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Abstract—Deep learning networks are vulnerable to adversar-
ial examples, specifically subtle, human-imperceptible modifica-
tions that can deceive them. While most research has focused on
digital adversarial attacks, in several applications it is necessary
that the adversarial examples operate in the physical domain.
Physical domain adversarial examples are usually crafted to
ensure that the artifacts introduced by the attack survive the
digital-to-analog and analog-to-digital transformations involved
in such attacks. In this paper, we introduce an approach to
generate adversarial examples against a source printer attribution
system, aiming to determine which printer was used to print
a given image document. With respect to conventional physical
domain attacks, attacking a source printer attribution system
poses additional challenges since the subtle features the attri-
bution network relies on are introduced again during the Print
and Scan (P&S) process that follows the attack, thus possibly
nullifying the attack. We address this challenge by applying
Expectation Over Transformation, including within the pool of
transformations a simulation of the P&S process relying on two
Generative Adversarial Network models trained for this purpose.
Experimental results demonstrate that our approach yields a
significant increase in attack success rates, surpassing those of
baseline models.

I. INTRODUCTION

Despite their effectiveness, Artificial Intelligence (AI) sys-

tems based on Deep Learning (DL) are vulnerable to var-

ious malicious attacks, including adversarial examples [1],

backdoor attacks [2], and inversion attacks [3]. Adversarial

examples involve subtle, human-imperceptible perturbations

that lead to misclassifications or other incorrect behaviors.

Most research has focused on pixel-level digital adversarial

examples [4], assuming the attacker has full control over the

image’s digital representation. In contrast, physical adversarial

examples [5], [6] exploit variations in texture, shape, and

lighting, processed through the system’s sensor inputs. Ex-

amples include specific patterns applied to physical objects

like stop signs, which cause misidentification by autonomous

vehicle perception systems. Despite the potential risks, there is

significantly less research on generating and defending against

physical adversarial attacks compared to digital ones.
This paper focuses on attacks against image-printed docu-

ment authentication, which is crucial for legal, governmental,

and financial sectors that handle sensitive and confidential

information. Ensuring document integrity is vital to prevent

forgery and fraud, as these can have significant consequences.

The Federal Trade Commission reported 2.6 million fraud

cases, resulting in $10.3 billion in losses in 2023 [7] due to

piracy. Maintaining printed document authenticity and confi-

dentiality is essential for protecting sensitive information and

upholding trust in official processes. Within this framework,

the goal of this paper is to study the vulnerability of an image

printer source attribution classifier based on DL against physi-

cal adversarial examples. The classifier is trained to identify a

document’s originating printer using a diverse set of documents

from various printers. We aim to generate adversarial examples

that remain effective after reprinting by applying different

attack algorithms. Traditionally, adversarial examples in the

physical domain are created by adding perturbations directly

to digital images, which are then transformed into a physical

document or 3D object and fed to the AI model, successfully

misleading the system. In our case, the attacked digital images

are printed again by the same printer and scanned back before

being fed to the classifier. The Print and Scan (P&S) process

applied to the attacked images poses several challenges to the

creation of effective attacks. Firstly, the P&S process degrades

the perturbation introduced by the attack, thus requiring a

stronger perturbation. Secondly, and most importantly, the

features the attribution network relies on are re-introduced

when the attacked digital image is printed for the second time,

possibly nullifying the effectiveness of the attack.
Following previous work on the generation of physical

adversarial examples, we use Expectation Over Transformation

(EOT) [8] to craft perturbations that survive the distortion

introduced when transitioning from the physical to the digital

domain. As shown in Sect. V, classical EOT alone is not

sufficient to maintain the effectiveness of adversarial examples

after the P&S process due to the reintroduction of print-

ing artifacts on top of the attacked image. For this reason,

we propose incorporating a P&S simulator within the EOT

framework to generate an adversarial attack that preemptively

accounts for the subsequent reprinting process. In particular,

we used a Pix2Pix Generative Adversarial Network (GAN)

[9] and a CycleGAN [10] to simulate the P&S transformation.

We integrated EOT with P&S into the Iterative Fast Gradient

Sign Method (IFGSM) and the Carlini & Wagner (C&W)

attacks, achieving a high Attack Success Rate (ASR) even after

reprinting.
Given the above, the main contributions of this work are:

1) We developed two P&S simulators utilizing Pix2Pix

GAN and CycleGAN image translation models. The

simulators are not only applicable for crafting adver-



sarial source printer image attribution but can also be

potentially used in digital image forensics to enhance

the robustness of synthetic image detectors [11].

2) We integrated the P&S simulators as an additional trans-

formation step in the EOT attack.

3) We were able to generate robust adversarial examples

that withstand the reprinting process, successfully de-

ceiving the target source printer attribution classifier.

The paper is organized as follows: Sect. II reviews adversar-

ial attacks in digital and physical domains. Sect. III details the

development and performance of the P&S simulators. Sect. IV

focuses on the generation of robust adversarial examples. Sect.

V analyzes the experimental results. Sect. VI summarizes our

findings and suggests directions for future work.

II. RELATED WORK

Adversarial examples, first identified by Szegedy et al. [1],

demonstrate that minor perturbations can significantly alter

a network’s output while remaining nearly imperceptible to

humans. These examples often generalize across different

models, even those trained with varying hyperparameters or

architectures, sparking significant interest in DNNs. Current

research explores adversarial examples in both digital and

physical domains.

Digital Domain adversarial perturbations are directly ap-

plied to the network’s input, constraining the lp-norm (e.g., l∞-

norm [4], l2-norm, and l0-norm [12]) of the perturbation to be

lower than a certain threshold to maintain the imperceptibility

of the attack. Depending on the adversary’s knowledge, the

adversarial attacks can be categorized as either white-box or

black-box. In white-box attacks, the attacker has complete

knowledge of the model, allowing full use of the gradient to

craft the perturbations [4], [5], [12]. In a black-box attack, the

attacker can only query the target model and receive corre-

sponding outputs without access to its internal structure. In this

scenario, the attacker can either leverage the generalizability

of adversarial examples across different models or deduce the

model’s internal information through multiple queries.

Physical Domain attacks were pioneered by Kurakin et al.

[5], who introduced the first physical-domain attack by printing

digitally perturbed images, which were then photographed with

a smartphone and fed into a pre-trained Inception v3 classifier.

Their results indicated a decline in the effectiveness of the

attack after the images underwent printing and photography.

Sharif et al. [6] created adversarial eyeglass frames to deceive

facial recognition systems by incorporating a non-printability

score (NPS) and total variation (TV) loss in their optimization,

ensuring printer accuracy and smooth color transitions. [13]

used a similar TV loss to generate adversarial stickers for

hats to fool the ArcFace system. Lu et al. [14] noted that

attack effectiveness diminishes when images are viewed from

different angles and distances. To generate physical adversarial

examples that withstand the transformations involved when

going back and forth from the digital to the physical domain,

EOT was introduced in [8]. Eykholt et al. [15] refined EOT

with Robust Physical Perturbation (RP2), sampling synthetic

and physical transformations to create adversarial stop signs

using posters or stickers, although this requires printing and

photographing the original image multiple times. Jan et al.

[16] proposed D2P, a transformation using a conditional GAN

[9], [10] before EOT to simulate printing and photograph-

ing effects, but it faces feasibility issues due to the need

for extensive printing and photographing to build a training

dataset. A work that is somewhat similar to the present work

is [17]. Even there, the detector relies on the features that are

reintroduced after rebroadcast hence requiring the design of a

particular EOT strategy. However, the rebroadcasting artifacts

are different from those introduced by P&S, hence the method

proposed in [17] cannot be applied in our case.

As a matter of fact, all the attacks based on EOT include

natural geometric and color transformations to generate robust

adversarial examples. As we will show later, however, this

is not enough when the target system is a printer source

attribution model. For this reason, we integrated the P&S

simulators into the EOT framework. In this way, we were

able to significantly improve the ASR, ensuring that the attack

remains effective even after reprinting.

III. PRINT AND SCAN SIMULATION

Printing and scanning an image involves converting the

digital images to physical copies and back to the digital

domain, introducing various distortions and artifacts. Printing

can cause color shifts, ink diffusion, and minor geometric

distortions due to the printer’s mechanical characteristics and

type of paper used. Scanning adds further distortions and

noise depending on the scanner’s resolution, color response,

and mechanical misalignments. These steps affect pixel values

and introduce artifacts specific to the printer and scanner,

along with minor geometric alterations due to imperfect paper

positioning within the scanner.

Given the time-consuming and costly nature of manually

creating large volumes of printed and scanned images, we de-

veloped two P&S simulators to be directly included within the

EOT process, enabling the vast generation of training images

without the expense and effort of physical P&S. Research

on simulating the P&S process by means of deep learning

is sparse. A significant contribution in this domain comes

from Ferrara et al. [18], who demonstrated that integrating

a simulated P&S transformation during training improves the

accuracy of face morphing attacks on printed and scanned face

images. Their model estimates the pixel distortions incurred

during printing and scanning, considering various critical pa-

rameters such as the responsivity of the acquisition device,

the sampling function characterizing the digitization process

of printed images, the point spread function of the printer

and scanner, noise levels, and color transformations. How-

ever, the presence of device-dependent unknown parameters

complicates real-world adaptations, as calculating the point

spread functions of printers and scanners is challenging, and

fine-tuning each parameter can be time-consuming, especially

across multiple devices. Mitkovski et al. [19] also utilized
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a Pix2Pix GAN to emulate the P&S process for biometric

applications.

To start with, and similarly to [19], we trained a Pix2Pix

GAN [9] simulator. Training the Pix2Pix GAN, however,

requires pixel-wise alignment of digital and P&S images for

effective computation of the mean square error loss. To ad-

dress this problem, we employed image alignment techniques

during training. We also trained a CycleGAN P&S simulator,

which supports unpaired image-to-image translation. In fact,

CycleGAN does not necessitate paired images, thus greatly

simplifying the preparation of the dataset.

A. Architecture of the simulators

Pix2Pix and CycleGAN have been extensively used to

address various generative tasks. In our case, the objective of

the Pix2Pix generator is to translate the input images from

the digital to the P&S domain, while the discriminator is

asked to distinguish between real P&S and digital pairs and

their synthetic counterparts. The CycleGAN generators aim to

translate images from the digital to the P&S domain and vice

versa, ensuring cyclic consistency. With respect to classical

CycleGAN training, we did not use the identity loss. In fact,

printing a printed and scanned image again should not result in

the identity operator, as the second P&S process would further

degrade the image quality.

B. Dataset

To train the simulators, we used a dataset derived from

the second version of the VIPPrint dataset [20]. This dataset

consists of human face images printed with various modern

color laser printers, each operating at different resolutions.

Acquisition was performed using a TaskAlfa 3551 multi-

functional scanner at 600×600 dpi resolution, and the im-

ages were saved using lossless compression. The size of the

digital images is 1024×1024×3, while the P&S images are

approximately 2036×2038×3, with slight variations of 5 to

10 pixels in both dimensions introduced during scanning. To

align the resolutions of digital and P&S images, the digital

images were upsampled to match the P&S image resolution.

Our experiments focused on a subset of P&S images printed by

one of the 12 printers in the VIPPrint dataset, specifically a

Kyocera P5021 CDN Color Laser printer. We used a subset

of 200 printed and scanned images from this printer for

our experiments. To match the input size of the Pix2Pix

and CycleGAN networks, we trained the networks on image

patches extracted from 100 printed and scanned images along

with their corresponding digital images. The patches were

256×256×3 in size and were extracted without pixel overlap.

For Pix2Pix, we aligned the digital and printed and scanned

patches using [21]. If alignment was challenging or significant

pixel differences were detected, the corresponding patch was

skipped. This approach yielded 4,678 aligned digital and P&S

patches. In contrast, CycleGAN training utilized unaligned

digital and P&S patches, leveraging the ability of CycleGAN’s

to handle unpaired image data. In total, 4,914 digital and P&S

patches were used to train the CycleGAN simulator.

Fig. 1. Examples of digital and simulated P&S images with corresponding
ground truth. The first column shows the digital image input, the second and
third columns display P&S patches simulated by Pix2Pix GAN and CycleGAN
respectively, and the last column shows the ground-truth P&S patches.

C. Training

The Pix2Pix GAN simulator was trained for 800 epochs us-

ing the Adam optimizer with parameters β1 = 0.5, β2 = 0.999,

and a learning rate of 1 × 10
−4. The network utilized 64

filters and a Leaky ReLU activation function with a slope

of 0.2, while the batch size was restricted to 1. For training

CycleGAN, we used the same hyperparameters as the Pix2Pix

GAN simulator over 600 epochs. Both the GAN adversarial

loss and cyclic consistency loss weights were set to 10. After

training, we assessed the performance of both simulators by

inputting original digital patches. To introduce variability, we

added Gaussian noise with zero mean and variance of 0.0625

to the digital images before feeding them to the simulator.

This ensured that multiple inputs of the same digital image

yielded slightly different simulated outputs, mimicking real-

world variations when an image undergoes printing and scan-

ning multiple times.

We evaluated the quality of the simulated images both

visually (Fig. 1) and quantitatively using metrics such as

the Structural Similarity Index (SSIM) and Fréchet Inception

Distance (FID) (Table I). The SSIM scores are 0.84 for Pix2Pix

GAN and 0.87 for CycleGAN, while the FID scores are 47 for

Pix2Pix GAN and 45 for CycleGAN. As shown in Fig. 1, the

images generated by the P&S simulators closely resemble the

corresponding ground-truth images, demonstrating their effec-

tive learning of the distortions inherent in the P&S process.

TABLE I
SSIM AND FID BETWEEN SIMULATED AND REAL P&S IMAGES.

P&S Simulator SSIM Score ↑ FID Score ↓

Pix2Pix GAN 0.84 47
CycleGAN 0.87 45

IV. GENERATION OF PHYSICAL ADVERSARIAL EXAMPLES

A. Threat Model

We consider an attack aiming to alter an image printed by

a specific printer, P, in such a way that the printer source

attribution model can no longer identify P as the source printer

(untargeted attack) after the image is reprinted by P. The

challenge is to ensure the attack’s effectiveness even after

the attacked image undergoes reprinting and scanning. The
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Fig. 2. Attack pipeline for the generation of robust adversarial examples.

attacker has white-box access to the source attribution model,

including its weights and architecture. This allows the attacker

to optimize and evaluate the adversarial examples in the digital

domain before executing the physical-world attack by printing,

scanning, and strategically placing the attacked images.

B. Targeted Model

The printer source attribution system targeted by our at-

tack is the one described in [22]. This system, trained on

the VIPPrint dataset [20], analyzes the 10 highest-energy

224×224×3 patches of the image and uses a majority voting

decision for classification. Preliminary experiments in [22]

showed that a basic reprinting black-box attack can deceive the

original classifier. To enhance resilience against such attacks,

the authors fine-tuned the model using a dataset of reprinted

images, resulting in a more robust (hardened) source attribution

model, which is the focus of our attack. Since the classifier

operates on patches, the adversarial attacks are applied to

224×224×3 image patches. However, because the attack may

slightly alter the energy of the patches, the classifier could

potentially analyze different patches after the attack. Therefore,

we decided to attack all patches in the image. This approach

also prevents the introduction of visible discontinuities at patch

borders. The success of the attack hinges on inducing sufficient

patch misclassifications to misclassify the true printer as the

most voted option. Our target is specifically the Kyocera-

ecosys P5021cdn laser printer, identified as class #12 in the

attribution system’s multiclass classification.

C. Attack Pipeline

The attack pipeline (Fig. 2) begins with printing a digital im-

age and applying an adversarial attack in the digital domain. To

maintain the effectiveness of the adversarial perturbation after

printing and scanning, we used EOT with P&S simulation.

The adversarial digital image is then physically printed with

the same printer. Finally, the source attribution model scans

and analyzes the printed image to identify its origin.

1) Digital Domain Attack: Initially, we assessed the effec-

tiveness of digital domain attacks (without EOT) in inducing

misclassifications when the attacked image is subsequently

printed and scanned. Adversarial examples were generated

using a non-targeted version of I-FGSM [5] and C&W attack

[12]. For I-FGSM, we set ε = 0.03, with a step size of 0.01

over 100 iterations. Similarly, for the C&W attack, we let

ε = 0.1, with a binary search step size of 9 and a learning rate

of 0.01 across 1000 iterations. These hyperparameters were

selected to ensure effective attack coverage across most of the

patches in the P&S image.

2) Physical Domain Attack: To create robust adversarial

examples in the physical world, we integrated the I-FGSM and

C&W attacks into an EOT framework, effectively addressing

the domain shifts between digital and physical domains. EOT

involves defining a pool of transformations T to simulate these

shifts. The transformations used in our EOT attack are detailed

in Table II, including their parameters, essential for replicating

practical domain shifts. Additionally, we incorporated the

Pix2Pix and CycleGAN P&S simulators within the transforma-

tion set. Results were averaged over 10 transformed samples to

assess attack effectiveness. Through extensive experiments, we

identified an optimal combination of transformations T (Table

II) that consistently produce successful adversarial examples.

Our setup includes rotation (2.0 to 10.0 degrees), zoom blur

(factors between 1.05 and 1.10), and pixel shifts (5 pixels

in all directions) with an inclusion probability of 100%. For

color transformations, brightness deltas (10 to 40) and a

fixed contrast factor of 0.3 are applied with 50% probability.

Additionally, either CycleGAN or Pix2Pix GAN simulators are

chosen with a probability of 50% to simulate P&S effects.

The attack algorithms within the EOT framework were

configured with the following hyperparameters: for I-FGSM,

ε = 0.15, a step size of 0.03, and 500 iterations were used; for

C&W, we employed ε = 0.15, 9 binary search steps, a learning

rate of 0.01, and 1000 iterations. When we incorporated the

P&S simulators into EOT, I-FGSM utilized ε = 0.4, a step size

of 0.07, and 500 iterations, while for C&W we used ε = 0.4, 9

binary search steps, a learning rate of 0.01, and 1000 iterations.

TABLE II
SET OF TRANSFORMATIONS USED IN THE EOT ATTACK.

Transformations Parameter Values Probability

Brightness brightness delta [10, 40] 50%
Contrast contrast factor 0.3 50%
Rotation rotation angle [2◦, 10◦] 100%
Zoom zoom range [1.05, 1.10] 100%
Shift of Pixels # pixels (all directions) 5 100%
Pix2Pix P&S
Simulator

- - 50%

CycleGAN P&S
Simulator

- - 50%

V. EXPERIMENTAL RESULTS

To demonstrate the robustness of the hardened source attri-

bution classifier against adversarial examples, we conducted

experiments in both the digital and physical domains. Our

study involved benchmarking various white-box attacks, in-

cluding I-FGSM and C&W, both with and without EOT, and

incorporating P&S simulators within the EOT transforma-

tions. These experiments were performed on a test set of 20

documents, with each document segmented into 81 patches,
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(a) First P&S image (b) I-FGSM (c) I-FGSM(EOT) (d) I-FGSM(EOT+PS) (d) C&W (d) C&W(EOT) (d) C&W(EOT+PS)

Fig. 3. Examples of attacked images. From left to right, we show the original P&S image and the generated adversarial examples (after reprinting and scanning)
using standard I-FGSM and C&W adversarial attacks, EOT with natural transformations, and EOT including P&S simulation.

totaling 1,620 attacked patches. To measure the strength of

the perturbation introduced by the attacks, we computed the

Peak Signal-to-Noise Ratio (PSNR) between the original and

attacked patches, both before and after the reprinting and

scanning process. PSNR calculations were focused only on

successfully attacked patches. Additionally, we evaluated the

ASR across all patches in the images and on the top 10

highest energy patches, which are generally more challenging

to attack. After reprinting, the final classification is determined

through majority voting on the results obtained from the top

10 highest energy patches of each document. To assess the

overall robustness of the system, we also computed the ASR

after the majority voting, where the printer with the largest

number of votes among the top energy patches is selected.

The results of our experiments are reported in Table III.

Analyzing the second column of the Table III, we observe

that all attacks are highly effective when they are applied in

the digital domain, achieving nearly 100% ASR. As expected,

the attacks incorporating EOT, particularly those utilizing P&S

simulation, exhibit lower PSNR values. The fourth column

of the table, reports the effectiveness of the attacks in the

physical domain, considering the ASR obtained on all patches

after reprinting. For standard I-FGSM and C&W, the ASR

decreases dramatically, while the application of EOT with

natural transformations limits the ASR drop. Including the

P&S simulators in the EOT transformations further improves

the ASR to 80.49% for C&W and 87.83% for I-FGSM, which

is a significant advantage with respect to EOT with natural

transformations. The main advantage of including P&S simula-

tion within EOT becomes apparent when we limit the analysis

to the 10-highest energy blocks of each image. In this scenario,

the ASR with natural EOT is only 33.5% for I-FGSM and 28%

for C&W, while EOT with P&S simulation allows to attack

69% and 56.5% of the patches (for the attack to be successful

it is necessary - though not sufficient - that at least 50% of the

blocks are attacked). In the last column of the table, we report

the ASR after majority voting on the 10-highest energy blocks,

which is crucial for assessing the overall attack effectiveness

on the entire image rather than on individual blocks. We

observe that the ASR after majority voting drops to negligible

values for standard I-FGSM and C&W attacks, showing only

TABLE III
EFFECTIVENESS OF VARIOUS ATTACKS IN BOTH THE DIGITAL AND

PHYSICAL DOMAIN. ASR’S ARE AVERAGED ACROSS ALL PATCHES OF THE

IMAGES, ON THE TOP 10 HIGHEST ENERGY PATCHES OF EACH IMAGE AND

AFTER MAJORITY VOTING ON THE 10 HIGHEST ENERGY PATCHES.

Attack
Method

ASR
Digital

PSNR
(dB)

ASR
Printed
All
Patches

ASR
Printed
Top10
Patches

PSNR
(dB)

ASR
Printed
Majority
Voting

I-FGSM 100% 36.28 26.72% 15.5% 28.89 10%
I-FGSM
(EOT)

96.41% 20.55 77.16% 33.5% 17.25 25%

I-FGSM
(EOT+P&S)

100% 13.02 87.83% 69% 11.89 70%

CW 100% 34.25 21.48% 14% 25.53 10%
CW(EOT) 97.16% 19.86 63.70% 28% 16.96 20%
CW
(EOT+P&S)

100% 12.28 80.49% 56.5% 11.18 65%

slight improvement with EOT using natural transformations
1. However, when the P&S simulator is incorporated to EOT,

the ASR significantly increases for both I-FGSM and C&W

attacks. Specifically, the ASR for I-FGSM rises from 25% to

70%, and from 20% to 65% for C&W. These results highlight

the effectiveness of incorporating the P&S simulator, given the

complexity of creating adversarial examples that survive the

reprinting process. Our experiments also suggest that patches

with dark backgrounds tend to reintroduce stronger artifacts

upon reprinting, thus requiring an excessive distortion.

In Fig. 3, we present adversarial examples after reprinting,

generated using various attacks. The images include the initial

P&S image (the attack target), adversarial examples produced

by standard attacks, EOT attacks with natural transformations,

and EOT attacks incorporating P&S simulations. Comparing

the initial P&S images to the reprinted adversarial examples

generated by standard I-FGSM or C&W attacks we see that

reprinting weakens the perturbation. The examples produced

by I-FGSM(EOT+PS) and CW(EOT+PS) demonstrate the im-

portance of the P&S simulation in creating robust adversarial

examples that withstand reprinting.

1These results indirectly support the choice made in [22] to base the
classification only on the highest energy patches.
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VI. CONCLUDING REMARKS

In our research, we addressed the challenges associated with

generating robust adversarial examples against a source printer

attribution system. We introduced a novel attack that integrates

P&S simulations within the EOT framework. By employing

Pix2Pix GAN and CycleGAN models, we developed two

simulators that accurately replicate the P&S transformations.

The integration of these simulators into the EOT framework

significantly increased the ASR, demonstrating the method’s

effectiveness in producing adversarial examples that survive

reprinting. Our work underscores the importance of physical

domain adversarial attacks in AI security research and provides

a foundation for future efforts to counteract such threats.

Future work will focus on developing defenses, such as

adversarial training techniques that incorporate examples of

images subjected to the proposed physical domain attack. We

also plan to expand our simulators to address various image

processing tasks under diverse environmental conditions. Ad-

ditionally, we aim to develop advanced P&S simulators using

diffusion models for enhanced realism and accuracy. Finally,

we will explore vision transformers to challenge existing

printer attribution systems.
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