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Abstract—This work aims at audio deepfake detection (ADD)
in three different scenarios-only deepfake, re-recorded-deepfake,
and replayed-deepfake. To that effect, the existing Fake or Real
(FoR) dataset is enhanced by a reverberation topology leading
to a novel version of the dataset (called as rev-FoR-rerec) to
simulate replayed-deepfakes in varying acoustic environments.
Furthermore, this work investigates the significance of quefrency-
based representation for ADD. Our findings indicate that as
compared to mel-spectrogram representations, the proposed
quefrency-based system achieves improved EERs on both testing
and validation sets of all three attack scenarios, except for the
case of replayed-deepfake where the proposed system performs
nearly equal to the mel-spectrogram with an absolute difference
in testing EER as 0 and an absolute difference in validation
EER as 0.09. Furthermore, our sub-band analysis shows that the
bands 0-1000 Hz and 7000-8000 Hz are the most discriminating
subbands for ADD. Experiments are also performed to investigate
the effect of room size and reverberation damping factor on the
detection of replayed-deepfakes.

I. INTRODUCTION

Deepfakes pose a significant threat due to their increas-
ing realism and potential for manipulation in various media
formats like text, audio, images, and videos [1], [2]. This
has detrimental implications for privacy, security, and societal
integrity [3]. Audio deepfakes, created through AI-generated
or manipulated audio, aim to mimic a target speaker’s voice
convincingly. Advancements in text-to-speech (TTS) and voice
conversion (VC) techniques have facilitated the production of
high-quality audio deepfakes [4], [5].
Detecting audio deepfake is a challenging task that involves
various techniques from signal processing, machine learning,
and deep learning [6], [7]. Previous research has shown
promising results [8]–[10]. Many existing works focus on sum-
marizing past spoofing attacks, or protecting automatic speaker
verification (ASV) systems [11], [12]. However, datasets re-
leased in the ASVSpoof challenges lack usability for research
because of undisclosed synthesis algorithms due to the nature
of the ASVSpoof challenges. To that effect, we have utilized
the Fake-Or-Real dataset for ADD in this work.
So far, most of the neural network architectures for ADD
utilize spectrogram analysis [13]–[15], however, quefrency-
based representations such as cepstrograms are less explored.
To that effect, this work investigates the significance of que-
frency approach to ADD. In addition, since TTS and VC
technologies have eased the generation of audio deepfakes,
deepfake attacks, like the replay attack have become easier
to mount [16]. Hence, detecting these two attacks is crucial
to ensure security and integrity. To that effect, a scenario of
replayed-deepfake detection is also introduced in this work. In

particular this paper has the following contributions:
• Quefrency-based features are proposed for ADD, and

hence cepstral vs. spectral analysis is done to investigate
which domain is more suited for ADD.

• Apart from the scenario where a fake/spoofed utterance is
synthesized using deepfake only, we have considered two
more scenarios- rerec-deepfake and replayed-deepfake.
Rerec-deepfake considers the situation when the deep-
faked utterance is transmitted through a communication
channel (like a phone call or voice message). Replayed-
deepfake considers the scenario where the deefaked signal
is recorded and played back like a replay attack. Given
that replay attacks are the easiest to execute from an at-
tacker’s perspective [17], it becomes important to evaluate
countermeasure systems for replayed-deepfake scenario
as well, thereby attempting towards generalization of
countermeasure systems.

• To simulate the replayed-deepfake scenario, a new dataset
(namely rev-FoR-rerec) is created where the deepfaked
audio is recorded and replayed in rooms of varying size,
with reverberations of varying intensities.

• To that effect, a reverberation topology for simulating the
replayed-deepfake scenario is also proposed in this work.

• A lesser-known dataset Fake-or-Real (FoR) dataset is used
in this work. Unlike the ASVSpoof 2021 DF dataset, this
dataset is balanced in terms of gender and class, and
normalized in terms of volume and number of channels. It
should also be noted that the testing set of the FoR dataset
consists of utterances generated using Deepvoice3, Baidu
TTS, Amazon AWS Polly and Cloud, WaveNet, which are
Google text-to-speech algorithm renowned for producing
speech that closely resembles human voices hence testing
our model on real-world conditions.

• Analysis on the effect of reverberation parameters affect-
ing room-size and reverberation intensity has also been
done the on replayed-deepfake scenario.

• Experiments are also performed on the ASVSpoof 2019
Logical Access (LA) dataset, to investigate the perfor-
mance of the proposed ADD system on LA scenarios.

II. PROPOSED WORK

This work presents three different attacking scenarios. In
Fig. 1 (A), deepfake speech is generated using spoofing
algorithms such as TTS (Text-to-Speech) or VC (Voice Con-
version). In realistic scenarios, as shown in Fig. 1 (B), an
attacker can re-record a deepfake utterance using a device like
a smartphone and send it to a victim’s smartphone through



Fig. 1. Different types of attack scenarios: (A) Only Deepfake, (B) Re-Recorded Deepfake, and (C) Replayed-Deepfake

Fig. 2. Reverberated Topology for Replayed-Deepfake Scenario

a voice message or communication channel. Additionally,
as illustrated in Fig. 1 (C), we introduced another potential
attacking strategy that involves recording and playing back
deepfake audio, which we refer to as “replayed-deepfake” in
this work.

A. Proposed replayed-deepfake with reverberation topology

To further expand the scope of the dataset for anti-spoofing
research, a novel “Reverberated FoR Re-Recorded (rev-for-
rerec)” dataset is designed in this work. To bridge the gap in the
existing ADD dataset we incorporated synthetic reverberations
of varying specifications (such as room size, high frequency
damping and pre-delay), thereby offering a more compre-
hensive evaluation platform for anti-spoofing models. This
additional layer of intricacy to the dataset, which simulates
real-world scenarios, reflects the diverse environments and
conditions in which spoofing attacks might occur better. To
that effect, we have introduced reverberation in the existing
Fake or Real dataset using the reverberation.

The reverberation topology [18] as shown in Fig. 2 be-
gins with pre-conditioning. Preconditioning comprises of two
stages: 1) Pre-delay, and 2) Low-pass filtering. Pre-delay is the
time between hearing direct sound and the first early reflection
and is expressed as:

xp(t) = x(t− k) (1)

where k is the pre-delay constant. A smaller value of k is
preferred for short-duration utterances because it ensures that
the reverberation effect occurs sooner. Now, the pre-delayed
signal is passed through the low-pass filter expressed as:

LP (z) =
1− α

1− αz−1
(2)

where α is estimated as:

α1 = exp

(
−2π × fc

fs

)
(3)

where fc is the high cut frequency and fs is the sampling
frequency. After the preconditioning, diffusion is performed
which controls the density of the reverb tail and is specified
as a real positive scalar in the range [0, 1]. To set the diffusion,
the preconditioned signal, as shown in step 3 of Algorithm 1,
is passed through a cascade of 4 all-pass filters, where each
filter is expressed as:

AP (z) =
β + z−k

1 + βz−1
(4)

where β is the diffusion constant and k is the delay. Increasing
the diffusion pushes the reflections closer together, thickening
the sound, whereas reducing it creates more discrete echoes.
The filtered output is then fed into a tank to adjust the
decay factor and high-frequency damping of the reverber-
ation tail. The high-frequency damping adjusts the fading
of high-frequency reflections, whereas the decay factor of
the reverb tail determines how quickly the reflections lose
energy, providing a longer reverb tail without overwhelming
the original signal [18]. For this effect, the resultant signal is
passed through a series of filters as demonstrated in step 4 of
Algorithm 1. The modulated all-pass filter is:

ModulatedAP (z) =
−β + z−k

1− βz−1
(5)

where β is the diffusion constant from Eq. 4. Here, in the
tank, the low-pass filter constant α (from Eq. 2) is used as
the high-frequency damping constant. Finally, “wet-dry mix”
is performed on the signal. The wet-dry mix ratio W (where,
W ∈ [0, 1]) controls the ratio of the reverberated signal to the
original, as illustrated in step 5 of Algorithm 1.

B. Proposed Quefrency-based representation for ADD

Most of the work on ADD has been done by analyzing
the signal using spectrograms in linear or mel-scale [13]–[15].
However, quefrency-based representations such as cepstro-
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Fig. 3. Analysis of speech signals using various representations. (a) Genuine utterance, (b) Only Deepfake, (c) Replayed-Deepfake

Algorithm 1: Proposed Reverberation Algorithm for
replayed-deepfake attack
Input: Input: Speech signal x(t)
Output: Output: Reverberated Speech y(t)

1 xp(t) ← Pre−Delay [x(t)]
2 x1(t) ← LowPass F ilter [xp(t)]
3 x2(t) ← APi [x1(t)] where APi is the ith All-Pass

Filter and i = 1, 2, 3, 4
4 x3(t) ← AllPassF ilter ← LowPassF ilter ←

Modulated AllPassF ilter [x2(t)]
5 y(t) = (1− k)x(t) +Wx3(t)

Pre-Conditioning

grams are less explored. These representations have been used
in pitch detection [19], echo removal [20], and noise reduction
[21], [22]. Since deepfake algorithms are known to introduce
artifacts, and the replayed deepfakes have reverberation, this
work investigates the importance of quefrency-based represen-
tations on ADD.

Quefrency-domain representations measure cepstrum of a
signal, which comes from the representation of a homomorphic
system for convolution [23]. The word cepstrum is called
“spectrum of the spectrum”, and is estimated as [23] :

C =
∣∣∣F−1

{
log

(
|F{x(t)}|2

)}∣∣∣2 (6)

where x(t) is a signal, and F is its Fourier transformation.
A visual representation of the cepstrum over time is known

as cepstrogram. It allows one to observe changes in the cepstral
features (rahmonics) of a speech over time, similar to how a
spectrogram shows changes in the spectral content of a speech.

C. Frequency vs Quefrency Analysis

To analyze the cases of genuine, only deepfake and
replayed-deepfake utterances, Fig. 3 shows the differences
between frequency and quefrency representations. In particular,
Fig. 3 (a) shows the genuine utterance, Fig. 3 (b) shows the
only deepfake utterance followed by Fig. 3 (c) which shows
replayed-deepfake utterance. On analyzing the amplitude spec-
trums of the utterances, we observe that in Fig. 3 (a), the trend
of the amplitude spectrum is nearly constant throughout the
frequency range of 6-8 kHz as shown using a dotted circle.
However, in Fig. 3 (b), we see that the amplitude spectrum
is nearly constant only till 7 kHz, and then a sudden drop is
observed, as marked by the circle. Meanwhile in Fig. 3 (c), the
amplitude spectrum decreases gradually from 6 kHz onwards
which is marked using a circle. Furthermore, we also analyze
cepstrums of the utterances with quefrency from the range of
1 ms to 50 ms. The quefrency in the range of 1 ms to 50 ms
is chosen because most of the variations have been observed
in this range. The cepstrum has the highest distortion in Fig.
3 (c) followed by Fig. 3 (a) and Fig. 3 (b) respectively as
marked by the circle. This indicates that the cepstrum for only
deepfake (Fig. 3 (b)) fails to capture the environmental artifacts
unlike the cepstrum in Fig. 3 (a) and Fig. 3 (c). This further
indicates that the deepfake algorithms are not able to generate
naturalness like genuine speech.

On analyzing the utterances using spectrogram, we observed
that in genuine utterance (Fig. 3 (a)), the energy fading
appears natural without any abrupt boundaries as opposed
to the case of only deepfake utterance in Fig. 3 (b), where
no continuous band of energy is observed as indicated by
the circle. Furthermore, we observe that in replayed-deepfake
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(Fig. 3 (c)) utterance, there is continuous energy in the region
marked by the circle in the figure. This indicates that the
genuine speech does not have as much energy as compared
to the speech generated due to reverberation. However, when
we analyze the utterances using quefrency-based representation
or cepstrogram we observe that it is easier to differentiate
between the genuine and replayed-deepfake speech than the
genuine and only deepfake utterance because more dominant
rahmonic peaks are observed in genuine speech as compared
to replayed-deepfake speech which is marked with the help of
the dotted circle.

III. EXPERIMENTAL SETUP
A. Datasets

1) Fake or Real (FoR): The Fake or Real (FoR) has 4
versions namely, original, normalized, 2-sec version, and a
re-recordered version [24]. In this work, experiments have
been performed on the FoR 2-sec and For re-rec datasets.
Both of these versions are balanced in terms of the number
of utterances in each class, and gender variability of speakers.
The FoR 2-sec and FoR re-rec versions correspond to deepfake
only, and recorded-deefake attack scenarios, respectively, as
discussed in Section II. The partitioning details of both of these
datasets are identical [24].

2) Proposed Rev-rerec dataset: The replayed-deepfake at-
tack scenario is emulated by incorporating reverberation into
the for-rerec dataset, as discussed in Section II. In particular,
for our experiments, we have fixed pre-delay factor at 0.25,
diffusion as 0.5, and wet/dry mix at 0.3. The reverberation
parameters, like decay factor and high-frequency damping,
have been varied to investigate their effect on the performance.

B. Classifier and Performance Metrics

The CNN model used in this work consists of three convolu-
tional blocks: Convolution 1, Convolution 2, and Convolution
3 where each convolutional block includes a 2-D convolutional
layer with a kernel size of 3x3, stride of 1 and padding
of 1, Rectified Linear Activation (ReLU) layer, and a max-
pooling layer with a kernel size of 2x2. The output feature
maps from the convolutional blocks are processed by two fully
connected layers with 128 hidden units. This layer flattens the
feature maps and then passes them through a ReLU activation
function. The model is trained using the Adam optimizer with
a learning rate of 0.001, and the loss is calculated using cross-
entropy loss. The training process runs for 20 epochs, with a
batch size of 32. The performance of the model is evaluated
using Accuracy and Equal Error Rate (EER).
C. Baseline

In this work, we have considered the baseline from [10]. We
investigate the significance of quefrency-based representation
and mel-spectrogram. Both the representations are extracted
using 30 ms of window length, with a window shift of 15 ms.

IV. EXPERIMENTAL RESULTS & ANALYSIS

A. Comparing Proposed System with the Existing Works

Experiments were performed using the proposed quefrency-
based features and compared with the baseline [10] as shown

in Table I. It can be observed that the proposed quefrency-
based feature outperforms the existing baseline system on all
the attack scenarios and datasets. In particular, we observed
an absolute increase of 16.64%, 60.05%, 39.70%, and 8.63%
in the testing and validation sets of the for-2sec and for-rerec
datasets, respectively.

TABLE I
EXISTING SYSTEM VS PROPOSED SYSTEM

Dataset Used Existing System [10] Proposed System
Testing Validation Testing Validation

FoR-2sec 71.14 38.29 87.78 98.34
FoR-rerec 45.96 86.47 85.66 95.10

rev-FoR-rerec - - 100 99.87

B. Feature Wise Comparison

To compare the performance of quefrency-based representa-
tion with a mel-spectrogram, experiments were performed on
all the three attack scenarios, as shown in Table II. It can be
seen that the performance of quefrency-based representation
is better than the mel-spectrogram in most cases except in
the rev-FoR-rerec dataset. However, it should be noted that
only the best performances are shown in this table, and the
detailed comparison is shown in Section IV-D. To further
compare the features, experiments were performed on the
widely known ASVspoof 2019 LA dataset. The quefrency-
based feature achieved an accuracy of 89.63%, while the mel-
spectrogram attained an accuracy of 89.60%, indicating no
significant difference in performance.

TABLE II
FEATURE WISE COMPARISON: (A) CEPSTROGRAM, (B) MEL

SPECTROGRAM

Attack Scenario Only Deepfake Rerecorded-Deepfake Replayed-Deepfake
Dataset Used FoR-2sec FoR-rerec rev-FoR-rerec
Feature Used A B A B A B

Accuracy (%) Testing 87.78 87.13 85.66 81.5 100 100
Validation 98.34 98.44 95.10 96.17 99.82 99.87

EER (%) Testing 12.5 8.64 13.24 16.19 0 0
Validation 1.70 1.56 4.11 4.64 0.26 0.17

C. Analysis on Only-Deepfake Scenario: Effect of Sub-Band
Frequency Ranges

To observe the effect of the frequency range for deepfake
detection, the full spectrum of the utterances in the FoR 2-
sec dataset was divided into 8 sub-bands of bandwidth of
1000 Hz each (given the maximum frequency is 8000 Hz).

TABLE III
EFFECT OF SUB-BAND FREQUENCY RANGES ON ADD

Subband (in Hz) Accuracy (%) EER (%)
Testing Validation Testing Validation

0 - 1000 86.40 98.20 13.05 1.84
1000 - 2000 64.98 83.69 33.09 14.79
2000 - 3000 64.15 87.44 32.90 14.79
3000 - 4000 50.92 90.34 46.88 9.77
4000 - 5000 61.76 88.50 34.74 10.62
5000 - 6000 49.45 88.50 51.47 11.46
6000 - 7000 66.27 89.67 34.01 9.98
7000 - 8000 95.31 97.38 2.21 2.76
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TABLE IV
EFFECT OF REVERBERATION PARAMETERS ON REPLAYED-DEEPFAKE DETECTION

Decay
Factor

High
Frequency
Damping

Mel-Spectrogram Proposed Quefrency-based Representation
Accuracy (%) EER (%) Accuracy (%) EER (%)

Testing Validation Testing Validation Testing Validation Testing Validation

0.9

0 92.28 96.75 6.37 3.32 97.67 98.08 1.72 1.92
0.25 90.56 96.43 9.56 3.50 98.04 97.33 1.47 2.62
0.5 91.79 96.79 7.84 2.80 97.79 98.08 1.47 2.01
0.75 98.28 98.80 1.72 1.31 99.26 97.64 0.74 2.62
1 92.03 96.26 7.84 3.67 97.43 97.46 2.21 2.54

0.5

0 90.44 96.66 9.31 3.32 99.63 98.26 0 1.57
0.25 97.67 98.31 2.70 1.92 99.63 98.80 0 1.22
0.5 95.83 97.95 2.21 1.92 98.90 96.83 0.25 2.62
0.75 96.81 97.77 3.43 2.01 99.75 98.35 0.25 1.75
1 86.89 96.52 11.03 3.41 98.77 96.30 1.47 3.32

0.1

0 99.88 99.91 0 0.26 99.39 99.38 0 0.61
0.25 99.75 99.82 0 0 100 99.64 0 0.26
0.5 100 99.87 0 0.17 100 99.82 0 0.26
0.75 99.63 99.82 0 0.09 100 99.69 0 0.26
1 89.46 95.94 10.78 4.02 93.14 96.88 0.74 2.50

To that effect, experiments were performed by extracting sub-
band-wise mel-spectrograms which were fed to the CNN for
classification. The obtained performances are shown in Table
III. It can be observed that the best performances for both
testing and validation sets are observed in the first and last
frequency bands (i.e. 0-1000 Hz and 7000-8000 Hz). This
indicates that the sub-bands in the extremes of the spectrum
play a significant role in ADD. It should also be noted that in
the case of Voice Liveness Detection (VLD), the discriminating
features w.r.t. pop noise are present in 0-40 Hz, i.e., on the
lower extreme of the frequency range [25], [26]. Therefore,
our subband analysis for ADD coincides with subband analysis
for the VLD problem for low-frequency subbands.

Furthermore, we also observe in Table III that the valida-
tion accuracy is greater than the testing accuracy in all the
subbands. This discrepancy arises because the testing dataset
consists of unseen utterances. Moreover, the testing set was
generated using WaveNet- a Google TTS algorithm, which is
well-known to generate human-like speech.

D. Analysis on Replayed-Deepfake Scenario: Effect of Rever-
beration Parameters

To investigate the impact of room size and high-frequency
damping on replayed-deepfake detection, experiments were
performed on the proposed rev-FoR-rerec dataset. To that ef-
fect, Table IV shows the performances using mel-spectrogram
and proposed quefrency-based feature (cepstrogram). For each
value of decay factor

(
DecayFactor ∝ 1

RoomSize

)
, the high-

frequency damping is varied to adjust the high-frequency
reflections. The general trend observed in Table IV shows
that on the testing set, the quefrency-based feature consistently
performs better than the mel-spectrogram in both accuracy and
EER across varying decay factors and damping values. In par-
ticular, as room size increases, both the features show improved
performances, with the quefrency-based feature frequently

achieving near-perfect to perfect accuracy and very low EER
of 99% to 100% and 0 to 1% respectively. This indicates that
large rooms contribute to better replayed-deepfake detection
yielding robust results. The possible reason for this is that in
large rooms, the delay between each reflection is more, as
the second wave has to travel a larger distance before getting
reflected, which makes it easier to distinguish between the
replayed-deepfake utterance and the genuine utterance.

In the case of the proposed quefrency-based feature, for all
the values of decay factor, and at moderate to high levels of the
high-frequency damping factor (0.25 to 0.75), we can observe
a high accuracy range ∼ 98 − 100% and low EER values of
∼ 0 − 2% are maintained, across both testing and validation
sets. In particular, at a decay factor of 0.1, i.e., a large
room, a near-perfect performance is observed. Furthermore,
if compared to the mel-spectrogram, the proposed quefrency-
based representation consistently achieves high performance
across all damping levels exhibiting slightly better consistency.

Interestingly, in most of the cases of Table IV, the opposite
of the trend mentioned in Section IV-C can be noticed. This is
because the training and testing sets share the same intensities
of reverberation, i.e., the replay component, because of which
this replay component becomes ‘seen’ even in the testing set,
and hence we observe a better performance in the testing set.

V. SUMMARY AND CONCLUSIONS

This study addresses the detection of audio deepfakes in
three different scenarios, including replayed-deepfakes. To
simulate real-world replayed deepfake attacks, we introduce
a novel reverberated version of the FoR dataset (rev-FoR-
rerec) with varying acoustic environments through a proposed
reverberation topology. The effectiveness of quefrency-based
features is investigated for all three scenarios. Furthermore,
subband-wise analysis is done for ADD, and reverberation
analysis is done for replayed-deepfake detection. This work
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demonstrates the superior effectiveness of quefrency-based
representations (cepstrograms) over mel-spectrograms, espe-
cially in replayed-deepfake attack. The obtained results high-
light the importance of room size and high-frequency damping,
with larger rooms enhancing the discriminability between
genuine and replayed-deepfake utterances. Subband analysis
reveals that the subbands in the extreme ranges, i.e., 0-1000
Hz and 7000-8000 Hz are the most informative for deepfake
detection, coinciding with the findings of VLD in literature,
where subbands in the extremely low-frequency ranges (0 to
40 Hz) are discriminating. In the future, the efficiency of VLD
systems can be tested on audio deepfakes.

REFERENCES

[1] L. Zhang, A. Rao, and M. Agrawala, “Adding con-
ditional control to text-to-image diffusion models,” in
Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023.

[2] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired
image-to-image translation using cycle-consistent adver-
sarial networks,” in Proceedings of the IEEE interna-
tional conference on computer vision, 2017.

[3] B. Nguyen, “A couple in canada were reportedly
scammed out of $21,000 after getting a call from an ai-
generated voice pretending to be their son.,” The New
York Times, March 2023 {Last Accessed date : 24th

June, 2024}.
[4] P. Kawa, M. Plata, M. Czuba, P. Szymański, and P. Syga,
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