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Abstract—The paper proposes a novel algorithm termed
TMDLMS (Trainable Multi-task Diffusion Least Mean Squares)
to collaboratively estimate multiple vectors, which are assumed to
have certain correlations, from observations obtained at multiple
nodes in the network. Adopting the concept of deep unfolding,
the proposed algorithm is obtained by unfolding iterative process
of the conventional MDLMS (Multi-task Diffusion Least Mean
Squares) algorithm, resulting in a multi-layered signal flow
graph reminiscent of neural networks. In this structure, the
parameters in the algorithm such as the step size of each layer are
considered as trainable parameters, allowing for optimization via
machine learning techniques, such as stochastic gradient descent
(SGD). Numerical experimental results indicate that, compared to
the conventional MDLMS using fixed parameters, the proposed
algorithm can boast the convergence rates and achieve lower
steady-state errors at the same time. The results demonstrate the
validity of the proposed approach under various conditions.

I. INTRODUCTION

In the fields of adaptive signal processing, Least Mean
Squares (LMS) algorithm [1] would be the most prominent
adaptive algorithm because of its simplicity and robustness.
While LMS has been widely used in various applications, it
utilizes its own measurement only in the update equation to
obtain the estimate of the unknown vector. This leads to the
development of diffusion LMS (DLMS) [2] for collaborative
estimation of a common unknown vector in distributed envi-
ronment. Moreover, DLMS has been extended to multi-task
diffusion LMS (MDLMS) [3], which can estimate different
unknown vectors but with certain correlations in collaborative
manner to cope with more intricate networks. However, LMS
based algorithms are known to suffer from slow rate of
convergence in general.

Model-driven machine learning (ML) [4] has become a
popular tool in communication systems in recent years. The
concept of model-driven ML is to merge principled algorithms
that have performance guarantees with tools derived from
ML techniques, aiming to combine the strengths of both ap-
proaches. Deep unfolding [5] is one of powerful model-driven
ML methods that fuses iterative optimization algorithms with
tools from neural networks to efficiently solve various tasks
in adaptive signal processing. As stated in [6], deep unfolding
takes an existing iterative algorithm with a predefined number
of iterations, unfolds it in the direction of time axis with
the multi-layer structure, and introduces a set of trainable
parameters. These parameters are then learned using deep

learning techniques, utilizing suitable loss functions, stochastic
gradient descent (SGD), and backpropagation. With learned
parameters, the unfolded algorithm can achieve better con-
vergence performance than that of original iterative algorithm
in range of tasks. Currently, deep unfolding has been applied
to various applications. For instance, hyperparameters of the
iterative shrinkage thresholding algorithm (ISTA) [7] has been
determined by using deep unfolding leading to the trainable
iterative shrinkage thresholding algorithm (TISTA) [8]. It has
been demonstrated that TISTA achieves a significantly faster
convergence rate compared to the conventional ISTA.

Previous research has integrated deep unfolding with LMS
based algorithms as well. Sasaki et al. combined deep unfold-
ing with both LMS and normalized LMS (NLMS) algorithms,
named TLMS and TNLMS, respectively [9]. Grounded in the
concept of deep unfolding, they treated the step size as a
learnable parameter within the iterative process. Numerical
results have indicated that this approach could enhance con-
vergence rates and reduce steady-state error with the TNLMS
algorithm showing particularly notable performance. Similarly,
NISHIHATA et al. [10] applied deep unfolding to the DLMS
algorithm, which has demonstrated an improved convergence
rate compared to the original DLMS by optimizing the step
size and edge weights.

Inspired by the prior works, this paper applies the deep
unfolding technique to the MDLMS algorithm, and proposes
a new algorithm termed “Trainable Multi-task Diffusion Least
Mean Squares” (TMDLMS). The algorithm is to collabora-
tively estimate multiple unknown vectors, which are presumed
to have certain correlations, from observation vectors collected
by multiple nodes in a network. We have unfolded the iterative
process of the MDLMS algorithm, resulting in a multi-layered
signal flow graph reminiscent of neural networks. Within this
structure, parameters in the algorithm, such as the step size,
are considered trainable. For optimizing these parameters, we
have employed optimization algorithms such as Adam [11]. To
assess the practical performance of the TMDLMS algorithm,
numerical experiments have been conducted under various cor-
relation conditions. The results have indicated that, compared
to MDLMS, the proposed algorithm boasts convergence rates
and achieves lower steady-state errors at the same time.



Fig. 1. Examples of two types of learning problems. (a) Single-task learning
problem. (b) Multi-task learning problem. [3]

II. REVIEW OF LMS, DLMS AND MDLMS ALGORITHMS

Here, we briefly review LMS, DLMS and MDLMS algo-
rithms implemented for the estimation of an unknown vector
(or unknown vectors) in the network as the basis of the
discussion in this paper.

A. Problem Setting

We consider a sensor network represented by an undirected
graph with N nodes. The presence of an edge between any two
nodes signifies the existence of a communication link between
them.

Assuming that the unknown vector to be estimated by node i
is wo

i ∈ RL×1, the linear measurement of the unknown vector
wo

i observed at node i at time k ≥ 0 is given by

d
(k)
i = u

(k)T
i wo

i + v
(k)
i , (1)

where u(k)
i ∈ RL×1 is a vector used for the linear measure-

ment by node i, and v
(k)
i is an additive white Gaussian noise

(AWGN) with mean of 0 and variance of σ2
v .

Depending on the relation among wo
i , the estimation prob-

lem of wo
i can be classified into a single-task learning problem

and a multi-task learning problem as shown in Fig. 1:
• Single-task learning problem: All nodes have a common

estimation target vector wo. That is, in this case we have

wo
i = wo, ∀i ∈ {1, . . . , N}

• Multi-task learning problem: Each node i tries to
estimate its own target vector wo

i , which is different
from the target vectors of other nodes. However, a certain
correlation among wo

i is often assumed, which enables us
to achieve collaborative estimation.

B. LMS Algorithm

Although the LMS algorithm is not designed for the esti-
mation in the network environment, it can be applied for the
problem by implementing the LMS algorithm at each node and
simply ignoring the existence of communication links among
the nodes.

In the LMS algorithm, the estimated vector ϕ(k)
i at time k

and node i is updated according to the following equation:

ϕ
(k+1)
i = ϕ

(k)
i + µu

(k)
i

(
d
(k)
i − u(k)T

i ϕ
(k)
i

)
, (2)

where the initial estimate for the vector ϕ(0)
i is often set to 0.

C. DLMS Algorithm

The DLMS algorithm [2] can achieve a collaborative estima-
tion for the single-task learning problem. The DLMS algorithm
consists of the LMS step responsible for signal estimation
and the averaging step that facilitates information exchange
between nodes.

In the LMS step, the estimated vector ψ(k)
i at time k and

node i is updated by using its own measurement as

ψ
(k+1)
i = ϕ

(k)
i + µu

(k)
i

(
d
(k)
i − u(k)T

i ϕ
(k)
i

)
, (3)

which is basically the same as the update equation of the LMS
algorithm.

Each node exchanges ψ(k)
i obtained in the LMS step with

its neighbor nodes j ∈ Ni, where Ni is a set of neighbors
of node i including i itself. Then, the updated estimate of the
vector in the averaging step is obtained at each node i by the
weighted average of ψ(k)

i based on the idea of the averaging
consensus technique. Specifically, the update equation in the
averaging step is given by

ϕ
(k)
i =

∑
j∈Ni

cijψ
(k)
j , (4)

where cij is the weight given for ψ(k)
j obtained from node j in

the averaging update at node i. The choice of the weight cij has
an impact on the convergence performance of DLMS. In this
paper, we employ an established approach named Metropolis
rule [12] given by

cij =


1

max(|Ni|,|Nj |) if j ∈ Ni and i ̸= j

1−
∑

j∈N−
i
cij if i = j

0 otherwise

, (5)

where |Ni| denotes the cardinality of the set Ni, and N−
i

denotes the set Ni but without node i.

D. MDLMS Algorithm

The MDLMS algorithm has been proposed by Chen et al.
in [3] for the multi-task learning problem. To be more precise,
they have considered more general problem of the clustered
multi-task learning problem than the multi-task learning prob-
lem, where nodes in the same cluster share a common target
vector. Thus, the multi-task learning problem considered in
this paper can be regarded as a special case of the clustered
multi-task learning problem, where the number of nodes in
each cluster is fixed to one.
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The update equation of the MDLMS algorithm for the multi-
task learning problem is given by

ϕ
(k+1)
i = ϕ

(k)
i + µu

(k)
i

[
d
(k)
i − u(k)T

i ϕ
(k)
j

]
+ ηµ

∑
j∈N−

i

ρij

(
ϕ

(k)
j − ϕ(k)

i

)
, (6)

where a regularization term to delineate the interrelation of
estimated vectors across neighbor nodes is incorporated.The
non-negative coefficient ρij modulate the regularization inten-
sity, which is achieved by applying the Metropolis rule [12],
as specified in Equation (5). Recognizing inter-task relation-
ships is crucial, offering potential enhancements in estimation
precision.

III. PROPOSED TMDLMS ALGORITHMS

Here, we propose TMDLMS algorithm by treating param-
eters of the conventional MDLMS algorithm in each iteration
to be independent learnable parameters, and optimize them by
supervised learning using the pair of the measurement vector
and the corresponding desired signal as training data with some
SGD based algorithm.

We introduce the proposed TMDLMS algorithm by treating
the parameters µ and η of the MDLMS algorithm to be the
independent learnable parameters. Namely, in the proposed
algorithm, µ and η in different iteration become distinct learn-
able parameters denoted as µ(k) and η(k). Thus, the update
equation of the TMDLMS algorithm is given by

ϕ
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i =ϕ
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i + µ(k)u

(k)
i

[
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i ϕ
(k)
j

]
+ η(k)µ(k)

∑
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(
ϕ

(k)
j − ϕ(k)

i

)
. (7)

The time variant parameters µ(k) and η(k) are optimized by
using SGD, where the loss function is defined as

J
(k)
i =

1

N

N−1∑
i=0

∥∥∥d(k)i − y
(k)
i

∥∥∥2
2
, (8)

where

y
(k)
i = u

(k)T
i ϕ

(k−1)
i . (9)

Then, we describe the gradient descent-based approach in
the TMDLMS algorithm, assuming the size of the batch to be
B = 1 for simplicity. The partial differentiation of the loss
function J

(t)
i at the t-th round of the incremental training with

respect to the step size µ(k−τ)
i and the regularization coefficient

η
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i are given by
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IV. NUMERICAL RESULTS

We have conducted numerical experiments of the system
identification problem as an example of the multi-task learning
problem in order to evaluate the performance of the proposed
TMDLMS algorithm in comparison with that of conventional
algorithms such as LMS, DLMS and MDLMS.

A. Experimental Setup

In the numerical evaluations, we consider to identify the
system characterized by the target vectors wo

i ∈ RL×1 (i =
1, . . . , N), which corresponds to node i in the network of N =
10 nodes, from the linear observations of

d
(k)
i = u

(k)T
i wo

i + v
(k)
i , (12)

where the measurement noise v
(k)
i is assumed to follow

N (0, 0.1), and the length of the target vector is set to L = 10.
The vector u(k)

i is used to obtain the linear measurement d(k)i

at node i and time k, whose elements are generated from
independent Gaussian distribution with mean of 0 and variance
of 1.

For the network structure, we have randomly generated the
10-node network, where all nodes are randomly positioned
within a square region of side length 1/

√
3. Edges are estab-

lished between nodes if their distance was less than or equal
to 0.25. We have further ensured that each node had at least
one neighboring node.

The target vectors wo
i are systematically generated based

on the network structure as follows: Initially, we generate the
target vector wo

1 of node 1 as a sample from the multivariate
Gaussian distribution N (0, I). Then, for the other nodes, if
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node j is adjacent to node i whose target vector wo
i has been

already generated, we generate the target vector of node j as

wo
j =

1√
1 + σ2

(wo
i + δw∗

j ), (13)

where δw∗
j is a sample from the multivariate Gaussian dis-

tribution N (0, σ2I). Note that the value of σ2 can control
the similarity of the target vectors of the neighboring nodes.
Namely, if σ2 is smaller, the target vectors of different nodes
are similar, and if σ2 is larger, the target vectors are more
different.

In the proposed TMDLMS, we have employed Adam [11]
as the optimization algorithm and utilized Optuna [13] to
determine the hyper-parameters, such ad the learning rate
and the initial value. Optuna [13] is employed to optimize
the loss function J

(k)
i , which quantifies the error between

the model output and the target values. The optimization
process is conducted through multiple trials, where Optuna
selects a set of initial values for the hyperparameters, such
as µ(k) and η(k), from predefined ranges in each trial. These
hyperparameters are then used to update the model, and the
loss value for the current trial is computed. By iteratively
exploring different hyperparameter combinations and using the
loss value feedback from each trial, Optuna gradually narrows
the search space.As the trials progress, Optuna dynamically
adjusts its hyperparameter search strategy based on historical
data, steadily converging toward the optimal solution.

B. Performance Evaluation

Figures 2-4 depict the learning curves of the proposed
TMDLMS algorithms, accompanied by the profiles of the step
size µ(k) and η(k) obtained by the proposed deep unfolding
approach under the condition of σ2 = 0.01. In the figures,
”TMDLMS (µ(k))” and ”TMDLMS (µ(k) and η(k))” stand for
the performance of the proposed TMDLMS with the learnable
parameter(s) of µ(k) only ( η is fixed to 0.1) and of µ(k) and
η(k), respectively. For a comprehensive evaluation, we have
also presented the performance of the LMS, the DLMS, and
the MDLMS algorithm with fixed parameters in the figures.
As observed in Figure 2, both proposed algorithms achieve
better convergence performance compared to the conventional
schemes, with the trainable η achieving the lowest steady-state
error. Figure 3 reveals that the learned step size µ(k) tends
to decrease as iterations progress, aligning qualitatively with
conventional heuristic variable step size approaches.

Figures 5-7 illustrate the learning curves and the profiles
of the parameters of the proposed TMDLMS algorithm under
the condition of σ2 = 0.001, which is smaller than the
previous case. As seen in Figures 5, the DLMS achieves
better performance than the standalone LMS algorithm. This
is because the DLMS algorithm can share information with
neighboring nodes, which improves the accuracy of weight
estimates. The proposed TMDLMS algorithms can outperform
other existing schemes in terms of both the convergence rate
and the steady-state error in this case as well.
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Fig. 2. Learning curve of proposed method (σ2 = 0.01)
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Fig. 3. Profile of step size µ(k) of proposed TMDLMS (σ2 = 0.01)
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Fig. 4. Profile of η of proposed TMDLMS (σ2 = 0.01)
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Fig. 5. Learning curve of proposed method (σ2 = 0.001)
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Fig. 6. Profile of step size µ(k) of proposed TMDLMS (σ2 = 0.001)
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Fig. 7. Profile of η of proposed TMDLMS (σ2 = 0.001)
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Fig. 8. Learning curve of proposed method (σ2 = 0.1)
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Fig. 9. Profile of step size µ(k) of proposed TMDLMS (σ2 = 0.1)

Figures 8-10 present the learning curves and the profiles of
the parameters of the proposed TMDLMS algorithm under the
condition of σ2 = 0.1.

As illustrated in Figure 8, when σ2 is high, the performance
of the DLMS is degraded significantly, because it assumes that
the target vectors of all nodes are in common.

The MDLMS algorithm, on the other hand, can achieve
better performance than the standalone LMS algorithm even
in such a case. While they get information from other nodes,
they can cope with the difference of target vector of each
node. The proposed TMDLMS algorithms demonstrate a faster
convergence and a lower steady-state error again compared to
the existing algorithm. However, in this case, it’s not appar-
ent which of the two scenarios of the proposed TMDLMS,
trainable η or non-trainable η, performs better. It might be
said that, under the condition of σ2 = 0.1, the trainable η has
small impact on the convergence performance.
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Fig. 10. Profile of η of proposed TMDLMS (σ2 = 0.1)

V. CONCLUSION

We have proposed the TMDLMS algorithms by introducing
learnable variable parameters into the MDLMS algorithm
and optimizing those parameters with the machine learning
approach using the idea of deep unfolding. Through numerical
experiments of the system identification problem, we have
verified the validity of the proposed approach, demonstrating
that they can achieve a faster convergence rate and a reduced
steady-state error concurrently. Additionally, the trainable pa-
rameter η plays a role in influencing the convergence speed and
steady-state error. However, the exact nature of this influence
warrants further in-depth experimentation.
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