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Abstract—This paper introduces the Fine-Grained Forward-
Forward Algorithm (FGFF), a novel backpropagation-free net-
work training methodology that builds upon the foundational
Forward-Forward algorithm. FGFF takes full advantage of be-
ing entirely backpropagation-free and enhances neural network
performance through the implementation of a fine-grained signifi-
cance matrix. This matrix quantitatively assesses the contribution
of each neuron’s activity towards the overall goodness function,
thereby facilitating more explorative and precise weight adjust-
ments. The efficacy of the algorithm is demonstrated by compar-
ing its accuracy with the vanilla Forward-Forward algorithm
and the standard backpropagation methods. Our evaluations
employ three benchmark datasets: MNIST, Fashion-MNIST, and
CIFAR-10. The results indicate that the FGFF achieves superior
performance over the Forward-Forward algorithm, specifically
showing a testing accuracy improvement of up to 25.54% with no
obvious cost in the computation time, underscoring its enhanced
capability in handling complex pattern recognition tasks.

Index Terms—Backpropagation-free, Forward-Forward, Su-
pervised Learning, Mnist Classification

I. BACKPROPAGATION LIMITATIONS

The backpropagation algorithm has been fundamental to
the advancement of deep learning, yet it is encumbered by
significant limitations that challenge both its practical appli-
cation and biological plausibility. Firstly, the backpropagation
algorithm is biologically implausible, as there is scant evidence
to suggest that the human cortex propagates error derivatives
backward or retains neural activities for subsequent processing
[1]. Additionally, backpropagation necessitates a complete
understanding of the forward pass to accurately calculate
error derivatives, rendering it ineffective when the forward
mechanism is treated as a black-box [2]. These limitations
not only necessitate stringent prerequisites for deploying deep
learning models but also challenge the prevailing notion that
emulating the biological brain processes is a viable pathway
toward achieving Artificial General Intelligence (AGI) [3].

II. THE FORWARD-FORWARD ALGORITHM

Recent research has explored various backpropagation-free
techniques for training neural networks, aiming to overcome
the limitations of traditional backpropagation, such as its bio-
logical implausibility and computational inefficiency. Notable

approaches include Feedback Alignment [4]–[7], and Hebbian
Learning [8]–[10]. These methods offer various advantages
but sometimes involve partial backpropagation and complex
mechanisms. Additionally, a significant amount of work has
been done to enhance the Forward-Forward algorithm, adding
substantial value to its core methodology [11], [12].

The Forward-Forward algorithm [13] is an entirely
backpropagation-free, greedy, and layerwise approach to train-
ing neural networks by replacing the forward and backward
passes with two distinct forward passes, as indicated in Fig.
1. In the first pass, positive data are used, which are generated
through the correct one-hot encoding of input data, and each
instance in the dataset is accurately encoded with its true
label, ensuring the network learns from correctly encoded
examples. In contrast, the second pass processes negative data
generated by intentionally encoding the input data with the
incorrect label. Fig. 2 illustrates examples of positive data
and negative data from the MNIST [14] dataset, where the
indices of the first 10 pixels are employed to represent the
labels for the data. Within this framework, the algorithm
computes two specific measures of activity: positive activity
and negative activity. Positive activity is derived by squaring
the output of each neuron during the positive pass, which
emphasises the activation levels when the data is correctly
labelled. Conversely, negative activity is calculated identically
during the negative pass, reflecting the neuron’s response to
incorrectly labelled data. Then, in each layer, the algorithm
aims to train the mean of the positive activities far above a
threshold value and the mean of the negative activities far
below that.

Therefore, the loss function can be written as:

Lj =
1

2
max

(
0, δ − (gpos;i − threshold)

)
+max

(
0, δ − (threshold− gneg;i)

)
(1)

gpos, neg;i =
1

n

n∑
j=1

x2
ij (2)

where a hinge loss is employed to push the positive good-
ness and the negative goodness in the current layer to be at
least 2× δ apart centred around the threshold value. gpos,neg;i



stands for the positive and negative goodness value calculated
in the current layer i. Following the calculation of the loss,
appropriate adjustments are made to the respective weights and
biases using gradient descent. To ensure that large activation
values from the current layer do not overly influence the
activity values in the subsequent layer, L2 normalisation is
applied to all output values before they enter the next layer.

During prediction, the data are initially labelled with all
possible categories. After that, these data are passed into the
network, and the category of data generating the highest activ-
ity sum also referred to as the goodness value, is interpreted
as the outcome of the network.

Fig. 1: Two distinct forward passes in the Forward-Forward
algorithm. The green arrows demonstrate the positive forward
pass with positive data input. The red arrows demonstrate the
negative pass with negative data input. Layer i represents any
hidden layer in the network, where i can be either 1 or 2.

From a biological perspective, the brain tends to react
more vigorously to the patterns previously learned and less
rigorously to the patterns they are not familiar with. Hence,

the rigorousness of the neural activity is taken to compute
and classify the output when a combination of patterns is
presented.

However, an inherent assumption of the Forward-Forward
algorithm is that each neuron and each layer contributes
identically to the overall goodness function. In fact, earlier
layers tend to capture more abstract features compared to
the more concrete features learnt by the later layers [17].
Furthermore, within the same layer, the significance of each
neuron’s contribution can vary considerably. This raises critical
questions about the weighting of individual neuron activities:
How significant is each neuron, and to what extent should the
activity value generated by each neuron influence the overall
goodness function? These concerns are central to the design
of FGFF, which are addressed in Section III.

(a) Positive Data Sample (b) Negative Data sample

Fig. 2: Positive and negative data visualization for the
Forward-Forward algorithm. The first 10 pixels (top left cor-
ner) in the images are used for one-hot encoding. For positive
data samples, the correct index corresponding to the label
is encoded as white; for example, if the label is 0, the first
pixel (index 0) is encoded as white. In negative data samples,
the indices are randomly encoded while excluding the correct
index. The encoded index has been highlighted.

III. THE FINE-GRAINED FORWARD-FORWARD
ALGORITHM

The Fine-Grained Forward-Forward algorithm (FGFF)
builds upon the Forward-Forward algorithm by introducing
a key novel element: neuron activity scaling factors, also
referred to as the fine weights or the significance matrix in
Fig. 3. These scaling factors are pivotal in modulating the
activity values of neurons within each layer. By appropriately
assigning these scaling factors, the concerns regarding the
variable significance of individual neurons and their influence
on the overall goodness function are directly addressed. The
pseudo-code for FGFF is presented in Algorithm 1.

A. Introducing novel calculation of layer-wise goodness func-
tion

The neuron activity scaling factors parameter is structured as
a 2D tensor within the neural network architecture. It is defined
such that the number of rows corresponds to the number of



hidden layers in the network, and the number of columns
in each row corresponds to the number of neurons in each
respective layer. For instance, in a network with two hidden
layers, each containing 500 neurons, the tensor is initialised as
a shape of 2 by 500 filled with 11. This 2D tensor arrangement
allows for independent scaling of neuron activities across
different layers during training. As the network learns from
repeated exposure to stimuli, these values dynamically adjust,
optimising the responsiveness and adaptability of the network
over time.

Similar to the Forward-Forward algorithm, FGFF employs
one loss function across each layer with the core objective
remaining unchanged: to train the network such that the
mean of the positive activities significantly exceeds a specified
threshold, while the mean of the negative activities falls well
below it. However, in FGFF, the activity values are now scaled
by the corresponding neuron activity scaling factors wij , hence
the new layer-wise goodness function is written as:

gpos, neg;i =
1

n
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j=1
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where wij indicates the scaling factor for the jth neuron in the
ith layer, and xij stands for the activity output of the neuron
in the layer.

Fig. 3: A sample neural network architecture used in the Fine-
Grained Forward-Forward Algorithm. The significance matrix
is another terminology for the collection of the neuron activity
scaling factors.

B. Learning in neuron activity scaling factors

The Fine-Grained Forward-Forward algorithm refines the
traditional training process of FF by incorporating the neuron
activity scaling factors. These factors are crucial trainable
parameters that dynamically adjust each neuron’s influence on

1The scaling factors are initialized to values of one to align the fine-grained
forward-forward algorithm with the standard forward-forward algorithm at the
outset. This initialization ensures that, in the absence of modifications to the
scaling factors, the algorithm reverts to the behavior of the original forward-
forward algorithm.

the network’s goodness function. The addition of these neuron
activity scaling factors leads to an increase in the total number
of trainable parameters, which is directly proportional to the
product of the number of hidden layers (m−1) and the number
of neurons per layer (n). However, this increase is minimal
compared to the core architectural parameters of the network,
which amount to (m− 1)× n2.

During training, each neuron outputs an activation value
as inputs propagate through the network. These activations
are squared and then scaled by the corresponding scaling
factors. Subsequently, the scaled activations are averaged to
determine the positive and negative goodness values, central
to the algorithm’s loss function, see equation (1). This loss
function is recalculated for each epoch to ensure accurate
gradient descent based on the current network state.

Updates to the neuron activity scaling factors are governed
by the derivative of the loss function. From a mathematical
standpoint, the adjustments made to the neuron activity scaling
factors enhance the distinction between positive and negative
goodness values. This increased disparity aids in sharpening
the decision boundaries of the network, resulting in more
precise classifications. Moreover, by incorporating the scal-
ing factors, the algorithm fosters new connections between
neighboring solutions in the solution space. This additional
connectivity in the solution space reduces the number of local
optima, decreasing the likelihood that the training process
becomes trapped in shallow local optima. Consequently, this
results in a more effective and exploratory training regime,
promoting a robust learning environment that approaches
better solutions.

C. Impact of neuron activity scaling factors

A critical aspect of FGFF is the role of neuron activity
scaling factors during both training and prediction phases.
These scaling factors enhance the learning process by allowing
the network to assign varying levels of importance to different
neurons, leading to a more nuanced and effective learning of
patterns over the epochs.

Interestingly, even when the scaling factors are discarded
during the prediction phase—utilised solely during train-
ing—the model still demonstrates performance comparable
to scenarios where scaling factors are used thoroughly. This
indicates that the network successfully learns the underlying
patterns during training, rather than relying heavily on the
scaling factors for decision-making during prediction. This
robustness is particularly beneficial for a backpropagation-free
neural network training algorithm like FGFF. By simplifying
the prediction phase and eliminating the need for scaling
factors, the FGFF achieves prediction efficiency identical to
the original Forward-Forward algorithm but delivers more
accurate results during deployment.

D. The fine weights optimizer

In contrast to the Forward-Forward algorithm, FGFF fea-
tures two separate optimizers: one is responsible for updating
the parameters of the neural network layer (weights and



biases), and another for adjusting the fine weights. This dual
optimization approach introduces an additional hyperparame-
ter—the learning rate for the fine weights optimizer.

By setting the learning rate for the fine weights optimizer to
zero, FGFF disables any updates to the neuron activity scaling
factors, resulting in these factors remaining at their initial value
of 1. Consequently, FGFF reverts to the standard Forward-
Forward algorithm. Therefore, with appropriate tuning of
this hyperparameter, the worst-case performance of FGFF is
equivalent to the best performance achievable by the Forward-
Forward algorithm. This ensures that FGFF, at a minimum,
performs no worse than the FF algorithm, while offering the
potential improvements in accuracy across all datasets.

E. Mathematical parallels with feature and constraint viola-
tion detectors

In section 10 (future work) of the Forward-Forward algo-
rithm paper [13], Hinton proposed the potential benefit of in-
corporating a set of feature detectors to maximise their squared
activity and a set of constraint violation detectors to minimise
their squared activity [18]. While the Fine-Grained Forward-
Forward Algorithm (FGFF) does not explicitly employ feature
detectors, its design mathematically aligns with this proposed
concept. Specifically, the neuron activity scaling factors in
FGFF are optimised in such a way that they maximise the
squared activity of some neurons, akin to feature detectors,
and minimise the squared activity of other neurons, similar to
constraint violation detectors.

IV. EXPERIMENTS

This section demonstrates the performance analysis of
FGFF and compares it with the Forward-Forward algorithm
and the traditional backpropagation algorithm on three bench-
mark datasets: MNIST, FashionMNIST [15], and CIFAR-10
[16].

A. Performance study of FGFF
A number of network architectures were trained on multiple

datasets to evaluate the effectiveness of FGFF, FF, and BP
training algorithms. This includes MNIST, FashionMNIST,
and CIFAR-10.

Model BP FF FGFF

2x50 Relu 97.65% 74.71% 87.13%
2x500 Relu 98.27% 85.82% 90.88%
2x1000 Relu 98.75% 85.83% 92.95%

TABLE I: Test accuracies (%) on MNIST dataset for back-
propagation (BP), Forward-Forward (FF), and fine-grained
Forward-Forward (FGFF) algorithms.

The results on MNIST are summarized in Table I. FGFF
consistently outperformed FF across all architectures.

The results in Table II demonstrate that increasing the
number of neurons in each layer tends to improve model
performance on the Fashion-MNIST dataset, similar to the
observations in Table I for MNIST.

Algorithm 1 The Fine-Grained Forward-Forward Algorithm

1: Initialize the fine-grained weight matrix wf of dimension
m × n with all ones, where m is the number of layers
excluding the input layer, and n is the number of neurons
in such layers.

2: epochs← 200

3: i, j ← 0

4: x, target labels← load data
5: positive data, negative data ← create data # use one-hot

encoding
6: while i < m do
7: # Greedily train each layer, this process can be paral-

lelized
8: while j < epochs do
9: op ← Forward(positive data) ▷ positive output

10: on ← Forward(negative data) ▷ negative output
11: wf ;i ← wf [i, :]

12: # Square(op, on) squares each element in the
tensors op and on

13: gpos, gneg ← Mean(Square(op, on)×wf ;i)

14: L← Loss(gpos, gneg)

15: δwf ← αf
dL
dwf

, δw ← α dL
dw , δb← dL

db

16: # Perform weights and biases update based on L

17: wf ← wf − δwf ▷ the fine-grained significance
matrix

18: w ← w − δw ▷ weightings for interconnecting
neurons

19: b← b− δb ▷ biases for the neurons
20: j ← j + 1

21: end while
22: positive data← Forward(positive data)
23: negative data← Forward(negative data)
24: i← i+ 1

25: end while

26: function FORWARD(x)
27: xn ← Normalize(x) ▷ L2 normalization
28: output← xn ×WT

29: return RELU(output)
30: end function

B. Experiments on CIFAR-10

Due to the intrinsic complexities of the CIFAR-10 dataset,
the experiment employed a neural network with three layers,
each containing 800 neurons. The learning rate was set to 0.01,
and the training was conducted for 1200 epochs. The results
of this experiment are presented in Table IV.

Notably, achieving comparable accuracy with FGFF neces-
sitated an additional 1800 epochs for FF, highlighting the
efficiency of FGFF in training neural networks on complex
datasets such as CIFAR-10.



Model BP FF FGFF

2x50 Relu 87.52% 60.76% 73.28%
2x500 Relu 89.34% 52.24% 75.63%
2x1000 Relu 89.47% 51.64% 77.18%

TABLE II: Test accuracies (%) on Fashion-MNIST dataset for
back-propagation (BP), Forward-Forward (FF), fine-grained
Forward-Forward (FGFF), and tuned FF models with various
architectures.

Algorithm Train Acc Test Acc

BP 90.12% 52.08%
FF 38.33% 37.67%
FGFF 50.73% 42.67%

TABLE III: Train accuracies (%) and Test accuracies (%)
on CIFAR-10 dataset for back-propagation (BP), Forward-
Forward (FF), fine-grained Forward-Forward (FGFF).

C. Epoch time analysis

In this section, we evaluate the performance of FGFF
relative to FF and the conventional BP by comparing the time
taken per epoch for each algorithm. The findings of these
comparisons are detailed in Table IV.

Algorithm Time taken per epoch

BP 13.1754 s
FF 0.1066 s
FGFF 0.1073 s

TABLE IV: Time taken per epoch (s) on Fashion-MNIST for
back-propagation (BP), Forward-Forward (FF), fine-grained
Forward-Forward (FGFF). The training was conducted using
an NVIDIA RTX GeForce 4060 GPU on Windows 11.

BP requires a significantly longer time per epoch, as shown
in the table. This extended time requirement is due to the
complex nature of BP, which involves precise and symmetric
weight updates that must be calculated and applied during
training. These updates, while effective, are biologically im-
plausible because such precision and symmetry are not feasible
in biological neural networks. In contrast, FF and FGFF are
designed to be more aligned with how learning occurs in the
brain, making them biologically plausible.

From Table IV, we observe that FGFF takes approximately
0.1073 seconds per epoch, which is only around 0.65% slower
than FF, which takes 0.1066 seconds per epoch. Despite the
slight increase in time, FGFF’s performance can be signifi-
cantly better, achieving up to 25.54% improvement in accuracy
as shown in Table II. This highlights FGFF’s efficiency and
effectiveness, making it a highly practical choice in scenarios
where both computational efficiency and performance are
critical.

D. t-SNE visualisation

To have a deeper understanding of how our model processes
and transforms the input data through each layer, and compare
the feature learning capabilities of FGFF with FF, a neural
network of 2x500 ReLU was trained on the MNIST dataset.
The input data and layer-wise output feature map is visualised
using t-SNE [19], in Fig. 4 and Fig. 5. During the training,
the activations (goodness) are calculated. After training a layer,
the positive goodness values are visualised.

(a) FF (b) FGFF

Fig. 4: t-SNE visualisations of first hidden layer output feature
maps of positive data after 200 epochs. Different colors
correspond to different classes

(a) FF (b) FGFF

Fig. 5: t-SNE visualisations of the second hidden layer output
feature maps of positive data after 200 epochs. Different colors
correspond to different classes

The feature maps reveal that both methods effectively learn
features that distinguish between classes. However, FGFF
demonstrates a more distinct data separation compared to FF.

V. CONCLUSION

In this paper, we introduced the Fine-Grained Forward-
Forward algorithm (FGFF). A novel backpropagation-free
training methodology that builds upon the Forward-Forward
(FF) algorithm. FGFF incorporates neuron activity scaling fac-
tors, enabling more precise and effective weight adjustments.
Our experiments on MNIST, FashionMNIST, and CIFAR-10
datasets demonstrated that FGFF consistently outperforms FF



in accuracy and efficiency, stepping closer to the traditional
backpropagation algorithm (BP). Overall, FGFF represents a
significant advancement in backpropagation-free neural net-
work training, providing a viable alternative to traditional
methods with potential applications in various domains.
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