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Abstract—This paper proposes an effective approach for sam-
pling graph signals under the subspace prior. Unlike conventional
methods that assume bandlimited signals, our method, based on
generalized sampling theory, designs a sampling operator suitable
for general graph signals beyond bandlimitedness. We formulate
a feasibility problem for designing the sampling operator for
graph signals under the subspace prior, and then transform
it into a difference-of-convex (DC) minimization problem. The
DC problem involves a tight relaxation of the intractable rank
constraint in the original problem via the nuclear norm. To
solve this DC problem, we present an algorithm based on the
general double-proximal gradient DC algorithm (GDPGDC),
which ensures convergence to a critical point of our DC problem.
The effectiveness of our approach is validated by sampling and
recovery experiments on various graph signal models.

I. INTRODUCTION

Graph Signal Processing (GSP) is a novel framework for
analyzing data represented as signals located at the vertices of
a graph. Currently, GSP is a thriving area of research within
the signal processing field, covering a wide range of studies
from theoretical approaches to practical applications. For a
comprehensive overview of GSP, see, for example, [1]-[3].

In the realm of GSP, one of the fundamental technologies is
graph signal sampling [4], [5]. A significant difference from
traditional sampling methods is that graph signal sampling
does not have a regular sampling pattern. Consequently, ex-
tensive research has been devoted to extending the principles
of Shannon-Nyquist sampling theory to accommodate graph
signals. Most of the existing sampling methods are based on
ensuring bandlimitedness with respect to graph frequencies, as
shown in previous works such as [4], [6]-[14]. However, there
is a wide variety of graph signals nor assuming bandlimited-
ness, which can also be perfectly recovered by extending the
generalized sampling theory [15], [16].

In generalized sampling, there are two main sampling ap-
proaches, one in the graph frequency domain and the other in
the graph vertex domain. For the graph frequency domain, the
authors of [17] pioneered the extension of generalized sam-
pling theory to sample and reconstruct graph signals beyond
bandlimitedness, which led to branches in the graph frequency
domain, one focusing on smoothness and subspace priors [18],
and the other on the stochastic prior [19]. While approahes in
the graph frequency domain are elegant, they have limitations,
such as requiring graph Fourier transforms, so approaches in
the vertex domain have also been explored.

For sampling approaches in the graph vertex domain, the

study in [20] proposes a vertex-wise sampling method for
signals under arbitrary priors, including subspace, smoothness,
and stochastic priors. However, since the method is based on a
greedy algorithm, it may select biased sampling positions and
is sensitive to noise. On the other hand, the sampling method
proposed in [21], while targeting only the subspace prior, takes
an approach of directly designing a sampling operator through
convex optimization. This method allows for more efficient and
robust sampling because it can generate samples by mixing
multiple signal values. However, in order to transform the
sampling operator design problem into a convex optimization
problem, this method significantly relaxes a certain invertibility
constraint involving the sampling operator to be designed. This
relaxation is undesirable from the perspective of generalized
sampling theory.

A natural question arises: Can the flexible sampling operator
design problem with the constraint be reduced to a tractable
optimization problem without significant relaxation? In this
paper, we propose a novel sampling operator design method for
graph signals under the subspace prior by utilizing difference-
of-convex (DC) optimization techniques, which we aim to
design flexible sampling operator that mixes the signal values
of multiple vertices to create a sampled signal.! The key
contributions of our study are summarized as follows:

« Formulate a feasibility problem for designing the flexible
sampling operator for graph signals under the subspace
prior, incorporating a rank constraint derived from the
generalized sampling theory.

« Reformulate the original problem as a tractable DC prob-
lem via a tight relaxation of the rank constraint by using
the nuclear norm.

« Develop an efficient algorithm based on the general double-
proximal gradient DC algorithm (GDPGDC) [24] to solve
the DC problem with guaranteed convergence to a critical
point.

Finally, we perform sampling and recovery experiments on
different types of graph signals to validate the effectiveness of
our method.

'In [22], DC-based graph signal sampling for the smoothness prior is
also discussed. DC optimization is also attractive to other signal processing
applications [23].



II. PRELIMINARIES
A. Notation and Definitions

Bold lowercase letters reperesent vectors, and bold upper-
case letters represent matrices. We use x; and X;; to represent
the i-th element of a vector x and the element in the ¢-th row
and j-th column of a matrix X, respectively. The ¢, norm of a
vector x is denoted by [|x||2 := />, z7. The transpose of a
matrix X is denoted as X . The inverse and the pseudo-inverse
of a matrix X are denoted by X! and X, respectively.
The inner product of two matrices X and Y is denoted by
(X,Y) := >, >, Xi;Yi;. The i-th singular value of X is
denoted by ¢;(X). The ¢; norm, the Frobenius norm, and the
nuclear norm of X are denoted by [ X|[1 = >2; >, | Xi;l,
IX|lF == \/(X,X), and ||X]||, = >, 0:(X), respectively.
A diagonal matrix with - as its principal diagonal is denoted
by diag(-). The indicator function of a set C is denoted by
te(X) that is defined such that (¢(X) = 0 when X € C, and
tc(X) = oo otherwise. The extended real line R is defined as
R := RU{+00, —oc}. An identity matrix is denoted by I, and
I represents N x N identity matrix.

B. Generalized Sampling of Graph Signals

In this section, we provide a brief overview of the gener-
alized sampling theory [15], [16] for graph setting [5], [18]
which forms the foundation of our method. We consider a
weighted undirected graph G = {V, £}, where V and £ denote
a set of vertices and a set of edges between the vertices,
respectively. The number of vertices is denoted as N = [V|.
We define an adjacency matrix E € RV*N | where E;; is the
weight of the edge between the i-th and j-th vertices. The
degree matrix D € RY*¥ is a diagonal matrix, where the
i-th diagonal element D;; := ) j E;; represents the sum of
weights connected to vertex .

We define a graph Laplacian as L := D — E as a graph
variation operator for clarity and specificity. Since L is a real
symmetric matrix, it always admits an eigendecomposition
L = UAUT, where U = [u; ... uy] forms a unitary matrix
containing the eigenvectors u;, and A = diag(A1,...,An)
comprises the eigenvalues )\;. We denote U and )\; as the
graph Fourier basis and the graph frequency, respectively, and
the graph frequency is smaller as \; is smaller.

There are two approaches for sampling and recovering:
sampling and recovering in the vertex domain [4], [7] and
those in the frequency domain [10]. We describe the sampling
approach in the vertex domain as our proposal in this paper
focuses in it.

Fig. 1 shows the outline of sampling in the vertex domain.
Letx € X CRN, ce RM(M < N), and X € X be an
original graph signal, the sampled signal, and the recovered
graph signal, respectively. The graph signal x undergoes sam-
pling by a sampling operator ST € RM*N je, c:= STx.
Subsequently, the sampled signal c is filtered with a correction
operator H to reduce any errors or distortions introduced
during the sampling and recovering process. Following this,
it is further filtered by a reconstruction operator W to map
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Fig. 1: Framework for generalized sampling of graph signals.
Here, x, ¢, and X represent the original, sampled, and
recovered graph signals, respectively.

the sampled and corrected signal back onto the original graph.
Hence, the recovered signal X is represented as follows:

% = WHc = WHS "x. (D)

The reconstruction operator W may be constrained, i.e., it
may be predefined for some reason, such as computational
or hardware constraints. We call the cases where W is con-
strained as predefined case and the cases where W is not con-
strained as unconstrained case. The recovery problem entails
finding the optimal H (and W if not predefined) based on the
assumed priors of graph signals. This framework encompasses
various situations involving sampling and recovery, including
bandlimited graph signals (refer to [5] for more details).

C. Graph Signal Sampling under Subspace Prior

In this paper, we consider sampling and recovering graph
signals under the subspace prior [S] for the unconstrained
case. We provide the description of the subspace prior and
the desigining method for the best H and W under the prior
from the established results in this subsection.

Under the the subspace prior, we suppose that a graph signal
x € R¥ is characterized by a linear model as follows:

x := Ad, (2)

where A € RVXK (K < N) is a known generator matrix and
d € RX are expansion coefficients. For simplisity, we consider
cases that M < K in this paper.

The operators H and W are designed based on well-
established strategies; the least-squares (LS) strategy and the
minimax (MX) strategy. The LS strategy aims to find the
recovered signal x that minimizes the /5 norm of the difference
between the recovered signal x and the sampled signal c:

ST - c|3, 3)

argmin
X€X, STx=c

XLg =
The MX strategy attempts to directly control the recovery error
||x — x||2 for minimizing the error for the worst feasible signal:
Xpx = argmin max ||X — x||3. %)

%xcx XEeX
The solutions of the LS and MX strategy are both given by
x=A(STA)'STx, &)

followed by the correction operator H and the reconstruction
operator W as

H=(S"A)", w=A. ©®)



Here are three examples of graph signal models assuming
the subspace prior:

o Bandlimited (BL) signal [5] is one of the most studied
signal models, which are characterized as:

K—1
x =Y du" =Ug.d, (7)

=0
where Ug, € RV*X is the submatrix of U whose rows

are extracted within BL = {1, ..., K'}. In this case,
Wgr = Apr, = Ug,. 3)

o Periodic graph spectrum (PGS) signal [18] assumes the
periodicity of the graph spectrum as follows:
x=UAA)D], d 9)

samp )

where A(A) := diag(A(X\o), ..., A(Ay—_1)) represents a
graph spectral response of the generator, and Dgamp =
g Ix ...] € REXN s the matrix for the graph Fourier
transform domain upsamling. In this case,

Whpas = Apas = UA(A)D, 0 (10)

o Piecewise constant (PWC) signal [25] is characterized by
constant values in separated vertex regions and are defined
as follows with the number of pieces K:

K
X = Zdir(i) =[r® ... £E)q, (11)

i=1
where 7 for any i = 1,..., K is defined as 73/) = 1

when the node j is in the i-th piece and T]@ = 0 otherwise
for any j =1,..., N. In this case,

WPWC = prc = [T(l) . T(K)]. (12)

D. General Double-Proximal Gradient Difference-of-Convex
Algorithm

After discussing the recovery of graph signals using the
subspace prior based on generalized sampling theory, we
now turn our attention to an algorithm designed to solve
difference-of-convex (DC) minimization problems, which form
the basis of the optimization problems we will develop. In this
section, we introduce the General Double-Proximal Gradient
Difference-of-Convex (GDPGDC) algorithm, a flexible tool for
solving DC minimization problems.

The GDPGDC [24] can solve DC minimization problems in
the form of

min f1(X) + f2(X) ~ h(Z) st.Z=BX, (13)

where f; : R™™ — R is a differentiable convex function
with 1/3-Lipschitz continuous gradient for some 3 > 0, fs :
R™*™ — R and h : RF*™ — R are proper lower-semi-
continuous convex functions, and B : R¥*" is a matrix.

We introduce the proximity operator of a proper lower-semi-

continuous convex function f with a parameter v > 0 as

follows:
prox, , : R™*™ — R™*™

1 14
Y — argmin f(X) + —|Y — X|[%. 14
X 2y

Then, Prob. (13) can be solved by GDPGDC by the follow-
ing procedures: for y; > 0 and 2 > 0, iterate

Xt prox., r, (X®) — 41 (V£ (X®) = B*ZM));
ZHD « prox, . (Z() + 1 BXH);
t—t+1;
(15)
Here, the Fenchel-Rockafellar conjugate function of h is
defined as
h*(X) := mgx(X, Y) — h(Y). (16)

Thanks to Moreau’s Identity[26, Theorem 14.3(ii)], the
proximity operator of h* is calculated with a parameter v, > 0
as follows:

1
prox. ;. (X) = X — V2PIOX L, (’Y2X> . (17

We summarize the theoretical results for the convergence of
GDPGDC as follows:

Theorem 1 ([24, Proposition 4] Convergence of the se-
quence generated by GDPGDC). Let inf{f1(X) + f2(X) —
h(BX) | X € H} > —oo, where H is a Hilbelt space,
and let 0 < v1 < 20 and 0 < 2 < 400 be satisfied. If
{X®Y ey and {ZD} ey, generated by Algorithm (15), are
bounded, then every cluster point of {X®Y,cy is a critical
point of Prob. (13).

III. PROPOSED METHOD

The generalized sampling theory works under the assump-
tion of a predefined sampling operator ST. This assumption,
which may be determined by hardware for example, does not
provide any direction for the specific design of S. In contrast,
when dealing with graph signal sampling, the main challenge
revolves around the strategic construction of S. To address
this, we formulate a feasibility problem to design the flexible
sampling operator for graph signals under the subspace prior,
which is then reformulated and relaxed into a DC problem.
Finally, we develop an effective GDPGDC-based algorithm to
solve this problem.

A. Problem Formulation

Suppose W and H are defined as shown in Eq. (6), our
current task is to devise an appropr iate S that is consistent
with the sampling and recovery process described in Eq. (1).
To achieve the best possible recovery, a promising strategy is
to find S for which the correction operator H= (ST A)' has
the full column rank, i.e., ST A has the full row rank.

The question then arises how to design such S. To address
this, we first formulate the sampling operator design problem



as the following feasibility problem:

S|lp <
find S s, 41! T”F =& (18)
S ' A has full column rank.

The first constraint serves to control the absolute values of the
elements of the sampling operator, ensuring stable sampling
within a radius of Frobenius norm ¢ > 0. As STA is M x K
matrix, the second constraint should be

rank(STA) = rank(ATS) = M. (19)
Then, Prob. (18) can be rewritten as follows:

find S s, {S € Bre = (X 1Xlr<eh g
rank(ATS) = M.

Prob. (20) is still a challenge because of the rank constraint.
To overcome this, as it is known that the nuclear norm of a
matrix is the tightest convex envelope of the rank function [27],
we relax the problem into a constrained convex maximization
problem as follows:

mSaXHATSH* s.t. S € Bpe. 201

By introducing the indicator function of Bp,, i.e. 15, _, and
reversing maximization to minimization, we can reformulate
Prob. (21) as depicted as follows:

ming, . (S) — | ATS]|.. (22)

Here, (5, is a proper lower-semicontinuous convex func-
tion as Bp. is a nonempty closed convex set, and ||A TS|,
is also a proper lower-semicontinuous convex function. Thus,
this problem is regarded as the minimization of the difference
between two convex functions and is reduced to Prob. (13).

B. Optimization

The algorithmic procedure for solving Prob. (22) is summa-
rized in Algorithm 1, where f1(X) = 0, fo(X) = it5,.(X),
h(Z) = ||Z|+, X =S, and B= AT in (13).

In what follows, we derive specific computations of each
step of the algorithm. Since Bp . in the step 2 of the Algo-
rithm 1 is a nonempty closed convex set, the proximity oper-
ator of its indicator function is equal to the metric projection?
onto Br., i.e.,

X, if X € Bp;

23
ﬁ, otherwise. 23)

prOXLBFVE (X) = PBF,a (X) = {

The proximity operator of 2* in the step 3 in Algorithm 1 is
calculated by (17), and the proximity operator for the nuclear
norm ||-||. is calculated by

prox. ;. (X) = UxS,(Zx)Vx, (24)

-1l
where X = UxXx Vy is the SVD of X, and S, (-) is the soft-

2The proximity operator of ¢c, where C is a nonempty closed convex set,
is equivalent to the metric projection onto C, denoted by Pc [28].

Algorithm 1 Algorithm for designing sampling operator

Input: SO Z©) >0~ >0,7 >0
1: while until a stopping criterion is satisfied do
2 S Py (SO + 4 AZD) by (23);
3 Z0HD ProX., - (Z(t) + '}/QATS(t+1))

by (17) and (24);

4: t+—t+1;
5: end while

Output: S(®)

thresholding operator applied to the singluar values, defined as:
Sy (0;) = max(o; —7,0), (25)

and S, (¥x) is a diagonal matrix with entries S, (o;(X)), i.e.,
S4(Xx) = diag(Sy(0:(X))). With (17) and (24), the step 3
in Algorithm 1 can be computed.

Remark 1 (Convergence of Prob. (22)). Notice that a variable
whose Frobenius norm is less than € is always returned by
Ps;.... This indicates that the sequence {S¥)},cy generated by
Algorithm 1 is bounded. Consequently, the sequence is ensured
to converge to a critical point of Prob. (22) by Theorem 1.

IV. EXPERIMENTS

We validate the performance of our method through sam-
pling and recovery experiments on various types of graph
signals. All experiments were carried out using MATLAB
(R2024a) on a Windows 11 system with an Intel Core i9-
12900 3.19 GHz processor, 32 GB RAM, and an NVIDIA
GeForce RTX 3090 GPU. We compare our method with the
following graph signal sampling methods: NLPD [4], SP [7],
AVM [14], SASB [21], and GSSS [20]. NLPD, SP, and AVM
are methods for bandlimited graph signals, while SASB and
GSSS are applicable to graph signals under the subspace prior.

A. Setup

We experienced with random sensor graphs consisting of
N = 256 vertices by using GSPBox [29]. The size of the
sampled signal was set to M = 16. We have generated the
following types of graph signals:

« Bandlimited (BL) signals (7) with K = 16;

o Periodic graph spectrum (PGS) signals (9) with follow-
ing [18] that the graph spectral response of the generator
A was set to A(X;) := exp(—1.5A;/Amax) for any i =
1,..., K, where \; and \,.x are the i-th graph frequency
and the largest graph frequency, respectively, and K = 16;

« Piecewise constant (PWC) signals (11) with K = 16.

For all types above, we set the expansion coefficients d as
their element d; ~ N'(1,1) forall i =1,..., K, and we used
the generator matrix A and the reconstruction matrix W as
presented in (8), (10), and (12) for each type of signals. We
also experimented with noisy sampled signal y := c+mn, where
the noise 7 € RM is generated as a white Gaussian noise with
its variance o2 = 0.1, for all types of signals. In this case,
we recovered from y, ie., X = WHy = WH(STx + 7).



TABLE I: Average MSEs in Decibel of the Recoveries for 20 Independent Runs.

Signal Model Method
NLPD [4] SP [7] AVM [14] SASB [21] GSSS [20] Proposed
BL —607.38 —51.80 —44.44 —316.55 —605.38 —607.58
BL + noise —13.14 —15.03 —2.61 13.44 —12.73 —46.74
PGS 3.53 2.30 24.69 —b578.67 —586.66 —591.99
PGS + noise 5.29 3.29 23.91 18.17 —12.39 —46.48
PWC —5.67 0.06 6.82 —590.25 —591.17 —591.73
PWC + noise —2.91 1.76 14.30 —11.08 —12.85 —46.22
S o~ 2 .l .‘. 0‘ ." Q'-d S o~ 2 .Q S - 2 .0 S ”» ..
$ > B2 2 2 2 s ) M2 * 4 W2 ‘ ol P
St o 0 Ak 0 0 Gl (o ol I, Kol S
! el Fin —2‘ ;-.""; -2 et —z. g{"; . . ‘. 2! el i . g N K
(a) Original (b) NLPD [4] (c) SP [7] (d) AVM [14] (e) SASB [21] (f) GSSS [20] (g) Proposed
MSE (dB) 5.76 4.79 7.02 -592.51 -591.09 —597.34
SN o< S e 2O e, AT & AR B
N2 » 2 X 24 LS ‘,-‘: 2 X o M2 p o M2
¥ u.""‘...‘. ° BRSO e L4 < 28
0 ,'J,';, 0 0 A ‘.‘;:-‘.:'.} 0 briv,q :';' 0 .: -.'.;' 3 0
- .;{?; -2 -2 Phet, ,.:; 2 "3‘0’,;:. "}':::‘I -2 :.. ¥ 3 i 1 . .S <. ) -2
(h) NLPD [4] (i) SP [7] (j) AVM [14] (k) SASB [21] (1) GSSS [20] (m) Proposed
8.07 7.39 7.68 15.79 -14.29 —48.15

Fig. 2: An example of PGS signal and recovered graph signals on a random sensor graph (N = 256, M = 16). Fig. (a) shows the original
PGS signal. Fig. (b)-(g) show the recovered signals from the sampled signal without noise under each method. Fig. (h)-(m) show the
recovered signals from the noisy sampled signal under each method. The color of each vertex indicates the magnitude of the signal value.

The parameter ¢ in Prob. (22) was set to vV NM/8, and v,
and vy, in our algorithm were set to y; = 2 = 0.001. We
defined S(?) as a matrix with random Gaussian entries and the
stopping criterion as ||S*TY) — S®) ||z /||S®) || < 1075, The
existing methods used parameters as described in their papers.

For the quantitative evaluations, we used the mean squared

error (MSE): MSE = ||x — x||3/N.

B. Results and Discussion

Table I presents the averaged MSEs in decibel obtained from
20 independent runs. The results in the table are expressed in
decibels, with lower numbers indicating better results.

Notably, the average MSEs for NLPD, SP, and AVM
assuming bandlimitedness, were lower compared to that of
our method, especially for the non-bandlimited signals, PGS
and PWC signals. Since SASB and GSSS have the ability
to sample graph signals assuming the subspace prior, their
results were better than those of the three methods, especially
for the PGS and PWC signals without the noise. However,
our method outperformed SASB and GSSS in all cases. In
particular, it can be seen that the recovery results from noisy
sampled signals were particularly superior. This difference
can be attributed to the limitation of GSSS, which restricts
its strategy to local sampling, as opposed to our method,
which allows the integration of non-local signal values into the
sampling. In other words, the samples generated by our method
tend to preserve more information of the original signal. The
comparison with SASB also shows that our method was able
to relax the formulation more appropriately.

Fig. 2 visualizes an example of PGS signal and recovered

graph signals on a random sensor graph. The distribution of
colors on the graphs shown in the figure also visually confirms
that our method can recover the graph signal closer to the
original signal than the other methods.

V. CONCLUSION

In this paper, we addressed the challenge of designing a
sampling operator for graph signals under the subspace prior
beyond bandlimitedness. Our approach involved formulating
a feasibility problem based on generalized sampling theory to
determine the optimal sampling operator. To deal with the rank
constraint, we reformulated the problem in a DC form and
developed an algorithm based on GDPGDC that guarantees
convergence to a critical point.

In contrast to prevailing methods that select individual
vertices for sampling, our method introduced the novel concept
of combining non-local signal values at multiple vertices to
generate a sampled signal. This innovation gave our approach
a degree of flexibility and efficiency not found in traditional
techniques. To validate our approach, we performed sampling
and recovery experiments on various graph signal models. The
results confirmed that our method consistently outperformed
existing methods in terms of recovery accuracy.

ACKNOWLEDGMENT

This work was supported in part by JST PRESTO under
Grant JPMJPR21C4, JST AdCORP under Grant JPMJKB-
2307, JST ACT-X Grant JPMJAX23CJ, JSPS KAKENHI
under Grant 22HO03610, 22H00512, 23H01415, 23K17461,
24K03119, and 24K22291, and Grant-in-Aid for JSPS Fellows
under Grant 23KJ0912.



(1]

(2]

(3]

(4]

(6]

(7]

(9]

(10]

(11]

[12]

[13]

(14]

REFERENCES

D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega,
and P. Vandergheynst, “The emerging field of signal
processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE
Signal Process. Mag., vol. 30, no. 3, pp. 83-98, 2013.
A. Sandryhaila and J. M. Moura, “Discrete signal
processing on graphs,” IEEE Trans. Signal Process.,
vol. 61, no. 7, pp. 1644-1656, 2013.

A. Ortega, P. Frossard, J. Kovacevié, J. M. F. Moura, and
P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE,
vol. 106, no. 5, pp. 808-828, 2018.

S. Chen, R. Varma, A. Sandryhaila, and J. Kovace-
vi¢, “Discrete signal processing on graphs: Sampling
theory,” IEEE Trans. Signal Process., vol. 63, no. 24,
pp. 6510-6523, 2015.

Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung,
“Sampling signals on graphs: From theory to appli-
cations,” IEEE Signal Process. Mag., vol. 37, no. 6,
pp. 14-30, 2020.

A. G. Marques, S. Segarra, G. Leus, and A. Ribeiro,
“Sampling of graph signals with successive local ag-
gregations,” IEEE Trans. Signal Process., vol. 64, no. 7,
pp. 1832-1843, 2015.

A. Anis, A. Gadde, and A. Ortega, “Efficient sampling
set selection for bandlimited graph signals using graph
spectral proxies,” IEEE Trans. Signal Process., vol. 64,
no. 14, pp. 3775-3789, 2016.

M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals
on graphs: Uncertainty principle and sampling,” IEEE
Trans. Signal Process., vol. 64, no. 18, pp. 4845—4860,
2016.

D. Valsesia, G. Fracastoro, and E. Magli, “Sampling of
graph signals via randomized local aggregations,” IEEE
Trans. Signal Inf. Process. Netw., vol. 5, no. 2, pp. 348—
359, 2018.

Y. Tanaka, “Spectral domain sampling of graph signals,”
IEEFE Trans. Signal Process., vol. 66, no. 14, pp. 3752—
3767, 2018.

G. Puy, N. Tremblay, R. Gribonval, and P. Van-
dergheynst, “Random sampling of bandlimited signals
on graphs,” Appl. Comput. Harmon. Anal., vol. 44,
no. 2, pp. 446-475, 2018.

A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega,
“Eigendecomposition-free sampling set selection for
graph signals,” IEEE Trans. Signal Process., vol. 67,
no. 10, pp. 2679-2692, 2019.

Y. Bai, F. Wang, G. Cheung, Y. Nakatsukasa, and W.
Gao, “Fast graph sampling set selection using gersh-
gorin disc alignment,” IEEE Trans. Signal Process.,
vol. 68, pp. 2419-2434, 2020.

A. Jayawant and A. Ortega, “Practical graph signal
sampling with log-linear size scaling,” Signal Process.,
vol. 194, p. 108436, 2022.

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Y. C. Eldar and T. Michaeli, “Beyond bandlimited
sampling,” IEEE Signal Process. Mag., vol. 26, no. 3,
pp- 48-68, 2009.

Y. C. Eldar, Sampling theory: Beyond bandlimited sys-
tems. Cambridge University Press, 2015.

S. P. Chepuri, Y. C. Eldar, and G. Leus, “Graph sampling
with and without input priors,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), 2018,
pp- 4564-4568.

Y. Tanaka and Y. C. Eldar, “Generalized sampling on
graphs with subspace and smoothness priors,” IEEE
Trans. Signal Process., vol. 68, pp. 2272-2286, 2020.
J. Hara, Y. Tanaka, and Y. C. Eldar, “Graph signal
sampling under stochastic priors,” IEEE Trans. Signal
Process., vol. 71, pp. 1421-1434, 2023.

J. Hara and Y. Tanaka, “Sampling set selection for graph
signals under arbitrary signal priors,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), 2022,
pp- 5732-5736.

J. Hara, K. Yamada, S. Ono, and Y. Tanaka, “Design
of graph signal sampling matrices for arbitrary signal
subspaces,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), 2021, pp. 5275-5279.

S. Ono, K. Naganuma, and K. Yamashita, “Graph sig-
nal sampling under smoothness priors: A difference-
of-convex approach,” arXiv preprint arXiv:2306.14634,
2023.

K. Sato, K. Naganuma, and S. Ono, “Enhancing hy-
perspectral anomaly detection by difference-of-convex
sparse anomaly modeling,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), IEEE, 2024,
pp- 9921-9925.

S. Banert and R. I. Bot, “A general double-proximal
gradient algorithm for dc programming,” Mathematical
programming, vol. 178, no. 1-2, pp. 301-326, 2019.

S. Chen, R. Varma, A. Singh, and J. Kovacevi¢, “Rep-
resentations of piecewise smooth signals on graphs,” in
Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
(ICASSP), IEEE, 2016, pp. 6370-6374.

H. H. Bauschke and P. L. Combettes, Convex Analysis
and Monotone Operator Theory in Hilbert Spaces. 2nd
ed. Cham: Springer International Publishing AG, 2017.
M. Fazel, “Matrix rank minimization with applications,”
Ph.D. dissertation, PhD thesis, Stanford University,
2002.

H. H. Bauschke and P. L. Combettes, Convex analy-
sis and monotone operator theory in Hilbert spaces.
Springer, 2011.

N. Perraudin, J. Paratte, D. Shuman, et al.,
“GSPBOX: A toolbox for signal processing on
graphs,” arXiv:1408.5781, 2014, [Online]. Available:
https://arxiv.org/abs/1408.5781.



	Introduction
	Preliminaries
	Notation and Definitions
	Generalized Sampling of Graph Signals
	Graph Signal Sampling under Subspace Prior
	General Double-Proximal Gradient Difference-of-Convex Algorithm

	Proposed Method
	Problem Formulation
	Optimization

	Experiments
	Setup
	Results and Discussion

	Conclusion

