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Abstract—It is crucial to conduct parameter efficient learning
to adapt a large-scaled pre-trained backbone model to a down-
stream task where the desirable performance could be achieved
for low-resource automatic speech recognition (ASR). However,
the overfitting problem is prone to happen when the model adap-
tation is performed through fine-tuning individual parameters.
The previous studies have explored different data augmentation
methods to increase the size of training samples to enrich the data
coverage and accordingly alleviate the overfitting issue in model
training. In particular, this paper presents a new adversarial
training for ASR based on a frozen pre-trained backbone model
where the adversarial data augmentation is implemented so that
a small amount of controllable parameters in adapters can be
sufficiently estimated. In this study, the adversarial speech data
are generated by adding the adversarial perturbations when
training the adapters in an ASR model. The gradients of the
intermediate adversarial examples are accumulated to calculate
the augmented speech samples. The experiments on ASR using
Common Voice and LibriSpeech datasets show the merit of the
proposed adversarial augmentation and adaptation in terms of
error rate and model size.

I. INTRODUCTION

Automatic speech recognition (ASR) is built as an optimized
computation model which is developed to automatically con-
vert a human speech utterance into the corresponding word
sequence. Different from speaker recognition, which attempts
to identify the speaker who uttered the speech, ASR aims to
recognize the lexical content from a speech signal. Tradition-
ally, ASR was built with the acoustic model based on the
hidden Markov model combined with Gaussian mixture model
as well as the language model based on n-gram. Nowadays, the
deep neural network model combining the acoustic model and
language model in an end-to-end manner has been successfully
developed to achieve a powerful performance in a sequence-
to-sequence domain mapping from speech signal to text string
where the massive trainable parameters are configured and
the huge amount of training data is required. Importantly, the
transformer [1] was exploited to build an end-to-end encoder-
decoder framework which has shown dominant performance
in a variety of tasks ranging from natural language process-
ing (NLP) to computer vision (CV). Transformer was built
according to the scheme of self attention and cross attention
over individual and mutual sequences in source domain and
target domain. More recently, different types of transformer
have been designed to improve ASR by handling various issues
in model size, memory capacity and representation efficiency
[2], [3], [4]. However, a high-performance transformer rely
on a large amount of neural network parameters as well as a

huge collection of training utterances. A meaningful approach
is to develop an ASR for a downstream task with a specific
speaking style or under a different surrounding environment.
Such an approach has been applied in many applications where
a fine-tuning work was carried out by following a pre-trained
backbone model using a limited amount of adaptation data [5].

In general, a large-scaled pre-trained transformer was es-
timated from a large amount of training data by using su-
pervised, unsupervised and self-supervised learning methods.
The data-driven transformer model could be sufficiently trained
to cover various rules of syntax and grammar. Continual
training is feasible to obtain desirable performance by using
a pre-trained model. To customize the transformer to leverage
knowledge transfer to fit a specific task using low-resource
data in a target domain, it is straightforward to conduct fine-
tuning for the encoder and decoder parameters in a pre-trained
model. For the pre-trained model in ASR applications, the
model is learned from audio signal and applied to calculate
the audio features for a downstream task. The main-stream
pre-trained ASR models such as wav2vec2.0 [6] and HuBERT
[7] are seen as the variants of transformer which are similar
in model architecture. In addition, the training procedure of
ASR models is similar to that of pre-trained language models.
The training objective aims to correctly predict or recover
the masked input segments. Nevertheless, purely fine-tuning
is easily overfitting in training process and likely dropping in
ASR performance. It is meaningful to conduct data augmenta-
tion to mitigate the overfitting issue. A simple and general
way to data augmentation for ASR could be implemented
by applying the SpecAugment [8]. This method treated the
Mel spectrum as an image sample. A kind of translational
data enhancement was performed. Several consecutive rows
and columns on the spectrum matrix were randomly crossed
out. A resulting model was trained in a self-supervised way to
enhance the capability of learning representation in time and
frequency dimensions. There were no additional parameters
and calculations. In addition, some other straightforward aug-
mentation methods such as the pitch shift, time shift or noise
addition to original audio speech data also worked well. This
study deals with the overfitting issue in model construction for
speech recognition based on a frozen large-scaled pre-trained
backbone model where the small-scaled controllable adapter
is learned from low-resource adaptation data [9]. A new
adversarial augmentation and adaptation method is proposed to
implement a parameter efficient learning approach to improve
model robustness in presence of adversarial perturbations. The



training objective is developed to introduce the augmented data
to ensure an extended and smoothed decision boundary to meet
the local Lipschitz condition [10]. The experiments on various
languages show the merit of the proposed method.

II. ADVERSARIAL AUGMENTATION AND ADAPTATION

Adversarial learning is known as a powerful machine learn-
ing paradigm which is feasible to build a robust model in
presence of adversarial perturbation. This study presents an
adversarial training algorithm to build a parameter efficient
ASR model using adapter [11], [12].
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Fig. 1. Illustration of an adversarial example which is seen as a noisy speech
signal with an additive perturbation noise.

A. Adversarial robustness

In general, deep learning is prone to build a model θ which is
vulnerable to the adversarial example [13]. Such an example
x + δ is basically seen as the addition of an imperceptible
perturbation δ on the original example x which likely leads
to a wrong prediction of output y. Figure 1 illustrates how
an adversarial example of speech signal is observed. The
adversarial example is considered as an augmented sample
which is merged in training for the adapter parameter θ
where a backbone ASR model ϕ is provided and frozen. The
perturbation noise δ and the model parameter θ are jointly
estimated from a dataset D = {x, y} by following

min
θ

E(x,y)∼D

{
1

N

N∑
i=1

max
δi

[L (fθ,ϕ (x+ δi−1) , y)]

+ KL (fθ,ϕ(x)∥fθ,ϕ (x+ δN ))} .
(1)

where δi denotes the perturbation at iteration i and totally N
iterations are run. Correspondingly, the worst-case perturbation
with the highest loss function L is estimated and then incor-
porated to train the optimal controlled model θ with the lowest
loss in L where the classification outputs fθ,ϕ using original
speech x and perturbed speech x + δN in the last iteration
N are optimally near by with the smallest Kullback-Leibler
(KL) divergence. Basically, this learning process is seen as
a two-player game consisting of the players of finding the
perturbation δ and then estimating the model θ. An adversarial
robustness can be achieved accordingly [14], [15] by merging
the adversarial examples x+ δ in training for the controllable
adapter θ. Basically, the worst-case perturbation may severely
change the output of prediction. The proposed model is trained
to improve the robustness of ASR by utilizing the perturbed

speech data. Finding the perturbed speech corresponds to
implement the generation step also called the adversarial
attack. Alternatively, finding the estimated ASR adapter by
minimizing the classification loss corresponds to carry out the
discrimination step which is also called the adversarial defense.
Adversarial training is seen as a process of fulfilling attack and
defense for training a robust model.

B. Attack and defense

The key idea of adversarial training is to generate the
adversarial examples that maximize the loss and simultane-
ously use these adversarial examples to train the model by
minimizing the loss. Minimax optimization is comparable to
fulfill an attack and defense process towards training a robust
ASR model via a generation step and a discrimination step.
The generation step for finding the perturbation is considered
an attack while the discrimination step for training an ASR
controllable model is acted as a defense against the attack.

In [16], the so-called fast gradient sign method (FGSM)
was proposed as an approach to estimate the perturbation.
Considering a supervised learning for a model fθ from input
sample x and its corresponding label y, FGSM is employed
to solve Eq. (1) and estimate the perturbation by an iterative
updating formula

δ′ ← δ + ϵ · sign(gδ) (2)

where ϵ denotes the learning rate, δ′ denotes the updated
perturbation, and gδ denotes the gradient

gδ = ∇δL(fθ,ϕ(x+ δ), y). (3)

FGSM generates a perturbation δ for an addition with the
input x. The estimation of perturbation is along the direction
of the gradient towards the maximum value of loss function.
In addition, an alternative approach to worst-case perturbation
where the perturbation is scaled according to a normalized
gradient without using the sign function, also known as a fast
gradient method (FGM) [17] in a form of

δ′ ← δ + ϵ · gδ/∥gδ∥2. (4)

FGM uses a one-step gradient ascent method to find an
adversarial perturbation which may not be optimal. In [18],
the projected gradient descent (PGD) was proposed to find
an optimal perturbation through an iterative gradient ascent
algorithm. In particular, if the perturbation is outside a volume
as a norm ball with radius ϵ, i.e. ∥δ∥2 ≤ ϵ, the perturbation is
first projected back to the norm ball to ensure the perturbation
is not too large. The solution to PGD is obtained and shown
by

δ′ ← Proj∥δ∥2≤ϵ(δ + α · gδ/∥gδ∥2) (5)

where α is a step size. Using the perturbation δN in the last
iteration N , the adversarial example is obtained as an attack
by

x′ = x+∇δL(fθ,ϕ(x+ δ), y)
∣∣
δ←δN

. (6)
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On the other hand, the defense model is implemented by
fulfilling a discrimination step towards estimating the control-
lable adapter θ for speech classifier in an ASR system. In the
implementation, the gradient with respect to adapter θ consists
of those for the first term gθ and the second term in Eq. (1).
The first gradient is calculated by initializing the gradient as
gθ ← 0 and updating it iteratively in the inner loop as

(gθ)′ ← gθ +
1

N
E(x,y)∼D[∇θL(fθ,ϕ(x+ δ), y)] (7)

by N times to calculate the accumulated and normalized gθN
in the last iteration N . Then, the model parameter is iteratively
updated in outer loop by

θ′ ← θ − β · (gθN +∇θKL(fθ,ϕ(x)∥fθ,ϕ(x+ δN ))) (8)

where β denotes the learning rate. The optimal adapter θ is
trained by minimizing the cross-entropy loss for classification
problem in an ASR system where KL divergence is also
minimized to regularize the prediction consistency between
adversarial sample and original sample.

III. IMPLEMENTATION ALGORITHM

This paper presents a new adversarial training algorithm
to build a defense model for speech recognition where the
generation step and discrimination step are implemented to
increase the amount of the informative training samples and
accordingly enhance the generalization and robustness of
a learned model. This model is capable of improving the
prediction performance for an ASR system consisting of a
frozen pre-trained backbone model and a trainable adapter
for a downstream task in a low-resource setting for domain
adaptation [19]. The implementation algorithm is formulated
and addressed.

Fig. 2. Illustration of ASR pre-trained backbone model with parameter ϕ
where speech signal x is transformed to find word string y. CNN encoder,
transformer blocks and CTC classifier are stacked.

A. Model architecture

In this study, the pre-trained wav2vec2.0 [6] and HuBERT
[7] were employed as the ASR backbone models. These

two models had similar model structures which were trained
in different strategies. Basically, wav2vec2.0 quantized the
continuous audio data, and was learned to map them to discrete
features and predict the masked features for training. The quan-
tization module was used to discretize the output of the feature
encoder. This model contained two sets of codebooks, and each
codebook contained 320 variables. For each continuous output
variable from the feature encoder, wav2vec2.0 identified a code
in each set of codebooks, concatenated two codes together, and
linearly mapped them to find the final quantization. On the
other hand, HuBERT was trained by running two turns of the
following procedure including using the k-means to find the
clusters of Mel-frequency cepstral coefficient (MFCC) features
and then predicting the masked features. After the first training
turn was complete, the clustering model was reused to learn
the detailed feature representation where the number of clusters
in previous clustering model was increased from 100 to 500.
The architecture of the pre-trained backbone model is shown
in Figure 2. One-dimensional convolutional neural network
(CNN) encoder with 7 layers dealt with the down-sampling of
the input speech waveform x. The outputs of audio-encoded
features were then fed forward to the pre-trained transformer
encoder totally stacking 16 transformer blocks of multi-head
attention and feedforward network. Then, the connectionist
temporal classification (CTC) loss was calculated by using la-
tent information from transformer encoder and then minimized
to make prediction of word sequence y.

Fig. 3. Illustration of a stacked encoder where each frozen pre-trained
transformer block ϕ is augmented with two controllable adapters {θ1, θ2}.

In model configuration, there were two adapters with param-
eter θ = {θ1, θ2} which were inserted in individual transformer
blocks of a pre-trained backbone model ϕ. There were 24
blocks in an encoder. One adapter was connected with the
multi-head attention and the other one was added to the
feedforward layer as shown in Figure 3 where each adapter
was shaped as a bottleneck structure with two feedforward
layers with dimension from 768 to 64 and then back to 768.
The parameters of the adapted transformer blocks were frozen
except those parameters of adapters that were trainable. For
each downstream task, only those adapter parameters θ were
learned from relatively few training utterances. This adaptation
strategy dramatically reduced the size of controllable parame-
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ters and considerably increased the parameter efficiency for a
downstream ASR task. The resulting model was compact for
transfer learning where the numbers of training utterances and
adjusted parameters were balanced.

B. Augmentation and adaptation

This paper presents an adversarial training method which is
developed to generate the augmented examples in an adversar-
ial attack step [20], [21]. The proposed adversarial algorithm
eliminates the overhead cost of generating adversarial exam-
ples. A loopy optimization procedure with an inner loop and an
outer loop is implemented as attack and defense, respectively.
A robust ASR model with a pre-trained backbone model ϕ
and a controllable adapter model θ is constructed. Finding the
adversarial examples is implemented as the generation step
for data augmentation in an inner loop via the gradient ascent
algorithm while estimating the controllable adapter layers θ is
performed as the discrimination step for classifier estimation in
an outer loop via the gradient descent algorithm. In particular,
the projection in PGD method is run by N times in inner loop
to estimate the adversarial perturbation δ. The augmented data
using the perturbation δN in the last iteration N is used to
update the classifier or correspondingly the adapter θ in the
outer loop as given in Eq. (6). A detailed implementation
for this loopy procedure for adversarial augmentation and
adaptation (AAA) is shown in Algorithm 1.

Algorithm 1 Adversarial augmentation & adaptation process
require: training samples D = {x, y}, frozen pre-trained

weights ϕ, adapter weights θ, perturbation δ, perturbation
radius ϵ, adversarial step size α, learning rate β
for t = 1, . . . ,M do ▷ outer loop minimization

initialize gθ0 ← 0, gδ ← 0, randomize δ0
for i = 1, . . . , N do ▷ inner loop maximization

gθi ← gθi−1 +
1
NE(x,y)∼D[∇θL(fθ,ϕ(x+ δi−1), y)]

gδ ← ∇δL(fθ,ϕ(x+ δi−1), y)
δi ← Proj∥δ∥2≤ϵ(δi−1 + α · gδ/∥gδ∥2)

end for
θt+1 ← θt − β · (gθN +∇θKL(fθ,ϕ(x)∥fθ,ϕ(x+ δN )))

end for
output: adapter weights θM

In this learning procedure, the gradient gδ for perturbation δ
is updated N iterations in the inner loop for maximization of
cross-entropy loss function to cope with classification problem
in ASR. The gradient gθ for adapter θ is also updated N times
to find gθN and then combined with that for KL divergence
between prediction outputs from original utterance x and
perturbed utterance x+δN . In the implementation, the gradient
information gδ is recycled to update the perturbation δi in
every inner loop i, which means that the intermediate updatings
of gradients for perturbation gδ are reused. Therefore, we
generate several augmented samples for data augmentation in
one adversarial training in outer loop t. The loopy algorithm
is performed to find adapter model θM which is obtained by

running M iterations in outer loop t. The proposed method is
inspired by the variants of the FREE algorithm in [22], [23]
which were developed in computer vision and natural language
processing. Considering this trick, this paper proposed a new
AAA algorithm for speech recognition. The original sample x
and the perturbed sample x′ in the last iteration N as shown
in Eq. (6) are both used when updating the adapter θ through

min
θ

E(x,y)∼D[L(fθ,ϕ(x), y) + L(fθ,ϕ(x′), y)]. (9)

The gradient with respect to θ is computed by using original
sample x and adversarial sample x′ with equal weighting.

C. Tradeoff between accuracy and robustness

In addition to FGM [17] and PGD [18], another adversarial
training algorithm called the tradeoff-inspired adversarial de-
fense via surrogate-loss minimization (TRADES) [24] was also
implemented for comparison with the proposed AAA method.
Using TRADES, the same setting as PGD in Eq. (6) was taken
into account to generate the adversarial examples in accordance
with maximizing the KL divergence between the logits of the
prediction models by using original samples and adversarial
samples in

min
θ

E(x,y)∼D
[
L(fθ,ϕ(x), y)

+ λ · max
∥δ∥2≤ϵ

KL(fθ,ϕ(x)∥fθ,ϕ(x+ δ))
]
.

(10)

where λ = 1 is specified.
The attack and defense in adversarial training correspond

to perform the generation and discrimination steps, which are
adjustable to tradeoff between adversarial robustness and clas-
sification accuracy, respectively. The proposed AAA method
carries out the adapter-based solution to adversarial robustness
via Eq. (1) which comparably implements the tradeoff between
two terms in Eq. (10) based on TRADES with a adjustable
hyperparameter λ. The first term as a cross-entropy loss
controls the accuracy while the second term as a KL divergence
handles the robustness. Maximizing the KL divergence aims
to generate the worst-case adversarial examples preserving
the strongest protection to attack while minimizing the cross-
entropy loss focuses on finding the best adapter to achieve the
lowest word error rate (WER) for speech recognition.

Similar issue of balancing the tradeoff between accuracy
and robustness was also mentioned in CV and NLP domains
[10], [23], [25]. The second term of AAA in Eq. (1) is
seen as a regularization condition for model generalization.
This term encourages the prediction of adversarial example
x + δN with the worst-case perturbation δN by using the
learned adapter θ to get close to that of original example
x. The resulting class boundary is likely fitted to the Lips-
chitz condition so that a smoothed boundary is determined
to assure a better generalization [10]. This study presents a
new approach to adversarial robustness in low-resource setting
based on adversarial augmentation and adapter estimation. The
KL term is optimized in an adversarial manner to get closer
to the Lipschitz condition for a better model robustness or
generalization.
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IV. EXPERIMENTS

This paper presents an adversarial augmentation and adap-
tation for speech recognition in two low-resource downstream
tasks under two different pre-trained backbone models.

A. Experimental settings

As shown in Figure 2, a CTC classifier was stacked after
an ASR pre-trained model based on 16 transformer blocks for
word prediction where the audio embedding was calculated
from a speech signal using CNN encoder. Word error rates
(WERs) were measured to evaluate the ASR performance.
Table I shows the settings of pre-trained backbone model
based on wav2vec2.0 [6] and HuBERT [7]. The number of
parameters in a backbone models is 315M while that of adapter
is only 3.1M. AAA only adjusts the parameters of adapter
instead of fine-tuning all backbone parameters as done in the
previous methods. A parameter efficient learning is assured in
using AAA method. Table II reports the settings of two speech
datasets including Common Voice [26] and LibriSpeech (100
hours) [27] for Turkish and English, respectively. The number
of samples or utterances is shown. In addition to the baseline
result, this study also implemented the fine-tuning of the pre-
trained model by using the other adversarial data augmentation
methods where PGD [18], FGM [17] and TRADES [24] were
included. Baseline method was implemented via a purely fine-
tuning scheme. In the implementation, the perturbation δ was
estimated and added to the audio signal as the augmented
noisy speech signal. This strategy carried out an approach
to noise-based data augmentation in a way of increasing the
difficulty of correctly classifying the input audio signal into
its corresponding features and word tokens based on the pre-
trained model augmented with the controllable adapter.

TABLE I
SETTINGS OF THE PRE-TRAINED BACKBONE MODELS.

backbone attention
head

layer hidden
state

feature
layer

dropout

wav2vec2.0 16 24 1024 7 0.1
HuBERT 16 24 1024 7 0.1

TABLE II
SETTINGS OF THE DATASETS FOR SPEECH RECOGNITION.

dataset training set testing set language
Common Voice 3478 1647 Turkish
LibriSpeech 31242 2620 English

TABLE III
SETTINGS FOR THE ADVERSARIAL DATA AUGMENTATION.

method ϵ α inner loop norm type
baseline N/A N/A N/A N/A
PGD 1 0.3 3 ℓ2
FGM 1 0.3 1 ℓ2
TRADES 1 0.1 3 ℓ2
AAA 1 0.1 3 ℓ2

Furthermore, Table III lists the hyperparameter settings of
using different methods for adversarial data augmentation
including perturbation radius ϵ, adversarial step size α, number
of inner-loop iterations N and the norm type which was fixed
as ℓ2 norm. In case of N = 3, the amount of augmented
data were increased three times. In the experiments, the
computation times in different settings were measured for two
ASR tasks by using a single GPU, NVIDIA GeForce RTX
3090, with 24G RAM where the CPU was configured with an
Intel®Core™i9-10900K CPU @ 3.70GHz. The batch sizes
of speech utterances were 32 and 4 for Common Voice and
LibriSpeech, respectively.

TABLE IV
WERS (%) AND TRAINING TIMES USING WAV2VEC2.0.

CommonVoice LibriSpeech
WER training time WER training time

baseline 35.5 55min 4.25 14hr
PGD 35.2 2hr 6min 3.99 17hr 50min
FGM 34.5 1hr 22min 4.05 14hr 22min
TRADES 34.2 2hr 13min 4.18 18hr 20min
AAA 31.7 2hr 8min 3.94 18hr

TABLE V
WERS (%) AND TRAINING TIMES USING HUBERT.

CommonVoice LibriSpeech
WER training time WER training time

baseline 51.3 59min 8.86 13hr 51min
PGD 48.4 2hr 8min 4.83 18hr 4min
FGM 51.8 1hr 19min 5.59 14hr 34min
TRADES 48.8 2hr 12min 5.02 18hr 25min
AAA 47.8 2hr 6min 4.77 17hr 57min

TABLE VI
AN EXAMPLE OF PREDICTED WORDS WHERE THE WORDS IN BLUE

REPRESENT THE ERRORS. WAV2VEC2.0 WAS USED.

Label: he has grave doubts whether sir frederick leighton’s work is
really greek after all and can discover in it but little of rocky ithaca
baseline he has graved doubts whether sir frederick layton’s work is

ready greek after all and can discover in it but little of rocky
ithica

AAA he has grave doubts whether sir frederick laytons work is
really greek after all and can discover in it but little of rocky
ithaca

B. Experimental results

Tables IV and V compare the results of WER and training
time by using wav2vec2.0 and HuBERT as the pre-trained
backbone models, respectively. The number of outer-loop
iterations M was varied and sufficient to assure convergence
in using different methods. From the results, it is found
that various adversarial data augmentation methods are ben-
eficial in two ASR downstream tasks on the basis of pre-
trained backbone models by using wav2vec2.0 and HuBERT.
Wave2vec2.0 performs better than HuBERT in ASR using
two different speech datasets. The adversarial augmentation
and adaptation by using AAA consistently achieves lower
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WERs than the adversarial data augmentation and fine-tuning
by using PGD, FGM and TRADES by using different pre-
trained backbone models under different speech datasets. In
terms of computation time, the proposed AAA is more efficient
than PGD and TRADES, but less efficient than FGM. FGM
only ran one inner-loop iteration which is smaller than three
inner-loop iterations in implementation of AAA. In addition,
Table VI shows an example of comparing the predicted word
sequences by using baseline and the proposed AAA where
wav2vec2.0 was considered as the backbone model. The true
label sequence is provided. It is obvious that AAA improves
the ASR performance in this example.

V. CONCLUSIONS

This paper has presented an adversarial augmentation and
adaptation algorithm to enhance the robustness of speech
recognition in presence of perturbation noises. The overfitting
issue in low-resource setting was handled through a frozen pre-
trained backbone model combined with the learnable adapter.
A parameter efficient learning algorithm was proposed to
carry out an approach to ensure the adversarial robustness
in speech recognition. The proposed method was illustrated
as an attack and defense strategy through a procedure of
data generation and model discrimination where the tradeoff
between robustness and accuracy was adjustable for speech
recognition, respectively. The relation of the proposed method
to the other schemes to adversarial data augmentation was
illustrated. A straightforward solution to an end-to-end data
augmentation was exploited. In the experiments on a number
of investigations over different languages and backbone models
showed that the proposed method to adversarial robustness
based on adapter performed better than the other conventional
methods based on fine-tuning in terms of word error rates in
speech recognition. The proposed method was more efficient
in terms of parameter size than the other methods in most of
settings. Future study on extending this method to the other
kinds of downstream applications will be explored.
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