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Abstract—This paper proposes a new hyperspectral unmixing
method that enhances the row sparsity of an abundance matrix
via a difference-of-convex (DC) approach. One promising un-
mixing technique is to promote the row sparsity by designing
and solving optimization problems. However, existing methods
are unable to both fully enhance the row sparsity and guarantee
the convergence of their optimization algorithms, resulting in
performance degradation. To address this limitation, we introduce
a DC approach to unmixing. First, we design a DC function that
promotes the row sparsity while preserving the energies of some
row vectors of an abundance matrix. Then, incorporating the
DC function, we formulate unmixing as a constrained DC opti-
mization problem. In addition, we develop an algorithm to solve
the optimization problem based on the proximal linearized DC
algorithm and the preconditioned primal-dual splitting algorithm
and guarantee its convergence to a critical point of the problem.
Experiments on synthetic and real HS images show that our
method is superior to existing methods.

I. INTRODUCTION

Hyperspectral (HS) images are cube data consisting of rich
spectral information and have various applications, such as
ecology, mineralogy, and agriculture [1]–[5]. Due to the trade-
off between spatial and spectral resolution, HS sensors do
not have sufficient spatial resolutions, resulting in containing
multiple components (called endmembers) in a pixel [6], which
is referred to as a mixel. The process of decomposing the mixel
into endmembers and their abundances is called unmixing.
Unmixing has been actively studied in the remote sensing field
because it is essential for HS image analysis [7]–[9].

One major category of unmixing tasks is non-blind unmix-
ing, which estimates abundances using an endmember library
consisting of all possible pre-collected spectral signatures that
may appear in a target HS image. This indicates that the HS
image often contains a smaller number of spectral signatures of
the endmember library, i.e., many of the corresponding abun-
dances are zeros. Therefore, the matrix created by arranging
the abundances corresponding to each endmember in the row
direction is exactly row sparse (we call the matrix abundance
matrix).

To capture the exact row sparsity, non-blind unmixing
methods often solve optimization problems that incorporate a
function promoting the row sparsity1. Many of these methods
adopt a mixed ℓ1,2-type norm [10]–[15]. Since a mixed ℓ1,2-
type norm is convex, these methods formulate unmixing as a
convex optimization problem and thus can obtain stable results.
As a more advanced method, the authors in [16] employ a

mixed ℓ0,2 pseudo norm, a nonconvex function that more
appropriately models row sparsity.

However, the existing methods have the following limita-
tions. The convex approach is weak in enhancing the row
sparsity because minimizing the mixed ℓ1,2-type norm of an
abundance matrix almost equally reduces all the ℓ2 norms of
the row vectors of the matrix. In the nonconvex approach, the
obtained abundance matrix is not fully row sparse because the
sequence generated by the optimization algorithm does not
converge to a solution of the optimization problem involving a
mixed ℓ0,2 pseudo norm. Therefore, to improve the unmixing
performance, the following question arises: Could we fully
enhance the row sparsity while guaranteeing the convergence
of the optimization algorithm?

Based on the above discussion, we introduce a difference-
of-convex (DC) approach to unmixing. The DC handles the
difference of convex functions and convex functions, and
thus provides the improvements of many signal processing
performance [17]–[21], including the enhancement of (group)
sparsity. In addition, a DC algorithm generates the sequence
that converges to a critical point of a DC optimization problem.
Our contributions are listed as follows.
• We design a new DC function that promotes row sparsity

while preserving the energies of some row vectors of a
matrix.

• We formulate unmixing as a constrained DC optimization
problem that incorporates the DC function.

• Based on the proximal linearized DC algorithm (PLDC) [22]
and the preconditioned primal-dual splitting algorithm (P-
PDS) [23], [24], we develop an algorithm that generates
the sequence converging to a critical point of the DC
optimization problem.

Finally, we illustate the effectiveness of our method through
unmixing experiments using both synthetic and real datasets.

II. PRELIMINARIES

A. Notations

Vectors and matrices are respectively denoted by lowercase
and capitalized boldface letters (e.g., x and X), and the
element at the i-th row and j-th column of matrix X is

1A deep neural network-based method has also been proposed [25]. How-
ever, as experimentally shown in Section IV, row sparsity-based methods are
more suitable for non-blind unmixing.



denoted by Xi,j or [X]i,j . For matrices X,Y ∈ Rm×n,
the inner product ⟨X,Y⟩, the ℓ1-norm ∥X∥1, the Frobenius
norm ∥X∥F , the mixed ℓ1,2-norm grouped by row ∥X∥1,2
are defined by ⟨X,Y⟩ =

∑
i,j Xi,jYi,j , ∥X∥1 =

∑
i,j |Xi,j |,

∥X∥F =
√
⟨X,X⟩, and ∥X∥1,2 =

∑
i

√∑
j X

2
i,j , respec-

tively. Let G : Rm1×n1 → Rm2×n2 be a linear operator. A
linear operator G∗ : Rm2×n2 → Rm1×n1 is called the adjoint
operator of G if it satisfies ⟨G(X),Y⟩ = ⟨X,G∗(Y)⟩ for any
X ∈ Rm1×n1 and Y ∈ Rm2×n2 .

B. Weighted Sorted Mixed ℓ1,2 Norm [26]

For a matrix A =
[
a1 · · · am

]⊤ ∈ Rm×n, the weighted
sorted mixed ℓ1,2 norm of A with the weight w ∈ Rm is
defined by

ϕw(A) =

m∑
j=1

wj∥aπA(j)∥2, (1)

where πA(j) (∀j = 1, . . . ,m) is the index corresponding to
the j-th vector of the vectors obtained by sorting a1, . . . ,am
in descending order in an ℓ2 norm, i.e., ∥aπA(1)∥2 ≥ · · · ≥
∥aπA(m)∥2. Note that if the weight vector w satisfy w1 ≥
. . . ≥ wm, ϕw is convex.

C. Proximal Linearized Difference-of-Convex Algorithm [22]

Let g, h : Rm×n → (−∞,∞] be proper lower-
semicontinuous convex functions and g−h is bounded below.
We consider difference-of-convex minimization (DC) problems
of the form:

min
X∈Rn1×n2

g(X)− h(X). (2)

First, we introduce the proximity operator of g with a
parameter γ > 0 as follows:

proxγg(X) = argmin
Y

g(Y) +
1

2γ
∥X−Y∥2F . (3)

We also define the subdifferential of h by

∂h(X) = {U ∈ Rm×n | ∀Y, ⟨Y −X,U⟩+ h(X) ≤ h(Y)}.
(4)

Then, PLDC solves Prob. (2) by the following procedures:
for a given µ > 0, iterate Find Z(t+1) ∈ ∂h(X(t));

X(t+1) ← proxµg(X
(t) + µZ(t+1));

t = t+ 1;
(5)

We summarize the theoretical results for the convergence of
PLDC as follows:

Theorem II.1 (Convergence of the sequence generated by
PLDC [22]). Let {Xt}t∈N be generated by Algorithm (5).
Then, it is satisfied that limt→+∞ ∥X(t+1) − X(t)∥F = 0.
Furthermore, suppose that {X(t)}t∈N is bounded, and let X∗

and Z∗ be cluster-point of X(t) and Z(t), respectively. Then,
every cluster-point of {X(t)}t∈N is a critical point of the
objective function in Prob. (2), i.e., Z∗ ∈ ∂g(X∗) ∩ ∂h(X∗).

Algorithm 1 An algorithm for solving Prob. (13)
Input: V, E, λ, µ, ε, and η
Output: A(k), S(k)

1: Initialize A(0), S(0), Y(0)
1 , Y(0)

2 , Y(0)
3 , Y(0)

4 , and Y
(0)
5 ;

2: Set γ1 = 1
10+σ1(E)2 , γ2 = 1

2 , and γ3 = 1
2 ;

3: while until ∥(A(k+1)+S(k+1))−(A(k)+S(k))∥F

∥A(k)+S(k)∥F
≤ 10−5 do

4: Ã← A(k)−γ1(Y
(k)
1 +D∗(Y

(k)
2 )+E⊤Y

(k)
3 +Y

(k)
4 );

5: A(k+1) ← proxγ1ι[0,1]m×n
(Ã);

6: S(k+1) ← proxγ2ιB1,η
(S(k) − γ2(Y

(k)
3 +Y

(k)
5 ));

7: Ỹ1 ← Y
(k)
1 + γ3(2A

(k+1) −A(k));
8: Y

(k+1)
1 ← Ỹ1 − γ3prox 1

γ3
∥·∥1,2

( Ỹ1

γ3
);

9: Ỹ2 ← Y
(k)
2 + γ3D(2A(k+1) −A(k));

10: Y
(k+1)
2 ← Ỹ2 − γ3prox λ

γ3
∥·∥1

( Ỹ2

γ3
);

11: Ỹ3 ← Y
(k)
3 + γ3(E(2A(k+1) − A(k)) + (2S(k+1) −

S(k)));
12: Y

(k+1)
3 ← Ỹ3 − γ3prox 1

γ3
ιBV

F,ε

( Ỹ3

γ3
);

13: Ỹ4 ← Y
(k)
4 + γ3(2A

(k+1) −A(k));
14: Y

(k+1)
4 ← Ỹ4 − γ3prox 1

2µ1γ3
∥·−A′∥2

2

( Ỹ4

γ3
);

15: Ỹ5 ← Y
(k)
5 + 2(S(k+1) − S(k));

16: Y
(k+1)
5 ← Ỹ5 − γ3prox 1

2µ1γ3
∥·−S′∥2

2

( Ỹ5

γ3
);

17: k ← k + 1;

III. PROPOSED METHOD

A. Row-Sparsity Enhancement Weighted Sorted Function

Let a weight w ∈ Rm be for k ∈ {1, . . . ,m}

wj =

{
1, if j ≤ k;

0, otherwise.
(6)

For a matrix A ∈ Rm×n, we define a new weighted sorted
function with the weight w by

Φw(A) = ∥A∥1,2 − ϕw(A) =

m∑
j=k+1

wj∥aπA(j)∥2. (7)

By minimizing Eq. (7), we can promote the row sparsity
of A while preserving the energies of the top k vectors
aπA(1), . . . ,aπA(k). Since the weight w in (6) satisfies w1 ≥
· · · ≥ wm, ϕw in (7) is convex. Therefore, Φw is a DC func-
tion. In addition, Φw is bounded below by 0, i.e., Φw(A) ≥ 0
for any A ∈ Rm×n.

B. Problem Formulation

Let E ∈ Rl×m, Ā ∈ Rm×n, S̄ ∈ Rl×n, and N ∈ Rl×n be
an endmember library, a true abundance matrix, sparse noise,
and Gaussian noise, respectively. Then, the observed HS image
V is modeled according to the linear mixing model as

V = EĀ+ S̄+N. (8)



TABLE I
SRES AND RMSES IN THE EXPERIMENTS.

Images Noise
σ / pS

Metrics
Methods

CLSUnSAL JSTV LGSU MdLRR RSSUn-TV UnDIP Ours Ours
[10] [11] [13] [14] [16] [25] (k = 0.1m) (k = 0.2m)

Synth
0.1 / 0 SRE 3.22 5.19 5.78 6.37 3.14 -0.11 11.91 11.90

RMSE 0.0779 0.0621 0.0580 0.0543 0.0787 0.1143 0.0286 0.0287

0.1 / 0.05 SRE 1.60 5.10 2.41 2.40 0.73 0.02 11.58 11.40
RMSE 0.0939 0.0628 0.0855 0.0857 0.1039 0.1126 0.0298 0.0304

Real
0.1 / 0 SRE 8.27 3.67 6.91 7.02 6.63 0.24 9.47 9.47

RMSE 0.0469 0.0797 0.0549 0.0542 0.0566 0.1183 0.0409 0.0409

0.1 / 0.05 SRE 6.55 3.56 3.70 2.88 3.66 0.44 8.14 8.14
RMSE 0.0572 0.0807 0.0794 0.0873 0.0798 0.1156 0.0476 0.0476

Based on Eq. (8), we formulate an unmixing problem as the
following constrained DC minimization problem:

min
A,S

Φw(A) + λ∥D(A)∥1

s.t. A ∈ [0, 1]m×n, EA+ S ∈ BVF,ε, S ∈ B1,η, (9)

where λ > 0 is a balancing parameter and D is a spatial
difference operator. The first term promotes the row sparsity of
A. The second term captures the spatial piecewise smoothness
of A. The first constraint guarantees that abundances are within
[0, 1]. Note that we do not explicitly adopt the abundance sum-
to-one constraint because it tends to be a strong assumption for
LMM-based unmixing in real-world situations due to spectral
variabilities [7]. The second constraint serves as data-fidelity
to the observed HS image V with the Frobenius norm ball
BVF,ε := {X | ∥V −X∥F ≤ ε} with the center V and radius
ε. The third constraint evaluates the sparsity of S with the ℓ1-
norm ball B1,η := {X | ∥X∥1 ≤ η} with radius η. Using such
constraints instead of data-fidelity and sparse terms makes it
easy to adjust hyperparameters since the parameters ε and η
can be determined based only on noise intensity2.

C. Optimization Algorithm

Using the indicator functions3 of [0, 1]m×n, BVF,ε, and B1,η ,
we reformulate Prob. (9) as the following equivalent problem:

min
A,S
∥A∥1,2 + λ∥D(A)∥1 + ι[0,1]m×n(A)

+ ιBV
F,ε

(EA+ S) + ιB1,η
(S)− ϕw(A). (10)

Since λ∥D(A)∥1, ι[0,1]m×n(A), ιBV
F,ε

, and ιB1,η are convex
and ∥A∥1,2−ϕw(A) is bounded below, the objective function
in Prob. (10) is bounded below. Therefore, Prob. (10), i.e.,
Prob. (9) can be solved by PLDC in (5).

In what follows, we derive specific computations of our
PLDC-based algorithm for solving (9).

2Indeed, this kind of constrained formulation has played an important role
in facilitating parameter setup of signal recovery problems [27]–[31].

3For a given nonempty closed convex set C ⊂ Rm×n, the indicator
function of C is defined by ιC(X) := 0, if X ∈ C; ∞, otherwise.

1) Step 1 of our PLDC-based algorithm for solving
Prob. (9): First, we need to calculate one of the subgradients of
ϕw at A(t), i.e., Z(t)

A ∈ ∂ϕw(A(t)). The following proposition
helps us to calculate Z

(t)
A .

Proposition III.1. The subdifferential of weighted sorted
mixed ℓ1,2 norm ϕw is given by

∂ϕw(A) =
{
[u1 · · · um]⊤

∣∣∀j,uπA(j) ∈ ∂wj∥ · ∥2(aπA(j))
}
,

(11)
where

∂wj∥ · ∥2(aπA(j)) =

{
wj

∥aπA(j)∥2
aπA(j), if aπA(j) ̸= 0;

{wjz | ∥z∥2 ≤ 1}, if aπA(j) = 0.
(12)

The following gives a rough sketch of the proof of Proposi-
tion III.1: ∂ϕw(A(t)) satisfies Eq. (4) from the rearrangement
inequality [32, Theorem 6.1]. When aπA(j) = 0, we recom-
mend selecting z = 0.

2) Step 2 of our PLDC-based algorithm for solving
Prob. (9):: Let A′ = A(t)+µZ

(t)
A and S′ = S(t). Then, A(t+1)

and S(t+1) are given by solving the following optimization
problem:

min
A,S

1

2µ
∥A−A′∥22 +

1

2µ
∥S− S′∥22 + ∥A∥1,2 + λ∥D(A)∥1

+ ι[0,1]m×n(A) + ιBV
F,ε

(EA+ S) + ιB1,η
(S). (13)

Prob. (13) can be solved by the preconditioned primal-dual
splitting method [23] and variable-wise diagonal precondi-
tioning method [24]. The algorithm for solving Prob. (13)
is summarized in Algorithm 1. The proximity operators in
Algorithm 1 are calculated as shown in [33], [34].

Remark III.1 (Convergence of our PLDC-based algorithm).
The proximity operators of ι[0,1]m×n and ιB1,η

are the pro-
jections onto [0, 1]m×n and B1,η . This indicates that for any
t ∈ N, A(t) and S(t) satisfy A(t) ∈ [0, 1]m×n and ∥S(t)∥1 ≤ η,
i.e., {A(t),S(t)}t∈N is bounded. Therefore, from Theorem II.1,
{A(t),S(t)}t∈N is guaranteed to converge to a critical point of
Prob. (9).



Fig. 1. Unmixing results of abundance map matrices for the experiments using the synthetic HS image with σ = 0.1 of Gaussian noise. Vertical and horizontal
axes are the indices of endmembers and pixels, respectively. Expanded area shows the 8th through 12th endmembers. (a): Original abundance maps. (b):
CLSUnSAL [10], (c): JSTV [11], (d): LGSU [13], (e): MdLRR [14], (f): RSSUn-TV [16], (g): UnDIP [25], (h): Ours (k = 0.1m), and (i): Ours (k = 0.2m).

(a) (b) (c) (d) (e) (f) (g) (h) (i)

Fig. 2. Unmixing resutls of abundance maps. Top row shows the 22nd abundance maps of the experiments using the synthetic HS image with σ = 0.1 of
Gaussian noise. Bottom row shows the 35th abundance maps of the experiments using the real HS image with σ = 0.1 of Gaussian noise and pS = 0.05 of
sparse noise. (a): Original abundance maps. (b): CLSUnSAL [10], (c): JSTV [11], (d): LGSU [13], (e): MdLRR [14], (f): RSSUn-TV [16], (g): UnDIP [25],
(h): Ours (k = 0.1m), and (i): Ours (k = 0.2m).

IV. EXPERIMENTS

A. Experimental Setup
To illustrate the effectiveness of our method, we compare it

with six methods, including state-of-the-art ones: four convex-
based methods CLSUnSAL [10], JSTV [11], LGSU [13], and
MdLRR [14], one nonconvex-based method RSSUn-TV [16],
and one deep neural network-based method UnDIP [25]. The
parameters of the existing methods were set to the values
recommended in their references.

Experiments were performed using a synthetic image and
a real image. For a synthetic image, we generate a ground-
truth image of size 100 × 100 × 224 using the hyperspectral
data retrieval and analysis toolbox4 and four spectral signatures
from the U.S. Geological Survey Spectral Library5. For a
real image, we use Jasper Ridge as a ground-truth image of
size 100× 100× 187 after removing several noisy bands and
cropping the image. For both image experiments, by adding
46 spectral signatures from the USGS Spectral Library, we
used E containing a total of m = 50 spectral signatures. The
pixel values were normalized into [0, 1]. Contaminating these
ground-truth videos by white Gaussian noise with 0.1 of the
standard deviation σ and Salt & Pepper noise with 0 and 0.05
of the rate pS, we generated observed HS images.

For the PLDC-based algorithm, we set the stopping criterion
as ∥A(t+1) − A(t)∥F /∥A(t)∥F ≤ 10−5. We initialized A(0)

and S(0) by zero matrices. The parameters λ, µ, ε, and

4https://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Imagery
Synthesis tools for MATLAB, accessed on Feb. 5, 2023

5https://www.usgs.gov/programs/usgs-library, accessed on Aug. 7, 2023

η were set to 0.1, 10, 0.95σ
√
(1− pS)nl, and 0.45pSnl,

respectively. For the threshold k in Eq. (6), it is preferable
to give the number of endmembers involved in a target
HS image. However, in real-world situations, the number of
endmembers is often unknown. Therefore, in this experiment,
k was set in the following two ways based on the number
of spectral signatures contained in the endmember libraries:
k = 0.1m = 5 and k = 0.2m = 10. Note that the former is
closer to the actual value of 4. For the quantitative evaluation
of abundance maps, we used the signal reconstruction error
(SRE): SRE[dB] := 10 log10(∥Ā∥2F /∥Ā − Â∥2F ), the root-
mean-square error (RMSE): RMSE := ∥Ā− Â∥F /

√
mn.

B. Results and Discussion
Table I shows SREs and RMSEs of unmixing results. The

best and second-best results are highlighted in bold and un-
derlined. Our method was superior to all the existing methods.
Compared to when k = 5, the performance did not drop as
much when k = 10.

Fig. 1 shows the abundance matrices for the experiments
using a synthetic HS image with σ = 0.1 of Gaussian noise.
The abundance matrices of CLSUnSAL, RSSUnTV, LGSU,
UnDIP, and MdLRR had slightly large values even when the
corresponding endmembers did not actually exist in the ground
truth HS images. The abundance matrix of JSTV had smaller
values than the original abundance maps corresponding to the
endmembers that exist in the ground truth HS images. These
results indicate that all the existing methods did not accurately
enhance the row sparsity. In contrast, our method enhanced the
row sparsity of the abundance matrix.



Fig. 2 depicts the abundance maps. All the existing methods
did not estimate the abundance maps while removing noise.
Specifically, the abundance maps of CLSUnSAL, RSSUnTV,
LGSU, and MdLRR have residual noise. The abundance maps
of JSTV were over-smooth. UnDIP does not employ a func-
tion that explicitly promotes the row sparsity; therefore, the
intensities of the abundance maps are lower than the original
abundance maps. In contrast, our method exactly estimates the
abundance maps even when k = 10.

V. CONCLUSION

We proposed a new unmixing method via a DC approach.
First, we designed a DC function that enhances the row sparsity
of abundance maps and formulated unmixing as a constrained
DC optimization problem that incorporates the DC function.
The algorithm solving the optimization problem was developed
based on PLDC and P-PDS. The experiments showed that our
method can enhance the row sparsity of abundance maps and
thus obtained superior results than existing methods.
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