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Abstract—This study proposes the integration of informed,
supervised, and blind sound source enhancement approaches
for unmanned aerial vehicle (UAV) applications. The proposed
method incorporates a beamformer, representing the informed
approach, a pre-recorded noise database for the supervised ap-
proach, and independent low-rank matrix analysis (ILRMA) for
the blind approach. This method aims to improve sound source
enhancement performance while addressing the permutation
ambiguity problem of the output channels inherent to ILRMA.
The method leverages the fixed spatial relationship between the
UAV’s propellers and microphones to capture spatial information
of the noise generated the propellers. This is achieved by deriving
a noise covariance matrix from pre-recorded propeller noise
signals and incorporating it into a general eigenvalue beamformer
to effectively suppress these noises. The filter weights of the
beamformer are then used to inform the spatially regularised
ILRMA, guiding the algorithm with additional spatial infor-
mation of the sound sources. Experimental results demonstrate
significant performance improvements, including a 13 dB increase
in the source-to-distortion ratio and a 0.21 point increase in the
short-time objective intelligibility score. The proposed method
outperforms both the original ILRMA and the beamformer in
most scenarios and effectively addresses the global permutation
ambiguity problem.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are increasingly used in
applications such as surveillance, filming, rescue operations,
and wildlife monitoring. However, the disruptive noise gen-
erated by their rotors and propellers, known as ‘ego-noise’
significantly hinders their effectiveness in auditory applications
[1]. This noise degrades the quality of audio recordings cap-
tured by onboard microphones, reducing their practical utility.
High-quality audio recordings are essential in various domains.
For example, environmental monitoring relies on clear audio
to track natural events, and wildlife research depends on high-
quality recordings to study animal behaviour and habitats [2].
In emergency response scenarios, precise audio data are crucial
for effective decision-making, highlighting the potential of
UAVs in outdoor search and rescue missions [3].

Addressing the challenge of ego-noise in UAV applications
has led to the development of several approaches to enhance
sound sources. These approaches can be categorised into three
main types: informed, supervised, and blind. The informed
approach utilises spatial cues to enhance the target signal,

with beamforming being a widely used method [4]. The
supervised approach leverages additional information, such as
pre-recorded noise data, rotor speed, or additional microphones
to capture noise-only signals. These techniques are often used
in conjunction with machine learning techniques to estimate
noise characteristics for effective noise suppression [5], [6].
The blind approach employs blind source separation (BSS)
algorithms, which do not rely on prior information and separate
sound sources based on their statistical properties, with inde-
pendent low-rank matrix analysis (ILRMA) being a notable
example [7].

Given the dominant ego-noise signal in UAV applications,
achieving good performance in sound source enhancement is
challenging. Researchers have increasingly combined different
approaches to develop frameworks that maximise performance.
Yen et al. [5] combined informed and supervised approaches,
using rotor state information to estimate the noise covariance
matrix with machine learning methods, which then informed
a minimum variance distortionless respons (MVDR) beam-
former to further suppress UAV ego-noise. Similarly, our
previous work [8] used pre-recorded noise signals to inform a
beamformer and estimate the power spectral density (PSD) of
the target source. For integration with the blind approach, Lin
et al. [9] combined BSS with spatial information of the target
source using time-spatial filtering. These studies demonstrate
the potential for superior performance through the integration
of different approaches.

This study explores integrating informed, supervised, and
blind approaches to improve sound source enhancement per-
formance for UAV applications. The proposed framework
combines a beamformer (informed approach), a pre-recorded
noise database (supervised approach), and ILRMA (blind
approach), leveraging each of their strengths while addressing
their limitations. This integration aims to guide ILRMA to
achieve enhanced performance under real-world conditions.
The framework leverages the stationary nature of spatial char-
acteristics between the microphone and UAV noise to estimate
a noise spatial covariance matrix. It also uses a target spatial
covariance matrix estimated from a range of potential target
positions to design a beamformer weight to spatially regularise
ILRMA.



II. BACKGROUND

The proposed method integrates a beamformer framework
from a previous study [8] with ILRMA [7]. This section
presents the mathematical formulation of the UAV sound
source enhancement problem (Section II-A), followed by an
overview of the fundamental components, which include the
beamforming framework (Section II-B) and ILRMA (Section
II-C). The formulations provided here form the basis for the
proposed method discussed in Section III.

A. Problem setup

Consider a problem where U independent source signals
comprise one target source and (U − 1) spatially coherent
noise sources are considered. Each target and noise source is
assumed to be independent; thus, the sources are considered
mutually uncorrelated. These sound sources are captured by
an M -channel microphone array under the assumption that the
system is determined (M = U). The sound propagation from
each source to the microphone array is modelled using a linear
and convolutive mixture model. To analyse these sound signals
in the time-frequency domain, the short-time Fourier transform
(STFT) is applied to the observed signals. This effectively
converts the convolutive mixture model into an instantaneous
mixture model within each frequency bin. The resulting STFT
of the target source and the noise sources are denoted as sij and
nij,u, respectively, where i = 1, ..., I indexes the frequency
bins, j = 1, ..., J indexes the time frames, and u = 1, ..., U
indexes the sources. Additionally, the STFT of ambient noise,
represented as Vij ∈ CM , encompasses both background noise
and inherent microphone self-noise. These signals make up the
signals observed by the microphone array xij,m, which are
expressed in vector form as follows:

xij,m = [xij,1, . . . , xij,M ]
T

= ai,1sij +

U∑
u=2

ai,unij,u + Vij .
(1)

Here, m = 1, ...,M indicates the microphone index, and T

denotes a transpose. The steering vector [10] for each source,
ai,u, is described as an array of transfer functions ai,u,m from
the source u to the microphone m and is defined as follows:

ai,u = [ai,u,1, . . . , ai,u,M ]
T
. (2)

B. Beamforming framework

Beamforming is a spatial filtering technique that isolates
target signals while attenuating noise signals. The output of a
beamformer can be expressed as follows:

yij = wH
i xij . (3)

Here, H denotes a Hermitian transpose. The vector wi =
[wi,1, . . . , wi,M ]

T represents the beamformer’s filter weights,
wi,m, applied to the signals observed by each microphone m.
In the absence of ambient noise sources Vij , the optimal filter

weight can be found by maximising the signal-to-noise ratio
(SNR) [11], which is expressed as follows:

ξi =
wi

HRi,swi

wi
HRi,nwi

, (4)

where Ri,s and Ri,n represent the spatial covariance matrices
of frequency i for the target and noise signal, respectively. The
solution to this optimisation problem, known as generalised
eigenvalue (GEV) beamforming [12], [13], is given by:

wGEV = P{R−1
n Rs}. (5)

For brevity, i is omitted unless otherwise specified hereafter.
Here, P{·} denotes the operator that extracts the eigenvector
corresponding to the largest eigenvalue through generalised
eigenvalue decomposition [14]. To achieve a distortionless
magnitude response, blind analytical normalisation (BAN)
compensation factor was proposed [13]:

ψ =

√
wGEVH

RnRnwGEV

wGEVH
RnwGEV

, (6)

where, ψ corrects the distortions in magnitude inherent to
the GEV beamformer. Consequently, applying ψ allows the
adjusted wGEV to reassemble the MVDR’s distortionless mag-
nitude response, albeit with phase distortions. The result-
ing beamformer is denoted as GEV beamformer with BAN
compensation factor (GEVB) and is expressed as: wGEVB =
ψwGEV.

C. ILRMA

In BSS, the goal is to recover source signals from observed
signals. Let the STFT of the source signals in each time-
frequency bin be described as, hij = [hij,1, . . . , hij,U ]

T, where
the order of sources in hij is unknown, reflecting the “blind”
nature of BSS. This stands in contrast to the distinguishable
sources described in (1). The mixing system is modelled as
xij = Aihij , where Ai is the mixing matrix, and each
component ai,u within Ai is a steering vector for each source.
The separation process can be written as:

yij = WBSS
ixij , (7)

where yij = [yij,1, . . . , yij,U ]
T are the separated signals, and

WBSS
i =

[
wBSS

i,1, . . . ,w
BSS

i,U

]H
is the demixing matrix. In

a determined problem where Ai is invertible, ideal WBSS
i is

defined as A−1
i .

In ILRMA, the separated signal is assumed to follow a time-
varying complex Gaussian distribution with a zero mean and
variance lij,u, corresponding to yij,u [7]. lij,u, is arranged in
a two-dimensional array Lu ∈ RI×J

+ representing the spectral
model for the u-th source [15]. Similar to non-negative matrix
factorization (NMF), Lu can be represented as Lu = TuVu,
where Tu ∈ RI×K

+ and Vu ∈ RK×J
+ are non-negative

matrices with K NMF bases. The cost function for ILRMA,
expressing the negative log-likelihood function, is given as:



J =
∑
ij,u


∣∣∣wBSSH

i,uxij

∣∣∣2
lij,u

+ log lij,u

−2J
∑
i

log
∣∣detWBSS

i

∣∣ .
(8)

Here, constant terms have been omitted for simplicity.
To further improve the separation accuracy and optimisation

stability, a method called spatially regularised ILRMA (SR-
ILRMA) have been proposed [16]. It incorporates a regulari-
sation term into the ILRMA framework, thereby resolving the
global permutation ambiguity problem while improving the
convergence of the cost function during iterative optimisation
[16]. The global permutation ambiguity problem refers to the
uncertainty regarding which output channel corresponds to the
target speech, a challenge that arises from the random chan-
nel allocation in the original ILRMA method. By resolving
this ambiguity, SR-ILRMA enhances the reliability of source
separation. The SR-ILRMA cost function, denoted by JR,
extends the original ILRMA cost function J by incorporating
a regularisation term. This term is scaled by a weight parameter
γu and quantifies the difference between the current estimate
wBSS

i,u and a supervisor matrix ŵBSS
i,u , as follows:

JR =J +
∑
i,u

γu∥wBSS
i,u − ŵBSS

i,u ∥2. (9)

The update rule and detailed description for minimising the
SR-ILRMA cost function, JR, can be found in [16].

III. PROPOSED METHOD

In UAV audition, extracting a clear target signal is challeng-
ing due to the low SNR [5]. To address this, a novel framework
is proposed that combines several established approaches to
maximise enhancement performance. First, informed and su-
pervised approaches are integrated, using a pre-recorded noise
database and a GEVB beamformer to create beamformer with
practical utility. The filter weights of this beamformer are then
employed to inform ILRMA through spatial regularisation,
improving source enhancement and addressing the global
permutation ambiguity problem inherent to ILRMA.

The proposed framework is illustrated in Figure 1, with
the input and pre-processing elements depicted in grey. The
spatial covariance matrices, marked in green, are discussed in
Section III-A. The beamformer-informed ILRMA component,
highlighted in blue, is detailed in Section III-B.

A. Spatial covariance matrix

The noise spatial covariance matrix, Rn, is crucial for
both the beamformer and the spatially regularised ILRMA.
Assuming that the spatial characteristics of the UAV ego-noise
are stationary due to the fixed position of the microphone array
[5], Rn can be estimated using a sampled noise covariance
matrix, here i is omitted for simplicity:

Rn =
1

JP

J∑
j=1

P∑
p=1

xj,px
H
j,p, (10)

…

1

2

𝑀

𝑦

𝑅!

𝑥"

𝑥#

𝑥$

… SR-ILRM
A

Beamformer 
(GEVB)

Fourier transform

𝑅%
𝑊&'()

Fig. 1: Block diagram of the framework. For clarity, the
frequency and frame indices have been omitted.

where xp is the p-th noise sample signal, with p = 1, ..., P
indicating the noise sample index. By leveraging the fixed
spatial relationship between the microphone array and the
UAV noise sources, Rn can be pre-calculated using pre-
recorded rotor noise data. This method eliminates the need for
complex methods, such as voice activity detection (VAD) or
machine learning techniques, which are commonly employed
to estimate the spatial covariance matrix in sound source
enhancement for UAVs. This simplifies implementation and
enhances practicality.

The target spatial covariance matrix, Rs, is used in the
beamformer. It is derived by considering the target source’s
varying positions relative to the microphone array during UAV
operations. Figure 2 illustrates the relative position of the target
source and the UAV from both top and side views. The top
view assumes the azimuth angle relative to the UAV direction
is zero, indicating the target source is directly ahead. The side
view shows the elevation angle varying within a predefined
range. This assumption enhances the framework’s robustness
in real-world scenarios where the precise elevation angle is
often unknown. Rs is calculated as:

Rs =
1

Q

Q∑
q=1

aqa
H
q . (11)

Here, aq denotes the steering vector for various potential
positions of the target source relative to the microphone array,
with q = 1, ..., Q indicating the target position index. These
steering vectors are pre-measured.

B. Beamformer informed ILRMA

Beamformer informed ILRMA aims to enhance separation
performance and address the global permutation ambiguity in
ILRMA. The proposed method uses beamformer filter weights
to inform ILRMA by embedding spatial information of sound
sources into the demixing process and dedicating one output
channel specifically for the target source. This strategy ensures
consistent allocation of the target source to a designated
channel, reducing uncertainty in standard ILRMA outputs.

The beamformer in this framework employs the GEVB
beamformer described in Section II-B and uses the spatial co-
variance matrix detailed in Section III-A to calculate the filter
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Fig. 2: Target source positions: azimuth (top view) and eleva-
tion (side view).

weight wGEVB. This approach has shown robust performance
across various target positions in a previous study [8].

Subsequently, ILRMA is informed by the beamformer
through supervisor matrix, ŴBSS

i , derived via a multi-step
process using Rn and wGEVB. This process begins with the
eigenvalue decomposition of Rn into its eigenvectors and
eigenvalues sorted in descending order. The first U − 1
eigenvectors, corresponding to the largest eigenvalues, are
selected to capture the most significant noise components.
These eigenvectors and the filter weights wGEVB are then
used to construct ŴBSS

i . Specifically, ŴBSS
i incorporates the

first U − 1 eigenvectors for the initial U − 1 channels and
wGEVB for the U -th channel. This configuration provides
spatial information on the dominant noise components and
the target source while dedicating the final output channel
specifically for the target source. Finally, ŴBSS

i is used in
the cost function for SR-ILRMA.

IV. EXPERIMENTAL RESULTS

The proposed method was evaluated in real-world scenarios
with varying target speech positions and sound levels. Per-
formance was measured using objective metrics such as the
source-to-distortion ratio (SDR) [17] and short-time objective
intelligibility (STOI) [18]. Additionally, SDR improvement
(SDRi) and STOI improvement (STOIi) were assessed based
on the differences between output and input performance
metrics.

A. Experiment

The proposed framework was evaluated using UAV record-
ings detailed in a previous study [5]. The system’s microphone
array includes six microphones: four in the front sub-array
(Microphone 1 is a shotgun, Microphones 2, 3, and 4 are
cardioids) and two cardioid microphones in the rear sub-array
(Microphones 5 and 6) as shown in Figure 3. The database
included the followings:

• Target speech: ten sentences from the Centre for Speech
Technology Research VKTS Corpus [19], played at 60
dBA and 80 dBA (measured at one metre from the
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Propellers2
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Fig. 3: UAV setup (from [5]). Red boxes highlight microphone
arrays, white circles show microphone numbers, and white
boxes highlight propellers.
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Fig. 4: Illustration of the relative positions.

loudspeaker), and recorded at distances of 3 m, 5 m, 10
m, and 15 m, yielding 80 sets of target speech.

• UAV noise: 64 recordings of hovering UAV ego-noise
without the target signal. Five sets were used for perfor-
mance evaluation, and 59 sets for estimating the noise
covariance matrix.

• Interference noise: background music and traffic noise
recorded at 60 dBA from a distance of 5 m at a 60-degree
angle to the front of the microphone array (Figure 4).

• Impulse response: measured at 3 m, 5 m, 10 m, and 15
m to generate the estimated spatial covariance matrix for
the target source.

Recordings were conducted at Harry James Taupaki Reserve
in Auckland, New Zealand, capturing ambient noises including
wind, bird and insect calls [5]. Figure 4 shows the positions
of the target signal, interference noise, and the loudspeaker
for measuring impulse responses. These recordings enabled a
comprehensive evaluation of the proposed method.

B. Results and discussion

1) Addressing global permutation ambiguity problem: The
proposed method’s effectiveness in correctly allocating the
target output channel across various noise levels was evaluated.
Accuracy was measured as the percentage of instances where
the target output channel was correctly identified. Figure 5
compares the accuracy of the proposed method, beamformer-
informed ILRMA (iILRMA), with the original ILRMA at dif-
ferent input SNRs. The original ILRMA assumes that speech
signals exhibit higher kurtosis than noise signals [20] and uses
kurtosis of the output signals to estimate the speech channel



-10 -15 -20 -25 -30
Input SNR (dB)

0

25

50

75

100

Ac
cu

ra
cy

Original ILRMA
iILRMA

Fig. 5: Accuracy of channel allocation at varying input SNR.

[21]. The target channel is correctly identified if the channel
with the highest kurtosis matches the channel with the highest
SDR. In contrast, iILRMA deems the target channel correctly
identified if the allocated target channel has the highest SDR
among all channels. Results show that the accuracy of the
original ILRMA decreases as SNR decreases, from 50% at
-10 dB to 24% at -15 dB. Conversely, iILRMA achieves
near-perfect accuracy at input SNRs from 0 to -20 dB, with
accuracy declining to 95% at -25 dB and 71% at -30 dB.
This demonstrates significant improvement over the original
ILRMA and identified a critical threshold around -25 dB for
the proposed method’s effectiveness.

2) Performance comparison: The source enhancement per-
formance of the proposed method is compared against the
original ILRMA and GEVB beamformer. Figure 6 presents
the SDRi and STOIi of various enhancement methods. The
results indicate that iILRMA outperforms the original ILRMA
in both SDRi and STOIi metrics. When compared to the GEVB
beamformer, iILRMA shows better SDRi from -10 to -20
dB input SNR but performs worse at -25 and -30 dB input
SNR. This decline in performance at lower SNRs is attributed
to the reduced accuracy observed at -25 dB, as shown in
Figure 5. Additionally, the beamformer’s design, characterised
by a distortionless magnitude response, may contribute to this
outcome. For STOIi, iILRMA exhibits superior performance
from -10 dB to -25 dB and comparable performance at -30 dB
compared to the beamformer. The diminishing improvement in
STOIi at lower SNRs can be attributed to iILRMA’s reduced
channel accuracy at -25 dB and below, as discussed in Section
IV-B1. These results demonstrate that iILRMA provides better
source enhancement performance in most scenarios.

3) Real world performance: The proposed method was
evaluated under real-world conditions, unlike the scenarios
with fixed input SNRs discussed in Sections IV-B1 and IV-B2.
The evaluation involved varying sound levels and target speech
positions to assess its robustness and performance. The re-
sults are shown in Figure 7. At a target sound level of 80
dBA, iILRMA demonstrated significant performance improve-
ments, with SDR and STOI improvements of 13 dB and
0.21, respectively, at a target distance of 3 metres. However,
at a target sound level of 60 dBA, the proposed method
showed suboptimal performance, indicating that enhancing
sound sources under such challenging conditions remains an
area for future research. Audio samples are accessible at:
https://github.com/JinXuanTeh/audio-sample-BF-ILRMA
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V. CONCLUSION

This study explored the integration of informed, supervised,
and blind approaches to enhance sound source performance in
UAV applications. The proposed framework combines a beam-
former (informed approach), a pre-recorded noise database
(supervised approach), and ILRMA (blind approach). Ex-
perimental results demonstrated that the proposed method
outperforms both the original ILRMA and the beamformer
in most scenarios. iILRMA showed substantial gains in SDR
and STOI metrics, achieving an SDR improvement of 13 dB
and a STOI improvement of 0.21. Additionally, the proposed
method effectively addresses the global permutation ambiguity
problem, ensuring more accurate channel allocation across
various SNR levels. Future research should focus on enhanc-
ing the framework’s performance under extremely low SNR
conditions and exploring the integration of additional sound



source enhancement algorithms to further improve robustness
and effectiveness in diverse environments. This comprehensive
approach demonstrates the potential for superior performance
through the integration of different methods.
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