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Abstract—Combination schemes are very effective for adaptive
filters; yet, they are still constrained to use a linear model and the
mean-square error (MSE) cost. All types of models, both linear
and nonlinear, are accommodated in this work by expanding
combination schemes to generic cost functions. Specifically, in this
kind of combination framework, two candidate filters are firstly
designed by optimizing separate general cost functions; then,
to optimize overall performance, the combination coefficients
that are given to these filters are fine-tuned by minimizing a
third general cost function. Separately, we set and optimize each
of the three generic cost functions. After that, we design an
affine combination scheme by using the stochastic sign-gradient
descent to adjust combination coefficients. Also, to enhance
its performance, we include a weight-copying trick. Finally,
simulation results are provided to validate their effectiveness for
both the MSE and the logistic risk cost functions.

Index Terms—Adaptive filter, combination scheme, nonlinear
model, general cost function, weight-copying trick.

I. INTRODUCTION

Adaptive filters are powerful tools for online parameter esti-
mation from streaming data, and typical algorithms include the
least-mean-square (LMS), the recursive least-square (RLS), the
Kalman filter, and the affine projection algorithm (APA) [1],
[2], [3], [4], [5]. Speech signal processing [6], [7], radar
signal processing [8], earthquake detection [9], and many other
applications have made extensive use of these adaptive filters.

Combination strategies have been suggested and implement-
ed for adaptive filters [10], [11], [12] and distributed adaptive
networks [13], [14], [15] with great success in the last few
decades. In these studies, it is demonstrated that filters may be
created by combining the benefits of all candidate filters via
convex or affine combinations. Most often, these combination
schemes are employed to make it easier to choose filter
settings, to make it more resilient to an unknown environment,
or to potentially improve performance beyond what any one
filter could do [16], [17]. Acoustic echo cancellation [18],
[19], beamforming [20], [21], and speech dereverberation [22],
[23] are only a few examples of the actual applications where
combination techniques have demonstrated promising results
in providing superior solutions.

Use cases like online logistic learning from nonlinear da-
ta [24] have prompted the need for combination of general
adaptive filters that follow nonlinear models. The majority
of the research on adaptive filter combination strategies is
devoted to linear models using the MSE cost function [25]. Al-
though some studies have taken into account the combination

of nonlinear filters in more general nonlinear models, these
models are suboptimal since their combination coefficients
are set by minimizing the MSE cost [18], [19]. For this
reason, developing a method to integrate nonlinear models with
generic adaptive filters is crucial.

In this work, we propose a strategy for combining two
general adaptive filters to handle this problem, and we do it
by using streaming data that could adhere to nonlinear models.
Two candidate filters are built at the adaptive filter layer by
minimizing various general cost functions. In order to optimize
the overall performance, the combination layer uses the third
general cost function to adjust combination coefficients. Every
one of the three generic cost functions may be fine-tuned on
its own. After that, we use the stochastic sign-gradient descent
to design an affine combination scheme. Its performance is
further improved by including a weight-copying trick. Finally,
their effectiveness has been validated by simulation results.
Before concluding this section and proceeding to the next, we
provide the notation used throughout this work.

Notation. All scalars are represented by the regular typeface x
with the exception of F (i), which indicates the i-th candidate
filter. Column vectors are denoted by boldface little letters
x. The superscript (·)⊤ denotes the transpose operator. The
mathematical expectation is denoted by E{·}. The mod(·, ·)
function returns the remainder after division.

II. GENERAL ADAPTIVE FILTERS
Consider the following real-valued, strongly convex cost

functions J (i)(w(i)) for i = 1, 2, representing the expectation
of loss functions Q

(i)
n+1(w
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where the expectation is assessed using the distribution of
random data χn+1, which could adhere to nonlinear models.
The subscript n + 1 indicates the current time instant, and
w(i) ∈ IRL is a real-valued parameter vector.

By iteratively minimizing J (i)(w(i)) with i = 1, 2 over
iterations, we may obtain two generic adaptive filters F (1) and
F (2), respectively:
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where the generic update formula for the adaptive filter F (i) is
denoted by f (i){·}, the non-negative step-size parameter is de-
noted by µ

(i)
n+1, and the state vector β(i)

n+1 integrates any extra



Fig. 1. Illustration of the combination framework for two general adaptive
filters.

information necessary for filter adaptation. Also, take notice
that in (2) we have used an adaptive technique to approxima-
tively find the unavailable expectation term E{Q(i)

n+1(·;χn+1)}
by introducing the stochastic quantity Q

(i)
n+1(·;χn+1).

III. AN AFFINE COMBINATION SCHEME

A. A combination framework for general adaptive filters

Fig. 1 shows the architecture of the combination framework
for two general adaptive filters, which includes a combination
layer and an adaptive filter layer that operate in tandem with
one another. Two separate adaptive filters, F (1) and F (2), are
considered for the adaptive filter layer; each is defined by an
update equation (2). Each of these filters estimates the associ-
ated optimum weight vectors under cost functions J (i)(w(i))
using the same data set χn+1. Then, in the combination layer,
we link candidate filters F (1) and F (2) with combination
coefficients γ and 1− γ, respectively.

The goal of the combination layer is to learn which adaptive
filter works better at each time instant, by adjusting γ in order
to optimize the criterion Jc(wc) defined as:

Jc(wc) , E
{
Qc

n+1(w
c;χn+1)

}
, (3)

where Qc
n+1(·;χn+1) is a strongly convex loss function, and

wc , γw(1)+(1−γ)w(2), with the superscript c highlighting
that these are quantities at the combination layer. Please take
note that in Jc(wc), the optimization variable is γ alone,
whereas w(1) and w(2) are estimates of candidate filters. It
is also possible to establish and optimize each of the three
generic cost functions, namely J (i)(w(i)) for i = 1, 2 and
Jc(wc), independently. Determining an approach to assess γ
by minimizing cost function (3), given w(1) and w(2), becomes
the subsequent task.

B. An affine sign-gradient scheme

We propose that γ be assessed by attempting to minimize
(3) using the values w

(1)
n and w

(2)
n , that is:

γ⋆
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)
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We may determine that the best solution γ⋆
n+1 meets the above

requirement by setting the derivative of Jc
(
γw
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)
with respect to γ to zero:
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where the derivative of the function Qc(·) with respect to γ
is represented by ∇γQ

c(·). Because it necessitates knowledge
of statistics, evaluating γ⋆

n+1 using (5) is not feasible.
We provide an adaptive strategy to solve this challenge. One

must first determine an estimate at the combination layer and
time instant n+ 1 before proceeding with this task:
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where γn+1 is an estimate of γ at time instant n+ 1.
By minimizing Jc

(
γw
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n

)
in the direction

of negative gradient with respect to γ and estimating the
expectation terms with instantaneous values, the following
affine sign-gradient scheme is obtained:
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where sgn{·} is the sign function, and µγ is a positive step-
size. Different from the affine combination of two LMS filters
for which the power normalization scheme [16] and the sign
regressor scheme have been introduced [11], to make it more
resistant to changes in data χn+1 for the combination of two
general adaptive filters, the sign gradient descent method is
proposed in this paper, and equation (7) is derived by using
the chain rule of derivatives.

C. A weight-copying trick

The weight-copying trick, first suggested in [26], is used
to the combination of two generic adaptive filters to further
improve its performance. To be more precise, at every time
instant n+ 1, the parameter γn+1, which can be found using
equation (7), shows which candidate filter performs better
locally. As a result, the poorest candidate filter can take the
weight vector from the best one. The weight-copying trick
writes to:

w
(1)
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{
w
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w
(1)
n+1, otherwise

(8)
and

w
(2)
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{
w

(1)
n+1, if γn+1 > β and mod(n+ 1, N) == 0

w
(2)
n+1, otherwise,

(9)
where 0 ≪ β < 1 is a pre-defined threshold value with
typical value 0.9, notation “==” denotes the logical equivalence
operator, and a free integer N ≥ 2. In equations (8) – (9),
conditions γn+1 > β and γn+1 < 1 − β imply that the
weight-copying can occur when one candidate filter greatly
outperforms another, and condition mod(n+1, N) = 0 means
that this trick is used periodically with period N ≥ 2. The last
step is to execute the weight-copying trick after evaluating (6).
The findings will be employed in the next iteration.

For the ease of reference, the proposed algorithm is present-
ed in Algorithm 1.
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Algorithm 1 The proposed affine sign-gradient scheme with
a weight-copying trick

Initialization: Set step-sizes µ
(i)
n+1 and µγ , set integer N ≥ 2

and 0 ≪ β < 1, initialize w
(1)
0 , w(2)

0 and γ0; evaluate wc
0 =

γ0w
(1)
0 + (1− γ0)w

(2)
0 .

Iteration: Repeat the following steps for n = 0, 1, 2 · · · :
1) Evaluate two generic adaptive filters F (1) and F (2) by

using (2) for i = 1, 2.
2) Evaluate the combination coefficient γn+1 by using (7).
3) Evaluate the estimate wc

n+1 by using (6).
4) If conditions mod (n + 1, N) == 0 and γn+1 < 1 −

β are satisfied simultaneously, then evaluate w
(1)
n+1 =

w
(2)
n+1.

5) If conditions mod (n+1, N) == 0 and γn+1 > β are
satisfied simultaneously, then evaluate w

(2)
n+1 = w

(1)
n+1.

Output: Vectors wc
n+1 for all n.

IV. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
proposed affine sign-gradient scheme and the weight-copying
trick. All simulated curves were averaged over 100 Monte
Carlo runs.

A. Combination of two sparsity-promoting adaptive filters

In the first experiment, we considered the following linear
model as a special case:

yn+1 = x⊤
n+1w

⋆ + sn+1, (10)

in order to ensure that our proposed scheme works for linear
model. A regression vector xn+1 ∈ R35 was generated from a
zero-mean Gaussian distribution with a unit covariance matrix,
and an unknown sparse parameter vector w⋆ ∈ R35 was
specified in equation (10). The additive noise sn+1 was also an
i.i.d. zero-mean white Gaussian noise with variance σ2

s = 0.01.
For candidate filters F (1) and F (2), two distinct cost functions
were taken into account, specifically:

J (1)(w(1)) = JMSE

(
w(1)

)
+ λ

35∑
i=1

log
(
1 +

∣∣w(1)
i

∣∣/ε) (11)

J (2)(w(2)) = JMSE

(
w(2)

)
+ λ

7∑
p=1

log
[
1 +

∥w(2)
Gp

∥2
ε

]
(12)

where λ ≥ 0 was the regularization parameter, ε > 0 was a
parameter for reweighted penalty, w(1)

i was the i-th entry of
vector w(1), w

(2)
Gp

∈ IR5 denoted a subvector of w(2) with
entries indexed by Gp, {Gp}7p=1 was a partition of the index
set G , {1, . . . , 35}, and JMSE(·) was the MSE cost defined
as:

JMSE(w) , E
{
Qn+1(w;χn+1)

}
=

1

2
E
{
∥yn+1 −w⊤xn+1∥2

}
, (13)

with quantities {yn+1,xn+1} standing for the random data
χn+1. By using the stochastic subgradient descent to minimize
(11) and (12), RZA-LMS algorithm and GRZA-LMS algorith-
m for sparse system identification had been derived in [27],
[28], [29], [30] as:

w
(1)
n+1 = w(1)

n + µ(1) (yn+1 −w(1)⊤
n xn+1)xn+1

− λµ(1) sgn{w(1)
n }
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n |
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− λµ(2) βn,pvn,Gp , ∀p = 1, 2, · · · , 7 (15)

respectively, where the weighting coefficient βn,p was defined
as:

βn,p , 1

∥w(2)
n,Gp

∥2 + ε
(16)

subvector vn,Gp was defined as:

vn,Gp =

{ wn,Gp

∥wn,Gp∥2

when ∥wn,Gp∥2 ̸= 0

0 when ∥wn,Gp∥2 = 0,
(17)

and xn+1,Gp ∈ IR5 denoted a subvector of xn+1 with entries
indexed by Gp. Note that the division operator and the absolute
value operator | · | in the third term on right-hand-side of (14)
were applied in an element-wise manner, and ε ∈ IR35 was
a vector with each entry being the scalar ε. Filters (14) and
(15) were used as candidate filters F (1) and F (2), respectively,
with step-sizes being 0.003 and 0.01. Regarding the combi-
nation layer, we determined that Jc(wc) = JMSE(w

c) and
µγ = 0.015. These values were then used to estimate γn+1 by
substituting them into equation (7), leading to:

γn+1 ≈ γn+

µγsgn
{
(yn+1 − x⊤

n+1w
c
n) · x⊤

n+1(w
(1)
n −w(2)

n )
}
. (18)

Fig. 2(a) displays the learning curves for two candidate
filters, the affine sign-gradient scheme, and the weight-copying
trick with respect to mean-square deviation (MSD). A better
steady-state performance is associated with the RZA-LMS
filter, but the GRZA-LMS filter exhibits a quicker initial
convergence rate. The affine sign-gradient scheme proves its
efficacy in the special case of linear model by integrating
the RZA-LMS and GRZA-LMS algorithms to produce a
learning curve with a lower steady-state MSD and a quicker
initial convergence rate. In addition, the affine sign-gradient
scheme can benefit from the weight-copying trick, which can
enhance its convergence rate. Once again, the efficiency of
the suggested affine sign-gradient scheme is validated by the
evolution of parameter γn in Fig. 2(b).

B. Combination of two logistic regression learners

We took a nonlinear model into account in the second ex-
periment. Assume that xn+1 ∈ IR15 was a real-valued random
vector and that zn+1 was a streaming series of binary random
variables with values of +1 or −1. In a machine learning

3



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
104

-40

-30

-20

-10

0

10

20

0 0.5 1 1.5 2 2.4
104

-0.5

0

0.5

1

1.5

(a)

(b)

Fig. 2. Simulation results of the affine sign-gradient scheme and the weight-
copying trick. (a) MSD learning curves and (b) evolution of combination
coefficient γn for the affine sign-gradient scheme.

setting, the class to which feature vector xn+1 belonged was
denoted by variable zn+1. In these problems, we sought a
vector w⋆ that minimized the following regularized, strongly
convex logistic risk function:

Jlogis(w) , E
{
Qlogis(w;χn+1)

}
, (19)

with:

Qlogis(w;χn+1) ,
ρ

2
· ∥w∥22 + ln

(
1 + e−zn+1x

⊤
n+1w

)
, (20)

where ρ > 0 was the regularization parameter, notations
ln(·) and e(·) were the logarithmic and exponential functions,
respectively, and the combined quantities {zn+1,xn+1} rep-
resented the random variable χn+1 appeared in (19). Usually,
data {zn+1,xn+1} were generated under an underlying opti-
mal vector w⋆ ∈ IR15 in a nonlinear fashion [24]. Additionally,
we assumed a non-stationary environment in this experiment,
which meant that w⋆ may take on two different values at time
instants n ∈ [0, 3999] and n ∈ [4000, 7999]. We examined the
merging of two logistic regression learners, F (1) and F (2),
to verify the affine sign-gradient scheme. In particular, the
stochastic gradient descent approach was used to minimize
(19) in both F (1) and F (2). We could easily get to:

w
(i)
n+1 =

(
1− µ

(i)
n+1 · ρ

)
w(i)

n +
µ
(i)
n+1zn+1xn+1

1 + ezn+1x⊤
n+1w

(i)
n

(21)

with i = 1, 2 for F (1) and F (2), respectively, since the
derivative of Qlogis(w;χn+1) with regard to w was provided
by:

∇wQlogis(w;χn+1) = ρw − zn+1xn+1

1 + ezn+1x⊤
n+1w

. (22)

1000 2000 3000 4000 5000 6000 7000 8000
-2

-1

0

1

2

3

4

5

6

7

8

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5

(a)

(b)

Fig. 3. Simulation results of the affine sign-gradient scheme and the weight-
copying trick. (a) MSD learning curves and (b) evolution of combination
coefficient γn for the affine sign-gradient scheme.

At all time instants, filters F (1) and F (2) had step-sizes of
µ
(1)
n+1 = 0.08 and µ

(2)
n+1 = 0.01, respectively, which was the

sole difference between them. Additionally, the cost function
of combination layer was also set to (19), namely:

Jc
logis

(
γw(1)

n + (1− γ)w(2)
n

)
, E

{
Qlogis

(
γw(1)

n + (1− γ)w(2)
n ;χn+1

)}
, (23)

which was substituted into (7) to evaluate γ, resulting in:

γn+1 ≈ γn−

µγsgn
{(

ρwc
n − zn+1xn+1

1 + ezn+1x⊤
n+1w

c
n

)⊤ (
w(1)

n −w(2)
n

)}
(24)

Fig. 3 displays the outcomes of the simulation. Fig. 3(a)
shows that two candidate filters with different steady-state
MSDs and convergence rates are the result of using different
step-sizes. The affine sign-gradient scheme reduces the steady-
state MSD and speeds up the convergence rate by integrating
the best features of two candidate filters. The affine sign-
gradient scheme achieves a better convergence rate with the
aid of the weight-copying trick. Furthermore, for the sake
of demonstration, the change in parameter γn is shown in
Fig. 3(b). All of the experimental findings show that the
suggested affine sign-gradient scheme and the weight-copying
trick work well with both nonlinear models and generic cost
functions.

V. CONCLUSIONS

The affine combination scheme was successfully extended
to generic cost functions in this paper, enabling a nonlinear
model. All three generic cost functions might be specified and
optimized separately inside this combination framework. We
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proposed an affine combination scheme by using the stochastic
sign-gradient descent, and a weight-copying trick had been
introduced to enhance its performance. Simulation results were
also provided to validate their effectiveness.
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