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Abstract—A novel monocular depth estimator for autonomous
driving, which produces reliable instance depths via instance
clustering guidance, is proposed in this work. First, we extract
multi-scale feature maps from a road scene and initialize depth
clusters. Second, we update the depth clusters using the feature
maps through transposed cross-attention. To guide the update
process, we develop the instance clustering membership (ICM)
loss, which employs an instance segmentation map. Third, we
transfer the updated depth clusters to the feature map at the
finest resolution, from which we produce the final depth map.
Extensive experimental results show that the proposed algorithm
yields competitive results to state-of-the-art techniques on the
KITTI, Cityscapes-DVPS, and SemKITTI-DVPS datasets.

I. INTRODUCTION

Monocular depth estimation (MDE) aims to predict the
depth value for each pixel from a single RGB image. Since
MDE can offer a 3D geometrical understanding, it is useful in
various applications, such as 3D CAD model generation [1],
augmented reality [2], and autonomous driving [3], [4]. In
particular, in autonomous driving systems, it is crucial to
precisely estimate the depths of moving obstacles, such as
pedestrians and cars, while it is less critical to deal with
background, such as roads and buildings.

Various MDE techniques have been proposed for road en-
vironments. Eigen et al. [5] introduced a deep-learning-based
MDE method, and its variants [6], [7] have been designed
using convolutional neural networks. Also, some attempts [8],
[9] have been made to increase the depth quality by exploiting
semantic segmentation data. In [8], a constraint was imposed
on a depth map to maintain consistency between depth bound-
aries and segmentation results. In [9], a loss function was used
to encourage depth discontinuity around semantic boundaries.
In [2], an edge detector was employed to reduce errors near
depth boundaries. Meanwhile, multi-task networks [10]–[13]
have been developed to predict segmentation and depth results
jointly. However, all these techniques do not focus on the depth
accuracies of object instances, which are critically important
for safe autonomous driving.

Recently, several MDE techniques [14]–[16] have been de-
veloped based on vision transformer [17]. Especially, Piccinelli
et al. [16] proposed the iDisc algorithm to estimate depth maps
via transformer-based clustering. They initialized depth clus-
ters and then updated them via transposed cross-attention [18],
[19] with contextual features. Then, they exploited the updated
depth clusters to produce depth maps reliably. However, as
in Fig. 1(a), iDisc yields clusters composed of semantically

(a) iDisc (b) Proposed

Fig. 1. It is crucial to precisely estimate the depths of moving obstacles
in road environments. We aim to improve the depth estimation accuracies of
instances through instance clustering guidance. Whereas uncorrelated pixels
are clustered in iDisc [16] in (a), the clustering results roughly match
individual instances in the proposed algorithm in (b).

uncorrelated pixels, making the clustering results difficult to
interpret. Also, iDisc does not consider the depth quality of
individual instances.

In this work, we propose a novel monocular depth estimator
for autonomous driving, which focuses on improving instance
depth accuracies through instance clustering guidance, as illus-
trated in Fig. 1(b). First, we extract multi-scale feature maps
from an image and initialize depth clusters. Then, we update
the depth clusters through transposed cross-attention. To guide
the update process, we develop a novel loss, called the instance
clustering membership (ICM) loss, using ground-truth (GT)
instance segmentation masks. Lastly, we transfer the updated
depth clusters to the feature map at the finest resolution, from
which we produce the final depth map. It is demonstrated
through extensive experiments that the proposed algorithm
yields better results than existing techniques on the Cityscapes-
DVPS [10], SemKITTI-DVPS [10], and KITTI [20] datasets.

This paper has the following main contributions.

• The proposed algorithm estimates instance depths reliably
via the instance clustering approach, which improves
depth accuracies by exploiting semantic segmentation
results during its training.

• We develop the ICM loss, which helps to align depth
clusters to object instances.

• The proposed algorithm provides competitive results to
existing state-of-the-art methods on the Cityscapes-DVPS,
SemKITTI-DVPS, and KITTI datasets.
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Fig. 2. The network architecture of the proposed algorithm. Given an input image I , the proposed network estimates a depth map D. First, multi-scale feature
maps {Fl}3l=1 are extracted from I . Then, the depth cluster matrix C is updated to C′ using the extracted feature maps through cross-attention. The update
process is guided by the ICM loss. Lastly, the finest feature map F3 is updated to F ′

3 using the depth cluster matrix C′ and then projected to obtain the final
depth map D.

II. PROPOSED ALGORITHM

The proposed algorithm has four components: encoding,
depth cluster update, ICM loss, and depth prediction, as in
Fig. 2. Note that we perform the depth cluster update and depth
prediction steps differently from [16]. Moreover, the proposed
ICM loss assists in the cluster update process.

A. Encoding

Given an image I ∈ RHIWI×D, multi-scale feature maps
{Fl}3l=1 are extracted using the Swin-L encoder [21], where
F1 ∈ RH

4 ·W4 ×D, F2 ∈ RH
2 ·W2 ×D and F3 ∈ RHW×D. These

feature maps are used in both depth cluster update and depth
prediction steps. We set H = HI

4 , W = WI

4 , and D = 256.

B. Depth Cluster Update

Let C ∈ RN×D be a learnable matrix representing N depth
clusters, each with dimension D, which is randomly initialized.
Then, using the multi-scale feature maps {Fl}3l=1, the depth
cluster matrix C is updated to C ′ through transposed cross-
attention [16], [18], [19] by

A1 = softmax
N

(CqF
T
k ), C ′ = A1Fv + C. (1)

Here, Cq ∈ RN×D, Fk ∈ RHlWl×D, and Fv ∈ RHlWl×D

are linearly projected query, key, and value features from C
and Fl. Also, A1 ∈ RN×HlWl is the attention matrix, and the
underscript N means that the softmax operation is done in the
column direction, i.e., over the N columns, as in [16], [19].
Thus, each element aij in A1 indicates the probability that jth
pixel belongs to cluster i. Using the matrix A1, we transfer
the contextual information of each pixel to the corresponding
depth cluster.

C. Depth Prediction

With the updated depth cluster matrix C ′, the finest feature
map F3 is updated to F ′

3 through cross-attention by

A2 = softmax
N

(FqC
T
k ), F ′

3 = A2Cv + F3, (2)

where Fq ∈ RHW×D, Ck ∈ RN×D, and Cv ∈ RN×D are
linearly projected query, key, and value features from F3 and
C ′. Also, A2 ∈ RHW×N is the attention matrix, which is used
to deliver the information of each depth cluster to the relevant
pixels in F ′

3. Note that, contrary to (1), the softmax operation
is applied in the row direction, i.e., over the N rows.

Finally, the output depth map is obtained by

D = f(F ′
3) (3)

where f is a fully-connected layer.

D. ICM loss

Although depth features are produced through the infor-
mation exchange between pixels and clusters in (1) and (2),
those processes, in themselves, do not process object instances
and background regions separately. Hence, without an extra
mechanism, each depth cluster may comprise semantically
uncorrelated pixels as in Fig. 1(a). In this work, we attempt to
distinguish instance pixels from background pixels to enhance
the depth features of foreground objects, which is crucial for
autonomous driving systems to operate safely. To this end, we
propose the ICM loss, employing GT instance segmentation
masks, which is used to guide the attention matrix A1 in (1).

First, we define the GT membership matrix G ∈ RM×HW ,
where M is the number of instances in an image. Specifically,
as illustrated in Fig. 3, we compute the centroid ci of instance i
as its median depth value using the GT depth map and instance
segmentation mask. From the centroids {c1, . . . , cM}, we then
construct the GT membership matrix G based on the Fuzzy
C-means (FCM) [22] as follows.

gij =
|xj − ci|−

2
m−1

M∑
k=1

|xj − ck|−
2

m−1

, gij ∈ [0, 1]. (4)

Here, xj is the depth value of pixel j, and m is the degree of
fuzziness. The value of gij ranges from 0 to 1. When pixel j
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Fig. 3. Illustration of the GT membership computation. We define the GT
membership matrix G ∈ RM×HW , where M is the number of instances
in an image. Given the GT depth map and instance segmentation mask, we
compute the centroids {c1, . . . , cM} of M instances as their median depth
values. If pixel j with a depth value xj belongs to instance i, it is assigned
a membership value gij via (4); otherwise, gij = 0.

is more associated with instance i, gij gets closer to 1. Also,
we set gij = 0 for pixel j that does not belong to instance i.

Next, we compute the matching costs between A1 and G
by

ℓii′ = −ĝTi′ log âi − (1− ĝTi′ ) log(1− âi) (5)

where âTi = aTi /∥aTi ∥ and ĝTi′ = gTi′ /∥gTi′ ∥ are the normalized
row vectors of A1 and G, respectively. These vectors are
normalized because the matching costs are computed by the
cross-entropy of corresponding elements. After applying the
Hungarian algorithm to the cost matrix, we define the ICM
loss LICM as

LICM = L(A1, G) =
1

N

N∑
i=1

ℓiσ(i) (6)

where ai and gσ(i) denote the pair with the overall minimum
matching cost. By employing the ICM loss LICM, each cluster
aligns roughly to an instance, as shown in Fig. 4(c). Thus, we
make the depth features of each instance more discriminative.

III. EXPERIMENTS

A. Datasets

We compare the proposed algorithm with existing tech-
niques on the Cityscapes-DVPS [10], SemKITTI-DVPS [10],
and KITTI [20] datasets.
Cityscapes-DVPS: This dataset extends the Cityscapes-VPS
dataset [24] by incorporating depth labels obtained using stereo
images. It consists of 3,000 frames, divided into 2,400 frames
for training, 300 for validation, and 300 for testing. Both
images and depth maps have a resolution of 1024×2048. Fur-
thermore, it provides panoptic segmentation masks, including
instance segmentation ones, which are utilized to compute the
GT membership matrix G in (4).
SemKITTI-DVPS: It is based on KITTI [20]. Sparse an-
notations are derived from projecting panoptic-labeled 3D
point clouds in SemanticKITTI [25] onto the image plane. It
consists of 19,130 training, 4,071 validation, and 4,342 testing
frames. Similar to Cityscapes-DVPS, it also provides instance
segmentation labels.
KITTI: It is a well-known depth dataset containing stereo
images and corresponding depth labels, with an average reso-
lution of 1241× 376. It consists of 23,158 frames for training
and 652 frames for testing, as specified in [5]. In contrast to the

(a) (b) (c)

Fig. 4. Visualization of membership matrices A1 during the inference stage
for input images in (a). When the ICM loss is not applied in (b), the clustering
results are not related to object instances. In contrast, with the ICM loss in
(c), clusters align roughly with individual instances, making the depth features
of each instance more discriminative.

other datasets, KITTI does not provide instance segmentation
labels. Therefore, we generate pseudo segmentation labels
using an off-the-shelf instance segmentation network [26].

B. Implementation Details

We employ Swin-L [21] as the encoder backbone. The
number of depth clusters N is set to 32, and the degree of
fuzziness m in (4) is set to 2. During training, we combine
a general depth loss and the ICM losses at three resolutions
l = 1, 2, 3 by

L = LSIlog + LICM1 + LICM2 + LICM3 (7)

where SIlog denotes the depth loss in [5]. Note that the
GT membership matrix G in (4) is downsampled for each
resolution l to a smaller size than HW .

C. Comparative Assessment

Comparison on Cityscapes-DVPS: Table I compares the
proposed algorithm with conventional algorithms [11]–[13],
[16], [23] on the Cityscapes-DVPS dataset. The proposed algo-
rithm outperforms all conventional algorithms in every metric.
Especially, the proposed algorithm is better than DeepDPS
[13], which is the state-of-the-art technique, by margins of
about 0.003, 0.004, and 0.003 in A. Rel, RMSElog, and δ1,
respectively. Moreover, the proposed algorithm outperforms
iDisc [16], which also adopts a transformer-based clustering
process. This indicates that the proposed ICM loss guides the
clustering process effectively to improve the depth estimation
performances.

Fig. 5 presents some estimation results on Cityscapes-DVPS.
The proposed algorithm predicts the depths of instances more
precisely than PolyphonicFormer [12] and iDisc. Especially,
in the first row, PolyphonicFormer and iDisc fail to estimate
the depths of the bus reliably, whereas the proposed algorithm
provides highly accurate results.
Comparison on SemKITTI-DVPS: Table II shows the
comparison results with PolyphonicFormer and iDisc on
SemKITTI-DVPS. Again, the proposed method outperforms
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TABLE I
COMPARISON ON CITYSCAPES-DVPS.

A. Rel ↓ RMSElog ↓ δ1 ↑ δ2 ↑ δ3 ↑
DPT-Hybrid [23] 0.0697 0.1106 0.9434 0.9914 0.9976
PanopticDepth [11] 0.0711 0.1125 0.9359 0.9919 0.9982
PolyphonicFormer [12] 0.0647 0.1013 0.9524 0.9950 0.9985
iDisc [16] 0.0689 0.1090 0.9462 0.9902 0.9975
DeepDPS [13] 0.0597 0.0940 0.9616 0.9953 0.9988

Proposed 0.0570 0.0896 0.9650 0.9961 0.9991

Image PolyphonicFormer iDisc Proposed GT

Fig. 5. Comparison of depth estimation results on Cityscapes-DVPS.

TABLE II
COMPARISON ON SEMKITTI-DVPS.

A. Rel ↓ RMSElog ↓ δ1 ↑
PolyphonicFomer [12] 0.0900 0.1422 0.9084
iDisc [16] 0.0754 0.1248 0.9290

Proposed 0.0697 0.1134 0.9398

the existing techniques in every metric. Particularly, the pro-
posed algorithm yields better performance than iDisc with a
significant margin of about 0.006, 0.011, and 0.011 in A. Rel,
RMSElog, and δ1, respectively. Fig. 6 shows estimation results.
While iDisc yields inaccurate results around instance bound-
aries, the proposed algorithm yields clearer depth boundaries.
Comparison on KITTI: In Table III, we compare the pro-
posed algorithm with the conventional MDE algorithms [7],

TABLE III
COMPARISON ON KITTI.

A. Rel ↓ RMSElog ↓ δ1 ↑
BTS [7] 0.0563 0.090 0.964
AdaBins [14] 0.0585 0.088 0.964
NewCRF [15] 0.0520 0.079 0.974
iDisc [16] 0.0509 0.077 0.975
ZoeDepth 0.0576 0.089 0.965

Proposed 0.0507 0.079 0.976

[14]–[16] on KITTI. Note that we use pseudo segmentation
masks since no GT segmentation masks are available in
KITTI. Nonetheless, the proposed algorithm yields decent
performances, ranking second in RMSElog and achieving the
best results in A. Rel. and δ1. In Fig. 7, the proposed algorithm
estimates instance depths more reliably than iDisc does.
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Fig. 6. Comparison of depth estimation results on SemKITTI-DVPS.

TABLE IV
COMPARISON OF δ1 SCORES FOR INSTANCES AND BACKGROUND AREAS.

Cityscapes-DVPS SemKITTI-DVPS KITTI
δ1 (instance) ↑ δ1 (background) ↑ δ1 (instance) ↑ δ1 (background) ↑ δ1 (instance) ↑ δ1 (background) ↑

iDisc [16] 0.9673 0.9374 0.9582 0.9245 0.9671 0.9773
Proposed 0.9762 0.9541 0.9605 0.9253 0.9676 0.9761

TABLE V
ABLATION STUDIES OF THE PROPOSED ALGORITHM ON

CITYSCAPES-DVPS.

Sequential update ICM loss A. Rel ↓ δ1 ↑
I 0.0689 0.9462
II ✓ 0.0625 0.9522
III ✓ ✓ 0.0619 0.9531

D. Analysis

Performance in instance and background areas: Table IV
compares the proposed algorithm with iDisc in terms of δ1
scores for instances and background areas separately. The
proposed algorithm achieves higher δ1 scores for instance areas
in all three datasets. Especially, it provides a higher score
for instances on KITTI, despite using pseudo segmentation
masks. This indicates that the proposed algorithm produces
more reliable depth results for instances by exploiting the
proposed ICM loss.

Efficacy of key components: We conduct ablation studies
to analyze the efficacy of the proposed algorithm and its
components. Table V compares some ablated methods on
Cityscapes-DVPS. Unlike the setting in Table I, we adopt
ResNet50 [27] as the encoder backbone for faster training and
comparison. Method I generates three depth cluster matrices
Cl, C2 and C3 separately for each feature map. Then, three
different depth maps are estimated from the cluster matrices,
and the final depth map is obtained by averaging all these depth
maps. Thus, method I is similar to iDisc [16]. In method II, a
single depth cluster matrix is sequentially updated using multi-
scale feature maps, as described in Section II-B. However, the

proposed ICM loss is not employed for training. Compared
to method III (the proposed algorithm), methods I and II
underperform in terms of A. Rel and δ1. This indicates that
it is beneficial to update depth clusters sequentially and guide
them with the proposed ICM loss.

IV. CONCLUSIONS

We proposed a monocular depth estimator for autonomous
driving, which produces reliable instance depths via instance
clustering guidance. The proposed algorithm consists of four
main components: encoding, depth cluster update, ICM loss,
and depth prediction. The ICM loss assists in the depth cluster
update, aligning clusters to object instances. Experimental
results showed that the proposed algorithms achieves compet-
itive results to existing techniques. Moreover, the proposed
algorithm yields more reliable depth estimation results on
instances and offers meaningful clustering results.
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