random masking method
and the proposed PEAS masking strategy. In (a), the traditional SpecAug-
ment masking method is shown. In (b): (i) Reconstruction of the original
spectrogram, (ii) Prediction of difficulty, where brighter colors represent more
challenging parts, and (iii) Illustration of hard block selection using a sliding
window.

two auxiliary tasks. For better classification performance, we
introduced the progressive strategy into the training process.

To verify the effectiveness of the proposed PEAS in the
field of SpecAugment, we compared the performance of the
SSAST model with the conventional SpecAugment method
and the proposed adaptive SpecAugment method. To ensure
the consistency of approaches, we adopted the same experi-
mental settings as those used in the original SSAST paper for
parameters as long as possible.

To further validate the superiority of the proposed method,
we compared the performance of the proposed masking posi-
tion selector and the random masking strategy. In addition, we
explored the different numbers of masking blocks’ impacts.
We also generated multiple masks for evaluation to further
illustrate the superiority of adaptive masking generation over
the random masking strategy.

A. Datasets

We validated the proposed PEAS on the ESC-50 [17]
and SC-V2 [18] datasets. The ESC-50 dataset contains 2,000
environmental sound clips (5 seconds each) across 50 classes,
with 40 samples per class, and we used 5-fold cross-validation.
The SC-V2 dataset includes over 105,000 one-second speech
commands from diverse speakers, covering 35 classes, using
separate validation and evaluation sets.

TABLE I
EXPERIMENTAL SETUP

Settings ESC-50 SC-V2
Num of Classes 50 35

Spectrogram Size (T/F) 512 / 128 128 / 128
Initial Learning Rate 1e-4 2.5e-4

Batch Size 10 16
Epochs 25 30

Ground Truth Loss Cross Entropy Binary Cross Entropy
Pretraining Librispeech/AudioSet Librispeech/AudioSet

Time Masking 96 48
Frequency Masking 24 48

Mix up 0 0.6

B. Training Settings

Table I shows detailed training parameters employed in our
experiments. We used batch sizes of 10 and 16 for the ESC-50
and SC-V2 datasets, respectively, and the remaining settings
were consistent with those in SSAST. The backbone SSAST
model was pretrained on the AudioSet [19] and Librispeech
[20] datasets using 400 patch-level masks. All experiments
were repeated at least three times, and the average accuracy
was reported.

C. Adaptive Masks Settings

To investigate the superiority of proposed PEAS over ran-
dom masks and explore the impact of different adaptive mask
configurations, we set up control groups with different numbers
of mask blocks, i.e., T mask blocks are generated in the time
domain and F mask blocks are generated in the frequency
domain, respectively, denoted as (T, F). The combination of
(T, F) was set to (1, 1), (2, 2) and (3, 3) in our experiments,
and the performance with different masking strategies were
compared in Table III.

During the first 80% of the training epochs, we generated
masks with uniformly distributed widths, and the maximum
width is defined by predefined parameters. In the final 20%
of the training epochs, we generated masks with a fixed-
width which is the expected value of the uniformly distributed
widths.

In addition, when the number of generated mask blocks was
set to more than one, the total number of mask blocks was the
sum of the number of random and adaptive mask blocks. We
progressively increased the proportion of adaptive mask blocks
according to the training period. The number of adaptive mask
blocks Na generated is given by

na = min (nt, (0.1e+ 0.9× nt ×H (e− 0.8et))) , (3)

where na is the number of adaptive mask blocks, nt is the
total number of random and adaptive mask blocks generated in
the time and frequency domains, respectively, e is the current
training epoch, et is the total number of training epochs, and
H is the Heaviside step function.



TABLE II
CLASSIFICATION ACCURACY OF CONVENTIONAL SPECAUGMENT AND

THE PROPOSED PEAS

SpecAugment Num of masks ESC-50 SC-V2
Conventional (1, 1) 88.80% 97.62%

PEAS (Proposed) (1, 1) 91.15% 97.61%
Num of masks means T mask blocks are generated in the time domain
and F mask blocks are generated in the frequency domain, respectively,
denoted as (T, F).

TABLE III
PEAS ABLATION STUDY: DIFFERENT MASK BLOCK NUMBERS AND

MASKING STRATEGIES

SpecAugment Num of masks ESC-50 SC-V2
Conventional (1, 1) 88.80% 97.62%

Random Masking
(3, 3) 89.35% 96.13%
(2, 2) 89.65% 97.22%
(1, 1) 90.00% 97.38%

PEAS
(Adaptive Masking)

(3, 3) 90.35% 97.20%
(2, 2) 90.70% 97.23%
(1, 1) 91.15% 97.61%

D. Results

Table II shows the comparison between the conventional
SpecAugment method and the proposed PEAS under the same
setting. The PEAS with the mask position selector showed
better performance than the conventional SpecAugment with a
random masking strategy on the small datasets. In particular,
this method had a 2.35% improvement in accuracy on the ESC-
50 dataset and had comparable performance on the SC-V2
dataset.

Table III shows results of the proposed PEAS with different
numbers of mask blocks and different masking strategies.
According to the results in Table III, the proposed method
shows higher accuracy than the random masking strategy on
the ESC-50 dataset and the SC-V2 dataset with identical
conditions, regardless of the (T, F) configuration. The proposed
strategy improved audio classification accuracy on the ESC-
50 and SC-V2 datasets by 1.15% and 0.23%, respectively. In
addition, several configurations of mask blocks on the time
and frequency axes were compared. When (T, F) were set to
(1, 1), the model performed best on the ESC-50 and SC-V2
datasets, with accuracy of 91.15% and 97.61%, respectively.

E. Discussion

The above results showed that the proposed PEAS improved
the performance of the SSAST model compared to the conven-
tional SpecAugment method, proving that masking hard blocks
can help to improve the audio classification performance of the
masked model. The accuracy does not improve on the SC-V2
dataset, which may be due to the fact that the model relies on
more stable temporal information and semantic features in the
learning of speech data. In addition, since speech is a structured
signal, the model uses contextual and linguistic rules to infer

ambiguous information, so the effect of the positions of the
masks will not be as significant as in scene sounds.

As the number of mask blocks increases, the classification
accuracy decreases. This may be because masking more blocks
containing important information prevents the model from
acquiring enough necessary learning information, making the
learning process less effective. Additionally, introducing mul-
tiple masks can lead to excessive fragmentation of the original
data, disrupting the continuity of audio signal features in the
time-frequency domain. This makes it difficult for the model to
extract effective features during training. However, even with
multiple masks, the adaptive masking strategy still outperforms
the random masking strategy. This indicates that selectively
masking hard blocks allows for more effective guidance of the
model in feature learning and generalization.

V. CONCLUSIONS

The conventional SpceAugment method for audio classi-
fication tasks generates masks for spectrograms in the time
and frequency dimensions randomly. This randomness causes
the model to acquire less effective information, resulting
in an incomplete understanding of the generalized features
of the audio. We propose a Prediction-error-based Adaptive
SpecAugment (PEAS) that integrates a mask position selector
with the progressive generation strategy for the masked model
in the field of audio classification. This approach incorporates
auxiliary tasks to identify hard blocks where masks are gen-
erated, thereby enforcing the model to learn more generalized
features and enhancing the overall performance in the fine-
tuning phase. We validated our method on the ESC-50 and
SC-V2 datasets, which achieved superior or comparable results
to the conventional method, demonstrating its robustness and
adaptability in handling different audio data types. Further-
more, ablation studies confirm that PEAS bootstraps masked
models for better feature learning and accuracy compared
with random mask generation. These findings underscore the
potential of adaptive masking to enhance the performance of
masked models.
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