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Abstract—The misuse of deepfake technology underscores the
critical importance of deepfake forensics. Current research in this
domain primarily employs binary classification models that are
limited to detecting the authenticity of facial images, and are in-
capable of tracing the original face replaced in the face-swapping
process. Consequently, this limitation results in the inability to
provide substantial judicial evidence.To address this issue, this
paper introduces a novel forensic methodology, which aims to
reconstruct the original face from the forged face. Specifically,
we propose a novel framework that reformulates the restoration
process from the forged face to the original face as a special
image editing task guided by a series of conditions. Our research
demonstrates that forged face images after face-swapping still
retain some features of the original face, and these features
can be used to restore the original face.Furthermore, we also
construct the first dataset and set up evaluation metrics for this
important research problem. Extensive experiments demonstrate
the qualitative and quantitative effectiveness of our proposed
framework.

I. INTRODUCTION

Recent research primarily focuses on deepfake detection
technologies to defense Face-swapping Deepfake [1]–[4].
These techniques identify manipulation artifacts across spatial,
frequency, and temporal domains. Deep Neural Networks
(DNNs) are then used to predict binary labels (Real or Fake)
to discern authenticity [5]–[7]. However, such binary classi-
fications do not yield sufficient persuasive judicial evidence.
Moreover, the original identity of the target face, altered in
creating fake news, remains obscured and the truth may never
be revealed. This issue is particularly prevalent in conflicts
such as Russia-Ukraine and Israel-Palestine. To overcome
these challenges, we introduce a novel research problem, which
seeks to restore the target face from the result face in the
process of face-swapping, offering a more robust forensic
solution for addressing the misuse of Face-swapping Deepfake
technologies. It’s noteworthy that the result face in this context
refers to the face post-forgery, while the target face contributes
its attributes and the source face provides its identity. We will
explore the feasibility of Face-Swapped Image Restoration and
introduce a powerful framework to tackle this issue.

We posit that face-swapping deepfake is traceable for several
reasons. Firstly, although deepfake algorithms are capable of
creating high-quality fake faces, they inevitably left traces on
the result face. We believe that target-face-relevant information
can be captured from these traces and used for the restoration.
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Secondly, it is difficult for these algorithms to effectively
decouple identity and attribute information in facial images,
leading to implicit tampering traces on the synthesized face.
Such traces likely retain features associated with the target
face, which are beneficial for restoration. Consequently, in
restoration of face-swapped images, the critical step involves
independently decoupling the explicit and implicit target-
relevant features within the result facial image, and then extract
useful information to facilitate the restoration of the target face.
Motivated by these challenges, we reformulate the restoration
process of the result facial image to the target facial image as
a special image-to-image editing task.

In this paper, we propose a novel conditional diffusion-based
framework named DRFSI (Diffusion Restoration of Face-
Swapped Image). DRFSI is able to progressively decouple
traceable information related to the target face throughout
the denoising process for restoration. Specifically, due to the
attribute information on the result face is highly relevant with
the target face and should be preserved. We use the multi-
scaled attribute information of the result face, compressed by
information bottleneck modules, in facilitating the restoration
of the target face via the AttributeNet we designed. The
AttributeNet employs control mechanisms [8] and serves as
a positive guidance to assist the denoising process. These
enable our model to adaptively disentangle target-face-relevant
information from the result face and accomplish restoration of
the target face.

Our main contributions are summarized as follows:
• We introduce a novel research problem, which aims to

restore the target face from the result face in face-
swapping deepfake procedure. This approach offers a new
forensic method for protecting facial information.

• We propose a novel diffusion-based framework DRFSI to
address the challenge of face-swapped image restoration.
By designing AttributeNet, we effectively instruct our dif-
fusion model in disentangling target-relevant information,
facilitating the restoration of the concealed target face.

• Extensive qualitative and quantitative experiments demon-
strate the effectiveness of our method. Moreover, our
method can be generalized to unknown face-swapping
deepfake algorithms effectively.

II. RELATED WORKS

Face-swapping deepfakes employ deep learning techniques
to execute the face-swapping task. Current methodologies in



Fig. 1. The overall pipeline of our proposed DRFSI. For a given facial image pair comprising the target and result, we first encode target face into the
latent space and generate a noisy version of latent target facial image. Subsequently, we employ a conditional diffusion model to denoise the noisy latent target
facial image, using resulting facial image as conditional inputs of the AttributeNet.

face-swapping deepfakes can be categorized into two types:
source identity-guided and target attribute-guided methods.
Source identity-guided face swapping involves extracting iden-
tity features from the source face and integrating them into
the target face. For instance, FaceShifter [9], SimSwap [10]
and MobileFaceSwap [11] incorporate a source identity em-
bedding module within the generator to preserve the source
face’s identity. As for target attribute-guided face swapping,
it involves modifying the source face using attributes derived
from the target face. This process initiates with the source face,
which is then adjusted to align with the target face’s attributes.
For instance, FSGAN [12] applies the target face’s features to
direct the modifications of the source face, incorporating a hy-
brid network to seamlessly integrate the facial and background
areas.

III. PROPOSED METHOD

A. Proposed Framework: DRFSI

As illustrated in Fig 1, DRFSI comprises two components,
including Denoising Network and AttributeNet.

1) Denoising Network: DRFSI’s backbone denoising net-
work is based on the 64×64 conditional UNet model with
temporal layers and inherits weights from the original SD
UNet. As the input of the UNet, we follow the paradigm of
diffusion-based image editing. First, we encode both the target
and resulting facial images into latent space using a pre-trained
autoencoder Eimg to obtain Zresult and Ztarget. Subsequently,
a noisy version of the latent target facial image, Ẑtarget, is

generated as follows:

Ẑtarget =
√
αtZtarget +

√
1− αtϵ,

αt =

t∏
i=1

(1− βi), ϵ ∼ N (0, I),
(1)

where βi is derived from a predefined variance schedule β
which governs the amount of noise injected at various time
steps. Finally, we concatenate Ẑtarget with the latent resulting
facial image Zresult and this concatenated feature map serves
as the input for the denoising UNet.

2) Attribute Extraction: The objective of Face-swapping
Deepfake is to transfer the identity of the source face onto the
target face while preserving the attributes of the target face
such as pose, expressions, and background. This means the
result and target facial attribute information are highly relevant
in Face-swapping Deepfake. Thus, we propose to utilizes the
result-facial attribute information to aid in the restoration of
target face.

The Information Bottleneck (IB) Principle has been effec-
tively utilized to decouple the identity and attribute information
in facial images [13]. We first average values of the same
size feature maps in pre-trained IB model to obtain multi-scale
attribute feature maps from result face:

A =
{
Aresult

64×64,Aresult
32×32,Aresult

16×16

}
. (2)

Thus, when applying A to an encoded resulting facial image Z ,
the multi-scaled facial attribute information F is highlighted
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as follows:
F = A⊙Z. (3)

Subsequently, the highlighted attribute features F are inte-
grated into the AttributeNet to facilitate the denoising restora-
tion process via the control mechanism [8].

3) AttributeNet: As shown in Fig 1 ,the AttributeNet shares
a similar structure with the encoder in the Denoising Net-
work and serves to extract multi-scaled features from the
result image. Unlike the backbone, however, AttributeNet
does not employ prompt embeddings and time embeddings.
Consequently, we have replaced the cross-attention layers
with self-attention layers and removed the time-embedding
layers. Subsequently, multi-scaled attribute feature maps A are
extracted from the result face using a pre-trained Attribute
Extractor[13]. Then, these maps are multiplied by the first
feature map following each down-sampling operation within
the encoder of AttributeNet. This method enables the extrac-
tion and retention of multi-scaled attribute information from
the result face. Finally, the multi-scaled feature maps obtained
from AttributeNet guide the denoising process in a manner
analogous to that of ControlNet [8].

B. Loss Function

1) Diffusion Loss: The training objective of our diffusion-
based model is similar to the conditional LDM.The Diffusion
Loss can be defined as:

LD = Ezt,t,c,ϵ[∥ϵ− ϵθ(zt, t, c)∥ll], (4)

where l = 1, 2, zt represents the noisy version of latent target
facial image, c represents the condition, ϵ represents the added
noise. As the diffusion loss is actually equivalent to the recon-
structive loss, we make l = 1 to improve visual restoration
quality which is different from the common diffusion loss.

2) Identity Loss: In the restoration of face-swapped image,
ensuring identity coherence between the restored and original
target faces is crucial. Therefore, we use identity loss to
constrain the distance in feature space between the restored
target face Îtarget and the original target face Itar. We compute
the identity loss as:

Lid = 1− cos
〈
Eid(Itarget), Eid(Îtarget)

〉
, (5)

where Eid represents a pre-trained face recognition model,
cos

〈
Eid(Itarget), Eid(Îtar)

〉
represents the cosine similarity

between the original target identity and the restored target
identity, D is the decoder of the pre-trained autoencoder.

3) Contrastive Identity Loss: We designe Contrastive Iden-
tity Loss (CIL) based on the contrastive learning principles.
Here we want to ensure that the anchor sample Eid(Îtarget) is
closer to the positive sample Eid(Itarget) while being distant
from the negative sample Eid(Isource). Then, we can formulate
our loss function in the form of triplet loss [14] as follows:

LCIL =2−max
{(

cos⟨Eid(Îtarget), Eid(Itarget)⟩

− cos⟨Eid(Îtarget), Eid(Isource)⟩ − λ
)
, 0
}
,

(6)

Fig. 2. Qualitative results. In the table above, Area A shows the source face.
Area B shows the target face. Area C shows the result faces, generated by
swapping the source face from A to the target face from B. Correspondingly,
Area D shows the target face restored by DRFSI. Specifically, the face-
swapping algorithms on the left side of the dotted line were utilized for
training, while those on the right side were only employed for test, indicating
that our method generalizes well to unseen face-swapping deepfake algorithms.

where cos⟨Eid(Îtarget), Eid(Itarget)⟩ is the cosine similarity of
positive pair, and cos⟨Eid(Îtarget), Eid(Isource)⟩ is the cosine
similarity of negative pair, λ is the enforced margin between
positive and negative pairs.

In summary, the overall loss function for training DFDT can
be written as:

L = LD + β1Lid + β2LCIL, (7)

where β1, β2 are hyper parameters. We experimentally set
them all to 10.

IV. EXPERIMENTS

A. Experimental Settings

1) Implementation Details: In our experiments, the input
images are uniformly resized to a size of 256× 256 and then
encoded into a 4 × 64 × 64 latent space using a pre-trained
autoencoder to improve the computational efficiency of the
diffusion process. We train our diffusion model with batch size
of 24 on 3 NVIDIA RTX4090 GPUs. We use Adam optimizer
with the base learning rate of 1e-5 and the linear scaling rule.

2) Datasets: We constructed an extensive dataset based
on the VGGFace2 [15], comprising 9,000 different identities,
totally 100,000 source-target-result facial image pairs incorpo-
rating 4 diverse Face-swapping Deepfake algorithms (InfoS-
wap[13], DiffFace[16], BlendFace[17] and MobileFS[11]). In
our experiment, we use two algorithms for train (InfoSwap
and DiffFace), and two algorithms for generalizability test
(BlendFace and MobileFS).
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TABLE I
RETORATION ACCURACY (R-ACC / %) AND VERIFICATION ACCURACY

(V-ACC / %) OF RESULT PAIR AND RESTORATION PAIR ON OUR TEST SET.

Methods Result Pair Restoration Pair
R-Acc V-Acc R-Acc V-Acc

InfoSwap [13] 4.2 18.8 92.8 84.9
DiffFace [16] 7.2 28.8 89.7 82.3

MobileFS (test only) [11] 10.8 31.5 88.0 81.4
BlendFace (test only) [17] 7.6 35.3 82.4 76.4

Mean 7.5 28.6 88.2 81.3

Fig. 3. The ROC curves of Result Pairs and Restoration Pairs on our test
set.

B. Qualitative Results

In this section, we present the visual results of our DRFSI.
As shown in Fig 2, we randomly select two cases from the
test set, which two of them (left of the dotted line) used
for train and another two (right of the dotted line) only used
for generalization test. In the first case, we can find that the
restored faces in area D have a certain traceability effect on the
identity information of the target faces, such as eye, mouse and
nose feature information, etc. At the same time, the attribute in-
formation of the target face, such as expression and demeanor,
is retained. In addition, for the example where the result
faces in area C have glasses (result diffface, result mobilefs),
the target faces restored by our DTFT also correctly delete
the glasses (recover diffface, recover mobilefs). In the second
case, it’s obvious that our traceability algorithm has effectively
restored identity information such as the eye and mouth parts
of the target face, as well as gender information.

C. Quantitative Results

1) Metrics: Given a source face, a target face and a restored
face, the identity similarity between the restored face and the
target face must exceed the similarity between the restored
face and the source face. Then we can calculate the restoration

TABLE II
ABLATION EXPERIMENTS DEMONSTRATING THE EFFECT OF

ATTRIBUTENET

Methods Base DRFSI
R-Acc V-Acc R-Acc V-Acc

InfoSwap [13] 86.2 79.5 92.8 84.9
DiffFace [16] 86.3 78.8 89.7 82.3

MobileFS (test only) [11] 85.6 80.3 88.0 81.4
BlendFace (test only) [17] 81.2 75.0 82.4 76.4

Mean 84.8 78.4 88.2 81.3

accuracy (R-Acc) as follows:

Restoration Accuracy =
pos

N
, (8)

where pos represents the number of samples that satisfy
sim

〈
Idrestore, Idtarget

〉
> sim

〈
Idrestore, Idsource

〉
, cosine

similarity is used to evaluate the sim ⟨·, ·⟩. N represents the
total number of test samples.

Moreover, we evaluate our algorithm via face verification,
which refers to assess whether two randomly selected facial
images represent the same individual. For the given M sets
of test facial image pairs, which include both positive and
negative sample pairs, predicted labels are obtained by deter-
mining whether the identity similarity of each pair exceeds a
specified threshold. Subsequently, face verification accuracy is
calculated using the method for standard binary classification
metrics.

2) Comparison to Result Pair: In this section, we quan-
titatively evaluate our method using the metrics introduced
above. The comparison in Table I provides an intuitive demon-
stration of our DRFSI effectiveness. We define two sets of
facial image pairs: the Result Pair consisting of source-target-
result combinations, and the Restoration Pair consisting of
source-target-restoration combinations. In Restoration Pair, the
restoration and target images are considered positive sample
pairs, whereas the result and source images are negative sample
pairs. Conversely, in Result Pair, the result and target images
are positive sample pairs, and the result and source images
are negative sample pairs. Since the result and source images
in the Result Pair share the same identity, similarly for the
restoration and target images in the Restoration Pair, we expect
much significantly lower Restoration Accuracy (R-Acc) and
Verification Accuracy (V-Acc) in the Result Pair compared to
the Restoration Pair. And as shown in Fig 3, the ROC curve
for the Result Pair should approach the lower right corner,
whereas the ROC curve for the Restoration Pair should align
with the norm, approaching towards the upper left corner.

D. Ablation Experiments

In this subsection, we conduct ablation experiments to
evaluate the effectiveness of AttributeNet. We classify our
framework into two configurations based on the inclusion or
exclusion of the AttributeNet (AN): (1) Base, an uncondi-
tional diffusion model utilizing only a denoising network; (2)
DRFSI, which combines AttributeNet with the Base model.
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The experimental results presented in Table II demonstrate that
the effectiveness of AN. Specifically, while an unconditional
diffusion model can initially restore the target face, it falls
in accurately tracing the target identity. AttributeNet leverages
decoupled facial attribute maps to improve the restoration by
ensuring the retention of critical target attributes through its
effective spatial control. Integrating AN leads to an average
improvement of 3.4% in R-Acc and 2.9% in V-Acc over Base.

V. CONCLUSIONS

In this paper, we study an important research problem, which
aims to restore the original target face from a face-swapped
deepfake image. Our research demonstrates that the synthetic
face still retains traceable features of the original face, enabling
its approximation and restoration. To address this problem, We
have developed a powerful diffusion-based framework, named
DRFSI. Extensive testing confirms the robust effectiveness and
generalization capabilities of our framework. We hope that our
efforts will inspire further research into the protection of facial
privacy.
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