
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

A Novel kind of WVD Associated with the Linear
Canonical Transform

Jia-Yin Peng†, Jian-Yi Chen† and Bing-Zhao Li†,∗
† Beijing institute of Technology, Beijing 100081, China
∗ E-mail: li_bingzhao@bit.edu.cn Tel: +86-13681493240

Abstract—Linear canonical transformation (LCT), as an exten-
sion of the Fourier transform and fractional Fourier transform,
has emerged as a useful tool for the nonstationary signals
processing. In this paper, a novel kind of Wigner-Ville distribution
associated with the LCT (WVL) is presented. First, in order
to eliminate the coupling between time variable 𝑡 and lag
variable 𝜏, the WVL is defined based on the scaled parametric
symmetric instantaneous autocorrelation function. Second, the
WVL of multicomponent linear frequency modulated (LFM)
signal is investigated, and the results show that WVL can mitigate
the influence of some cross-terms. Finally, through simulation
experiments and comparison with the classical WVD, it is verified
that WVL has a better ability to suppress cross-terms and
significantly improves the detection of multicomponent LFM
signals.

I. INTRODUCTION

Linear frequency modulated (LFM) [1] signal is a kind of
nonstationary signal widely used in radar, sonar and commu-
nication systems, it has an important characteristic that each
component can be uniquely determined by the centroid fre-
quency and chirp rate (CFCR) and the spectral components of a
LFM signal vary with time. Since traditional Fourier transform
(FT) cannot meet the requirement of observation frequency
changing with time, the LFM signals are often analyzed using
time-frequency (TF) analysis methods. Common TF analysis
methods include the short-time Fourier transform (STFT)
[2], Wigner-Ville distribution (WVD) [3], short-time Wigner-
Ville distribution (STWD) [4], wavelet transform (WT) [5],
Wigner-Hough transform (WHT) [6], Radon-Wigner transform
(RWT) [7], fractional Fourier transform (FRFT) [8] [9], linear
canonical transform (LCT) [10] and time-fractional-frequency
(TFF) [11]. Compared with other TF analysis methods, WVD
has excellent TF resolution and energy concentration, making
it more effective for the analysis of LFM signals. Despite
this, when it is applied to multicomponent LFM signals, it
is affected by cross-term interference. Therefore, reducing the
impact of cross-term (interference) on auto-term (target) has
become an important research focus.

In 2009, Lv et al., using the ideal of keystone formatting,
proposed the keystone-Wigner transform (KWT) [12], which
introduced a weight factor into the time-lag instantaneous
autocorrelation function to decouple the time variable 𝑡 and
the lag variable 𝜏. Along with this idea, Lv et al. improved the
KWT and proposed the Lv’s distribution (LVD) [13], which
circumvented all the problems of the KWT, and enhanced
the energy of the auto-term meanwhile reduced the energy

of the cross-term in 2011. In 2017, the short time Fourier
transform-multiple invariance-estimation of signal parameters
via rotational invariance techniques (STFT-MI-ESPRIT) [2]
was proposed by Cui et al., which improved the estimation
precision greatly while maintaining computational complexity.
In the same year, Wang et al. proposed the WHT [6], which
used the double-deck weight to mitigate the impact of noise
and disturbance. In [3] a new method to eliminate cross-terms
in the WVD of multicomponent LFM signals was investigated.
This method improved the signal to noise ratio (SNR) while
maintaining high resolution by removing the cross-terms. In
2021, the definition of WVD associated with LCT (WVDL)
[14] was proposed by Xin et al., which achieves smaller errors
and lower computational costs compared with other WVD in
LCT domain. [15] investigated the four-dimensional Wigner
distributions associated with the linear canonical transform
(WDLs) for the analytic signals in 2024.

This paper proposes a novel kind of WVD associated with
the LCT (WVL). By using a scaling function, it decouples 𝑡
and 𝜏 in the parametric symmetric instantaneous autocorrela-
tion function (PSIAF) [13], eliminating the influence of some
cross-terms thereby enhancing the accuracy of detecting multi-
component LFM signals. Then taking a 2D LCT [16] over the
new scaled PSIAF time variable and lag variable respectively,
can obtain WVL. Compared to the classical WVD, WVL offers
more free parameters and greater flexibility.

The remainder of this paper is organized as follows: Section
II reviews the relevant theories of LCT. In section III, presents
the WVL from a new point of view and derive some properties
and theorems. Section IV show the simulation results of the
theorems and the effectiveness of the proposed tehniques.
Section V is the conclution.

II. PRELIMINARY

A. Two dimentional LCT

The 2D LCT of a signal 𝑓 (𝑥, 𝑦) with parameter 𝐴 =(
𝑎1 𝑏1
𝑐1 𝑑1

)
, 𝐵 =

(
𝑎2 𝑏2
𝑐2 𝑑2

)
is defined as follows[16]



𝐿𝐴,𝐵𝑓 [ 𝑓 (𝑥, 𝑦)] = 𝐿𝐴,𝐵𝑓 (𝑢, 𝑣)

=
∫ +∞

−∞

∫ +∞

−∞
𝑓 (𝑥, 𝑦)𝐾𝐴,𝐵 (𝑥, 𝑦, 𝑢, 𝑣)𝑑𝑥𝑑𝑦

=


1

2𝜋 𝑗

√
1

𝑏1𝑏2
𝑒
𝑗 [ ( 𝑑1𝑢

2
2𝑏1

+ 𝑑2𝑣
2

2𝑏2
) ] ∫ +∞

−∞
∫ +∞
−∞ 𝑓 (𝑥, 𝑦)

×𝑒− 𝑗 (
𝑢𝑥
𝑏1

+ 𝑣𝑦
𝑏2

)
𝑒
𝑗 ( 𝑎1𝑥

2
2𝑏1

+ 𝑎2𝑦
2

2𝑏2
)
𝑑𝑥𝑑𝑦, 𝑏1𝑏2 ≠ 0, |𝐴| = |𝐵 | = 1,

√
𝑑1𝑑2𝑒

𝑗 [ ( 𝑐1𝑑1𝑢
2+𝑐2𝑑2𝑣

2
2 ) ] 𝑓 (𝑑1𝑢, 𝑑2𝑣), 𝑏2

1 + 𝑏2
2 = 0,

(1)
where 𝐾𝐴,𝐵 (𝑥, 𝑦, 𝑢, 𝑣) = 𝐾𝐴(𝑥, 𝑢)𝐾𝐵 (𝑦, 𝑣),

𝐾𝐴(𝑥, 𝑢) =
√

1
2𝜋 𝑗𝑏1

𝑒
𝑗
𝑑1𝑢

2
2𝑏1 𝑒

− 𝑗 𝑢𝑥𝑏1 𝑒
𝑗
𝑎1𝑥

2
2𝑏1 ,

𝐾𝐵 (𝑦, 𝑣) =
√

1
2𝜋 𝑗𝑏2

𝑒
𝑗
𝑑2𝑣

2
2𝑏2 𝑒

− 𝑗 𝑣𝑦𝑏2 𝑒
𝑗
𝑎2𝑦

2
2𝑏2 .

Some basic properties of 2D LCT have been studied, this
paper uses the following two important properties:
(1) Let ℎ(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) × 𝑔(𝑥, 𝑦). 𝐿𝐴,𝐵ℎ (𝑢, 𝑣), 𝐿𝐴,𝐵𝑔 (𝑢, 𝑣)
denote 2D LCT of the ℎ(𝑥, 𝑦), 𝑔(𝑥, 𝑦) respectively, while
𝐿 𝑓 (𝑢, 𝑣) denotes 2D FT of the 𝑓 (𝑥, 𝑦). The 2D LCT product
theorem is defined as follows [17]

𝐿𝐴,𝐵ℎ (𝑢, 𝑣) = 1
4𝜋2

1
|𝑏1𝑏2 |

𝑒
𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )

× [(𝐿𝐴,𝐵𝑔 (𝑢, 𝑣)𝑒− 𝑗 (
𝑑1
2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 ) ) ∗ 𝐿 𝑓 (

𝑢

𝑏1
,
𝑣

𝑏2
)] .

(2)

(2) Let 𝑔(𝑥, 𝑦) = 𝑒 𝑗 (𝑥𝑢0+𝑦𝑣0 ) 𝑓 (𝑥, 𝑦). 𝐿𝐴,𝐵𝑔 (𝑢, 𝑣), 𝐿𝐴,𝐵𝑓 (𝑢, 𝑣)
denote 2D LCT of the 𝑔(𝑥, 𝑦), 𝑓 (𝑥, 𝑦) respectively. The 2D
LCT scaling properties is defined as follows [17]

𝐿𝐴,𝐵𝑔 (𝑢, 𝑣) = 𝑒 𝑗 (𝑢𝑢0𝑑1+𝑣𝑣0𝑑2 )− 𝑗
2 (𝑢2

0𝑏1𝑑1+𝑣2
0𝑏2𝑑2 )

× 𝐿𝐴,𝐵𝑓 (𝑢 − 𝑢0𝑏1, 𝑣 − 𝑣0𝑏2), 𝑢0, 𝑣0 ∈ 𝑅.
(3)

B. WVD and AF Associated with LCT
The WVD of a signal 𝑓 (𝑡) associated with the LCT (WDL)

with parameter 𝐴 =

(
𝑎 𝑏
𝑐 𝑑

)
is defined as [18]

𝑊
𝑓
𝐴 [ 𝑓 (𝑡)] (𝑡, 𝑢) = 𝑊𝑉𝐷 (𝑎,𝑏,𝑐,𝑑) (𝑡, 𝑢)

=
∫ +∞

−∞
𝑅 𝑓 (𝑡, 𝜏)𝐾𝐴(𝑢, 𝜏)𝑑𝜏

=
∫ +∞

−∞
𝑓 (𝑡 + 𝜏

2
) 𝑓 ∗ (𝑡 − 𝜏

2
))𝐾𝐴(𝑢, 𝜏)𝑑𝜏,

(4)

where 𝐾𝐴(𝑢, 𝜏) =
√

1
𝑗2𝜋𝑏 𝑒

𝑗 𝑑
2𝑏 𝑢

2
𝑒− 𝑗

𝑢
𝑏 𝜏𝑒 𝑗

𝑎
2𝑏 𝜏

2
, |𝐴| = 1.

The AF of a signal 𝑓 (𝑡) associated with the LCT (AFL)

with parameter 𝐴 =

(
𝑎 𝑏
𝑐 𝑑

)
is defined as [19]

𝐴𝐹𝐿 [ 𝑓 (𝑡)] (𝜏, 𝑢) = 𝐴𝐹(𝑎,𝑏,𝑐,𝑑) (𝜏, 𝑢)

=
∫ +∞

−∞
𝑅 𝑓 (𝑡, 𝜏)𝐾𝐴(𝑡, 𝑢)𝑑𝑡

=
∫ +∞

−∞
𝑓 (𝑡 + 𝜏

2
) 𝑓 ∗ (𝑡 − 𝜏

2
)𝐾𝐴(𝑡, 𝑢)𝑑𝑡,

(5)

where 𝐾𝐴(𝑡, 𝑢) =
√

1
𝑗2𝜋𝑏 𝑒

𝑗 𝑑
2𝑏 𝑢

2
𝑒− 𝑗

𝑢
𝑏 𝑡𝑒 𝑗

𝑎
2𝑏 𝑡

2 .

III. MAIN RESULTS
Based on the aforementioned research of the TF analysis

methods, we propose a novel kind of WVD associated with
the LCT in this section.

A. Definition
Definition 1. Suppose the kernel of the 2D LCT with param-
eter 𝐴, 𝐵 is 𝐾𝐴,𝐵, then the WVL of a signal 𝑥(𝑡) is defined
as

𝑊𝑉𝐿𝐴,𝐵𝑥 (𝑢, 𝑣) = 𝐿𝐴,𝐵Γ (Γ[𝑅𝐶𝑥 (𝑡, 𝜏)])

=
∫ +∞

−∞

∫ +∞

−∞
Γ[𝑅𝐶𝑥 (𝑡, 𝜏)]𝐾𝐴,𝐵 (𝑡𝑛, 𝜏, 𝑢, 𝑣)𝑑𝑡𝑛𝑑𝜏

=
𝐾−1∑
𝑖=0

𝑊𝑉𝐿𝑥𝑖 (𝑢, 𝑣) +
𝐾−2∑
𝑖=0

𝐾−1∑
𝑗=𝑖+1

𝑊𝑉𝐿𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣),

(6)

where 𝐴 =

(
𝑎1 𝑏1
𝑐1 𝑑1

)
, 𝐵 =

(
𝑎2 𝑏2
𝑐2 𝑑2

)
, and

Γ[𝐺 (𝑡, 𝜏)] → 𝐺 ( 𝑡𝑛
ℎ (𝜏+𝑚) , 𝜏)

𝑅𝐶𝑥 (𝑡, 𝜏) = 𝑥(𝑡 + 𝜏+𝑚
2 )𝑥∗ (𝑡 − 𝜏+𝑚

2 ),

where Γ is a scale operator and 𝑅𝐶𝑥 (𝑡, 𝜏) is the PSIAF of 𝑥(𝑡).

B. Properties
Property 1. Conjugation symmetry property
Suppose the WVL of a signal 𝑥(𝑡) is denoted as𝑊𝑉𝐿𝐴,𝐵𝑥 (𝑢, 𝑣),
the WVL of 𝑥∗ (𝑡) is

𝑊𝑉𝐿𝐴,𝐵𝑥∗ (𝑢, 𝑣) = [𝑊𝑉𝐿𝐴−1 ,𝐵−1

𝑥 (𝑢, 𝑣)]∗. (7)

Property 2. Shifting property
Suppose the WVL of a signal 𝑥(𝑡) is denoted as𝑊𝑉𝐿𝐴,𝐵𝑥 (𝑢, 𝑣),
the WVL of 𝑥̃(𝑡) = 𝑥(𝑡)𝑒 𝑗𝑤𝑡 is

𝑊𝑉𝐿𝐴,𝐵
𝑥̃

(𝑢, 𝑣)

=𝑒 𝑗 (𝑤𝑎+𝑑2𝑤𝑣−
𝑏2𝑑2𝑤

2
2 )𝑊𝑉𝐿𝐴,𝐵𝑥 (𝑢, 𝑣 − 𝑤𝑏2).

(8)

C. Theorems
Consider an infinite-time multicomponent LFM signal with

the constant amplitude 𝐴𝑖 , the centroid frequency 𝑓𝑖 and chirp
rate 𝛾𝑖 as

𝑥(𝑡) =
𝐾−1∑
𝑖=0

𝑥𝑖 (𝑡) =
𝐾−1∑
𝑖=0

𝐴𝑖𝑒
𝑗2𝜋 𝑓𝑖 𝑡+ 𝑗 𝜋𝛾𝑖 𝑡2 , (9)

where 𝐾 is the number of signal components present in the
signal. The PSIAF of 𝑥(𝑡) is defined by[13]

𝑅𝐶𝑥 (𝑡, 𝜏) =𝑥(𝑡 +
𝜏 + 𝑚

2
)𝑥∗ (𝑡 − 𝜏 + 𝑚

2
)

=
𝐾−1∑
𝑖=0

𝐴2
𝑖 𝑒
𝑗2𝜋 𝑓𝑖 (𝜏+𝑚)𝑒 𝑗2𝜋𝛾𝑖 (𝜏+𝑚)𝑡

+
𝐾−2∑
𝑖=0

𝐾−1∑
𝑗=𝑖+1

(𝑅𝐶𝑥𝑖 𝑥 𝑗 (𝑡, 𝜏) + 𝑅
𝐶
𝑥 𝑗 𝑥𝑖 (𝑡, 𝜏)),

(10)



where 𝑅𝐶𝑥𝑖 𝑥 𝑗 (𝑡, 𝜏) = 𝐴𝑖𝐴 𝑗𝑒
𝑗 𝜋 [ 𝛾𝑖−𝛾𝑗4 (𝜏+𝑚)2+( 𝑓𝑖+ 𝑓 𝑗 ) (𝜏+𝑚) ]

×𝑒 𝑗 𝜋 [ (𝛾𝑖−𝛾 𝑗 )𝑡2+(2( 𝑓𝑖− 𝑓 𝑗 )+(𝛾𝑖+𝛾 𝑗 ) (𝜏+𝑚) )𝑡 ] .
Because of the lag variable 𝜏 and time variable 𝑡 couple with
each other in the exponential phase terms, we use the scaling
operator Γ of LVD [13] on the function 𝑅𝐶𝑥 (𝑡, 𝜏). Then we can
get Γ[𝑅𝐶𝑥 (𝑡, 𝜏)] as

Γ[𝑅𝐶𝑥 (𝑡, 𝜏)] =
𝐾−1∑
𝑖=0

𝐴2
𝑖 𝑒

( 𝑗2𝜋 𝑓𝑖 (𝜏+𝑚)+ 𝑗2𝜋 𝛾𝑖
ℎ 𝑡𝑛 )

+
𝐾−2∑
𝑖=0

𝐾−1∑
𝑗=𝑖+1

Γ[𝑅𝐶𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) + 𝑅
𝐶
𝑥 𝑗 𝑥𝑖 (𝑡𝑛, 𝜏)],

(11)

where Γ[𝑅𝐶𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) + 𝑅𝐶𝑥 𝑗 𝑥𝑖 (𝑡𝑛, 𝜏)] = 𝐴𝑖𝐴 𝑗𝑅
𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)

× 𝑅𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) and

𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) = 𝑒 𝑗 𝜋 [ (𝛾𝑖+𝛾 𝑗 )

𝑡𝑛
ℎ +( 𝑓𝑖+ 𝑓 𝑗 ) (𝜏+𝑚) ] ,

𝑅𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)

=𝑒
𝑗 𝜋 (2( 𝑓𝑖− 𝑓 𝑗 ) 𝑡𝑛

ℎ (𝜏+𝑚) +(𝛾𝑖−𝛾 𝑗 )
𝑡2𝑛

ℎ2 (𝜏+𝑚)2
+ 𝛾𝑖−𝛾𝑗

4 (𝜏+𝑚)2 )

=2𝑐𝑜𝑠(𝜋[(𝛾𝑖 − 𝛾 𝑗 )
𝑡2𝑛

ℎ2 (𝜏 + 𝑚)2 + 2( 𝑓𝑖 − 𝑓 𝑗 )
𝑡𝑛

ℎ(𝜏 + 𝑚)

+ (𝜏 + 𝑚)2

4
(𝛾𝑖 − 𝛾 𝑗 )]).

(12)

As shown in [11], the scaled PSIAF of 𝑥(𝑡) can be expressed
as two parts: auto-terms and cross-terms. Different from the
existing methods [13], we take place of the kernel of 2D FT
with the kernel of 2D LCT to get a novel kind of WVD
associated with the LCT (WVL). The result is divided into
two parts, auto-terms and cross-terms, leading to the following
interesting theorems.

Theorem 1. Each auto term in the WVL with parameter 𝑎1 =
𝑎2 = 0 can be expressed as

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 (𝑢, 𝑣) =
𝐴2
𝑖

2𝜋 𝑗

√
1

𝑏1𝑏2
𝑒
𝑗 ( 𝑑1𝑢

2
2𝑏1

+ 𝑑2𝑣
2

2𝑏2
)
𝑒 𝑗2𝜋 𝑓𝑖𝑚

× 𝛿( 𝑢

2𝜋𝑏1
− 𝛾𝑖
ℎ
)𝛿( 𝑣

2𝜋𝑏2
− 𝑓𝑖).

(13)

Proof: 𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 (𝑢, 𝑣)

=
𝐴2
𝑖

2𝜋 𝑗

√
1

𝑏1𝑏2
𝑒
𝑗 ( 𝑑1𝑢

2
2𝑏1

+ 𝑑2𝑣
2

2𝑏2
)
∫ +∞

−∞

∫ +∞

−∞
𝑒
𝑗 ( 𝑎1𝑡

2
𝑛

2𝑏1
+ 𝑎2𝜏

2
2𝑏2

)

× 𝑒− 𝑗 (
𝑢𝑡𝑛
𝑏1

+ 𝑣𝜏
𝑏2

)
𝑒 𝑗2𝜋 𝑓𝑖 (𝜏+𝑚)+ 𝑗2𝜋𝛾𝑖 𝑡𝑛ℎ 𝑑𝑡𝑛𝑑𝜏

=
𝐴2
𝑖

2𝜋 𝑗

√
1

𝑏1𝑏2
𝑒
𝑗 ( 𝑑1𝑢

2
2𝑏1

+ 𝑑2𝑣
2

2𝑏2
)
𝑒 𝑗2𝜋 𝑓0𝑚𝛿( 𝑢

2𝜋𝑏1
− 𝛾𝑖
ℎ
)𝛿( 𝑣

2𝜋𝑏2
− 𝑓𝑖).

It is seen from Theorem 1 that the auto-term of WVL has
the characteristics of energy accumulation.providing a solid
foundation for further signal processing. Next, we explore the
theorem 2 associated with the cross-terms.

Theorem 2. Each cross term in the WVL with parameter 𝑎1 =
𝑎2 = 0, can be modeled as following cases and let 𝑢̃ = 𝑢ℎ

2𝜋𝑏1
−

𝛾𝑖+𝛾 𝑗
2 , 𝑣̃ = 𝑣

2𝜋𝑏2
− 𝑓𝑖+ 𝑓 𝑗

2 .

Case 1. For 𝛾𝑖 = 𝛾 𝑗 ≠ 𝑢ℎ
2𝜋𝑏1

, 𝑓𝑖 ≠ 𝑓 𝑗 ,

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

=
𝐴𝑖𝐴 𝑗ℎ

4 𝑗𝜋3 |𝑏1𝑏2 |

√
1

𝑏1𝑏2
𝑒
𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )

× 𝑒 𝑗 𝜋 ( 𝑓𝑖+ 𝑓 𝑗 )𝑚𝑒 𝑗2𝜋𝑚𝑣̃
𝑓𝑖 − 𝑓 𝑗

𝑢̃2 𝑐𝑜𝑠(
2𝜋( 𝑓𝑖 − 𝑓 𝑗 )

𝑢̃
𝑣̃).

(14)

Case 2. For 𝛾𝑖 = 𝛾 𝑗 = 𝑢ℎ
2𝜋𝑏1

, 𝑓𝑖 ≠ 𝑓 𝑗 ,

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣) = 0. (15)

Case 3. For 𝛾𝑖 ≠ 𝛾 𝑗 , 𝑢 = ±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1
ℎ | ,

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

=
𝐴𝑖𝐴 𝑗 |ℎ| |𝛾𝑖 − 𝛾 𝑗 |

3
2

𝑗2𝜋3√𝑏1𝑏2 [(𝛾𝑖 − 𝛾 𝑗 )𝑣̃ − ( 𝑓𝑖 − 𝑓 𝑗 )𝑢̃]2
𝑒 𝑗2𝜋𝑚𝑣̃

× 𝑒 𝑗 𝜋 [
(𝛾𝑖+𝛾𝑗 )𝑑1

ℎ 𝑢+( 𝑓𝑖+ 𝑓 𝑗 )𝑑2𝑣 ]𝑐𝑜𝑠( 𝜋
2𝑏1𝑑1

ℎ2 [2𝑢̃2 +
(𝛾𝑖 + 𝛾 𝑗 )2

2
]

+ 𝜋2𝑏2𝑑2 [2𝑣̃2 +
( 𝑓𝑖 + 𝑓 𝑗 )2

2
] −

𝜋( 𝑓𝑖 − 𝑓 𝑗 )2

𝛾𝑖 − 𝛾 𝑗
− 𝑠𝑔𝑛(

𝛾𝑖 − 𝛾 𝑗
2

) 𝜋
4
).

(16)
Case 4. For 𝛾𝑖 ≠ 𝛾 𝑗 , 𝑢 ≠ ±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1

ℎ |, 𝑢̃ ≠ ±| (𝛾𝑖−𝛾 𝑗 )2 |,

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

= −
8𝐴𝑖𝐴 𝑗ℎ[(𝛾𝑖 − 𝛾 𝑗 )𝑣̃ − ( 𝑓𝑖 − 𝑓 𝑗 )𝑢̃]
𝜋
√
𝑏1𝑏2 [(𝛾𝑖 − 𝛾 𝑗 )2 − 4𝑢̃2] 3

2
𝑒 𝑗 𝜋 [

(𝛾𝑖+𝛾𝑗 )𝑑1
ℎ 𝑢+( 𝑓𝑖+ 𝑓 𝑗 )𝑑2𝑣 ]

× 𝑠𝑖𝑛( 𝜋
2𝑏1𝑑1

ℎ2 [
(𝛾𝑖 + 𝛾 𝑗 )2

2
− 2𝑢̃2] + 𝜋2𝑏2𝑑2 [

( 𝑓𝑖 + 𝑓 𝑗 )2

2
− 2𝑣̃2]

+ 𝜋
( 𝑓𝑖 − 𝑓 𝑗 )2

𝛾𝑖 − 𝛾 𝑗
+

4𝜋[(𝛾𝑖 − 𝛾 𝑗 )𝑣̃ − ( 𝑓𝑖 − 𝑓 𝑗 )𝑢̃]2

(𝛾𝑖 − 𝛾 𝑗 ) [(𝛾𝑖 − 𝛾 𝑗 )2 − 4𝑢̃2]
− 𝜋

4
𝑠𝑔𝑛(

𝛾𝑖 − 𝛾 𝑗
2

)(1 + 𝑠𝑔𝑛(𝜋2𝑏2
1 [(𝛾𝑖 − 𝛾 𝑗 ) − 4𝑢̃2]))).

(17)
Case 5. For 𝛾𝑖 ≠ 𝛾 𝑗 , 𝑢 ≠ ±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1

ℎ |, 𝑢̃ = ±| (𝛾𝑖−𝛾 𝑗 )2 |,

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣) = 0. (18)

Proof: For 𝛾𝑖 = 𝛾 𝑗 , using (2), we have

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

= 𝐿𝑡𝑛 ,𝜏{2𝐴𝑖𝐴 𝑗𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)𝑐𝑜𝑠(𝜋[2( 𝑓𝑖 − 𝑓 𝑗 )

𝑡𝑛
ℎ(𝜏 + 𝑚) ])}

=
1

4𝜋2
1

|𝑏1𝑏2 |
𝑒
𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 ) [𝐿𝑡𝑛 ,𝜏{2𝐴𝑖𝐴 𝑗𝑅𝐶1

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)}

× 𝑒− 𝑗 (
𝑑1
2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 ) ] ∗ 𝐹𝑡𝑛 ,𝜏 (𝑐𝑜𝑠(𝜋[2( 𝑓𝑖 − 𝑓 𝑗 )

𝑡𝑛
ℎ(𝜏 + 𝑚) ])).

(19)
First, taking 2D LCT into 2𝐴𝑖𝐴 𝑗𝑅𝐶1

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏), we have

𝐿𝑡𝑛 ,𝜏{2𝐴𝑖𝐴 𝑗𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)}

=
𝐴𝑖𝐴 𝑗

𝜋 𝑗

√
1

𝑏1𝑏2
𝑒
𝑗 [ 𝑑1𝑢

2
2𝑏1

+ 𝑑2𝑣
2

2𝑏2
]+ 𝑗 𝜋 ( 𝑓𝑖+ 𝑓 𝑗 )𝑚

× 𝛿( 𝑢

2𝜋𝑏1
− 𝛾𝑖
ℎ
)𝛿( 𝑣

2𝜋𝑏2
−
𝑓𝑖 + 𝑓 𝑗

2
).

(20)



Second, taking 2D LCT into 𝑐𝑜𝑠(𝜋[2( 𝑓𝑖 − 𝑓 𝑗 ) 𝑡𝑛
ℎ (𝜏+𝑚) ]), we

have
𝐹𝑡𝑛 ,𝜏 (𝑐𝑜𝑠(𝜋[2( 𝑓𝑖 − 𝑓 𝑗 )

𝑡𝑛
ℎ(𝜏 + 𝑚) ]))

=

{
𝑓𝑖− 𝑓 𝑗
ℎ𝑢2 𝑒

𝑗2𝜋𝑚𝑣𝑐𝑜𝑠( 2𝜋 ( 𝑓𝑖− 𝑓 𝑗 )
ℎ𝑢 𝑣), 𝑓𝑖 ≠ 𝑓 𝑗 ,

𝛿(𝑣)𝛿(𝑢), 𝑓𝑖 = 𝑓 𝑗 .

(21)

Then take (20) and (21) into (19). Because of 𝑢̃ = 𝑢ℎ
2𝜋𝑏1

−
𝛾𝑖+𝛾 𝑗

2 , 𝑣̃ = 𝑣
2𝜋𝑏2

− 𝑓𝑖+ 𝑓 𝑗
2 , we can obtain (14) and (15).

For 𝛾𝑖 ≠ 𝛾 𝑗 , taking a LCT of 𝑅𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) with respect to

𝑡𝑛, we have
𝐿𝑡𝑛 (𝑅𝐶2

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))

=

√
1

𝑗2𝜋𝑏
𝑒 𝑗

𝑑
2𝑏 𝑢

2
𝑒 𝑗

𝜋 (𝛾𝑖−𝛾𝑗 )
4 (𝜏+𝑚)2

×
∫ +∞

−∞
𝑒
𝑗 ( 𝜋 (𝛾𝑖−𝛾𝑗 )

ℎ2 (𝜏+𝑚)2
𝑡2𝑛+[

2𝜋 ( 𝑓𝑖− 𝑓 𝑗 )
ℎ (𝜏+𝑚) − 𝑢

𝑏 ]𝑡𝑛 )
𝑑𝑡𝑛.

(22)

Using the principle of stationary phase (PSP) [20], first we let
𝑑

𝑑𝑡𝑛
(phase(𝑅𝐶2

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)) − 2𝜋𝛾𝑡𝑛) = 0, (23)

we have

𝑡∗𝑛 = ( 𝑢
𝑏
−

2𝜋( 𝑓𝑖 − 𝑓 𝑗 )
ℎ(𝜏 + 𝑚) ) ℎ

2 (𝜏 + 𝑚)2

2𝜋(𝛾𝑖 − 𝛾 𝑗 )
. (24)

Second
𝑑2

𝑑𝑡2𝑛
(phase(𝑅𝐶2

𝑥𝑖 𝑥 𝑗 (𝑡
∗
𝑛, 𝜏)) − 2𝜋

𝑢

𝑏
𝑡∗𝑛) =

2𝜋(𝛾𝑖 − 𝛾 𝑗 )
ℎ2 (𝜏 + 𝑚)2 . (25)

Then
𝐿𝑡𝑛 (𝑅𝐶2

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))

=

√
1

𝑗2𝜋𝑏
𝑒 𝑗

𝑑
2𝑏 𝑢

2 |ℎ(𝜏 + 𝑚) |
√
𝛾𝑖 − 𝛾 𝑗

𝑒 𝑗𝑠𝑔𝑛(
𝛾𝑖−𝛾𝑗

2 ) 𝜋
4

× 𝑒
𝑗 [− ℎ2 (𝜏+𝑚)2

4𝜋 (𝛾𝑖−𝛾𝑗 )𝑏2 𝑢
2+ ℎ (𝜏+𝑚) ( 𝑓𝑖− 𝑓 𝑗 )

(𝛾𝑖−𝛾𝑗 )𝑏
𝑢− 𝜋 ( 𝑓𝑖− 𝑓 𝑗 )2

𝛾𝑖−𝛾𝑗
+ 𝜋 (𝛾𝑖−𝛾𝑗 )

4 (𝜏+𝑚)2 ]
.

(26)
For 𝑢 = ±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1

ℎ |, applying F (|(𝜏 +𝑚) |) = − 1
2𝜋2 𝑓 2 [3],

we have
𝑊𝑉𝐿

′
𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣) = 𝐿𝜏 (𝐿𝑡𝑛 (𝑅𝐶2

𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)))

=
1
𝑗2𝜋

1
√
𝑏1𝑏2

|ℎ|√
|𝛾𝑖 − 𝛾 𝑗 |

𝑒
− 𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )
𝑒
𝑗
𝜋 ( 𝑓𝑖− 𝑓 𝑗 )2

𝛾𝑖−𝛾𝑗 𝑒 𝑗𝑠𝑔𝑛(
𝛾𝑖−𝛾𝑗

2 ) 𝜋
4

× 𝑒 𝑗
𝑣
𝑏2
𝑚
∫ +∞

−∞
| (𝜏 + 𝑚) |𝑒− 𝑗2𝜋 (

𝑣
2𝜋𝑏2

− ℎ ( 𝑓𝑖− 𝑓 𝑗 )𝑢
2𝜋 (𝛾𝑖−𝛾𝑗 )𝑏1

) (𝜏+𝑚) ]
𝑑 (𝜏 + 𝑚)

=
1
𝑗2𝜋

1
√
𝑏1𝑏2

𝑒
− 𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )
𝑒
𝑗
𝜋 ( 𝑓𝑖− 𝑓 𝑗 )2

𝛾𝑖−𝛾𝑗 𝑒 𝑗𝑠𝑔𝑛(
𝛾𝑖−𝛾𝑗

2 ) 𝜋
4 𝑒

𝑗 𝑣
𝑏2
𝑚

× |ℎ|√
|𝛾𝑖 − 𝛾 𝑗 |

2

( 𝑣𝑏2
− ℎ ( 𝑓𝑖− 𝑓 𝑗 )𝑢

(𝛾𝑖−𝛾 𝑗 )𝑏1
)2
.

(27)
Denote * by the complex conjugate. Using the conjugation
property of the LCT, we obtain

𝐿𝜏 (𝐿𝑡𝑛 (𝑅𝐶
∗
2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))) = 𝐿𝜏 (𝐿𝑡∗𝑛 (𝜏,−𝑢))

=𝑊𝑉𝐿
′∗
𝑥𝑖 𝑥 𝑗 (−𝑣,−𝑢).

(28)

Using (3), we have

𝐿𝑡𝑛 ,𝜏 (𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)𝑅

𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))

=𝑒 𝑗 (𝑢
𝜋 (𝛾𝑖+𝛾𝑗 )

ℎ 𝑑1+𝑣𝜋 ( 𝑓𝑖+ 𝑓 𝑗 )𝑑2 )− 𝑗
2 [ (

𝜋 (𝛾𝑖+𝛾𝑗 )
ℎ )2𝑏1𝑑1+𝜋2 ( 𝑓𝑖+ 𝑓 𝑗 )

2
𝑏2𝑑2 ]

× 𝐿𝑡𝑛 ,𝜏 (𝑅𝐶2
𝑥𝑖 𝑥 𝑗 (𝑢 −

𝜋(𝛾𝑖 + 𝛾 𝑗 )
ℎ

𝑏1, 𝑣 − 𝜋( 𝑓𝑖 + 𝑓 𝑗 )𝑏2)).
(29)

Obviously

𝐿𝑡𝑛 ,𝜏Γ (𝐴𝑖𝐴 𝑗𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) [𝑅

𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏) + 𝑅

𝐶∗
2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)])

=𝐴𝑖𝐴 𝑗 [𝐿𝑡𝑛 ,𝜏 (𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)𝑅

𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))

+ 𝐿𝑡𝑛 ,𝜏 (𝑅𝐶1
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)𝑅

𝐶∗
2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏))],

(30)

substituting 𝑢̃ and 𝑣̃, we have

𝑊𝑉𝐿𝐴,𝐵𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

=
𝐴𝑖𝐴 𝑗 |ℎ|

𝑗2𝜋3
√
𝑏1𝑏2 | (𝛾𝑖 − 𝛾 𝑗 ) |

1

(𝑣̃ − ( 𝑓𝑖− 𝑓 𝑗 )𝑢
𝛾𝑖−𝛾 𝑗 )2

𝑒 𝑗2𝜋𝑚𝑣̃

× 𝑒 𝑗 𝜋 [
(𝛾𝑖+𝛾𝑗 )𝑑1

ℎ 𝑢+( 𝑓𝑖+ 𝑓 𝑗 )𝑑2𝑣 ]𝑐𝑜𝑠( 2𝜋2𝑏1𝑑1

ℎ2 𝑢̃2 + 2𝜋2𝑏2𝑑2𝑣̃
2

−
𝜋( 𝑓𝑖 − 𝑓 𝑗 )2

𝛾𝑖 − 𝛾 𝑗
− 𝑠𝑔𝑛(

𝛾𝑖 − 𝛾 𝑗
2

) 𝜋
4

+ 𝜋2

2
[
(𝛾𝑖 + 𝛾 𝑗 )2𝑏1𝑑1

ℎ2 + ( 𝑓𝑖 + 𝑓 𝑗 )2𝑏2𝑑2]).
(31)

Simplify (31) we can obtain (16).
For 𝑢 ≠ ±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1

ℎ |, we have

𝐿𝜏 (𝐿𝑡𝑛 (𝑅𝐶2
𝑥𝑖 𝑥 𝑗 (𝑡𝑛, 𝜏)))

=
1
𝑗2𝜋

1
√
𝑏1𝑏2

|ℎ|√
|𝛾𝑖 − 𝛾 𝑗 |

𝑒
− 𝑗 ( 𝑑1

2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )

× 𝑒− 𝑗
𝜋 ( 𝑓𝑖− 𝑓 𝑗 )2

𝛾𝑖−𝛾𝑗 𝑒 𝑗𝑠𝑔𝑛(
𝛾𝑖−𝛾𝑗

2 ) 𝜋
4

∫ +∞

−∞
| (𝜏 + 𝑚) |

× 𝑒
𝑗 [ ( 𝜋 (𝛾𝑖−𝛾𝑗 )

4 − ℎ2𝑢2

4𝜋 (𝛾𝑖−𝛾𝑗 )𝑏2
1
) (𝜏+𝑚)2+( ℎ ( 𝑓𝑖− 𝑓 𝑗 )

𝑏1 (𝛾𝑖−𝛾𝑗 )
− 𝑣

𝑏2
) (𝜏+𝑚) ]

𝑑 (𝜏 + 𝑚).
(32)

Similarly, using the PSP, we have

(𝜏 + 𝑚)∗ =
2𝜋((𝛾𝑖 − 𝛾 𝑗 )𝑏2

1𝑣 − ℎ( 𝑓𝑖 − 𝑓 𝑗 )𝑏1𝑏2)
𝑏2 (𝜋2 (𝛾𝑖 − 𝛾 𝑗 )2𝑏2

1 − ℎ2𝑢2)
, (33)

then
𝑊𝑉𝐿

′
𝑥𝑖 𝑥 𝑗 (𝑢, 𝑣)

=
2𝜋𝑏

3
2
1 ℎ[𝑏1 (𝛾𝑖 − 𝛾 𝑗 )𝑣 − ℎ( 𝑓𝑖 − 𝑓 𝑗 )𝑏2𝑢]

𝑗 𝑏
3
2
2 [𝜋2 (𝛾𝑖 − 𝛾 𝑗 )2𝑏2

1 − ℎ2𝑢2] 3
2

× 𝑒 𝑗 (
𝑑1
2𝑏1
𝑢2+ 𝑑2

2𝑏2
𝑣2 )
𝑒
− 𝑗 𝜋 (𝑏1 (𝛾𝑖−𝛾𝑗 )𝑣−ℎ ( 𝑓𝑖− 𝑓 𝑗 )𝑏2𝑢)2

𝑏2
2 (𝛾𝑖−𝛾𝑗 ) (𝜋2 (𝛾𝑖−𝛾𝑗 )2𝑏2

1−ℎ
2𝑢2 )

× 𝑒 𝑗 𝜋4 𝑠𝑔𝑛(
𝛾𝑖−𝛾𝑗

2 ) (1+𝑠𝑔𝑛(𝜋2𝑏2
1 (𝛾𝑖−𝛾 𝑗 )−ℎ

2𝑢2 ) )𝑒
− 𝑗 𝜋 ( 𝑓𝑖− 𝑓 𝑗 )2

𝛾𝑖−𝛾𝑗 .

(34)

(17) and (18) are derived by substituting (34) into (29) and
then applying the (28) to calculate (30). This completes the
proof.



Theorem 2 shows that WVL can eliminate the effect of some
cross terms. When 𝛾𝑖 = 𝛾 𝑗 = 𝑢ℎ

2𝜋𝑏1
, 𝑓𝑖 ≠ 𝑓 𝑗 and 𝛾𝑖 ≠ 𝛾 𝑗 , 𝑢 ≠

±| 𝜋 (𝛾𝑖−𝛾 𝑗 )𝑏1
ℎ |, 𝑢̃ = ±| (𝛾𝑖−𝛾 𝑗 )2 |, it is shown from (15) or (18)

that the corresponding cross term turns out to be zero.

IV. SIMULATION
This section proforms the simulation to verify the derived

results, and demonstrates the benefits of the WVL in multi-
component LFM signal detection.

Firstly, consider a multicomponent LFM signal 𝑥(𝑡), which
has three components, and the chirp rates are 𝛾0 = 10, 𝛾1 =
10, 𝛾2 = −20 respectively, the centroid frequencies are 𝑓0 =
−15, 𝑓1 = 5, 𝑓2 = 5 respectively. 𝐴0 = 𝐴1 = 𝐴2 = 1, then

𝑥(𝑡) = 𝑒 𝑗2𝜋 (−15)𝑡+ 𝑗 𝜋10𝑡2 + 𝑒 𝑗2𝜋5𝑡+ 𝑗 𝜋10𝑡2 + 𝑒 𝑗2𝜋5𝑡+ 𝑗 𝜋 (−20)𝑡2 .
(35)

Au1

Au2Au3

Cr1 Cr2

Cr3

Fig. 1. Classical WVD

Au2&Au3

Au1

Cr1

Fig. 2. LCT for the scaled PSIAF

Fig. 1 shows the result of the classical WVD of 𝑥(𝑡), Fig. 2
shows the result of the LCT with parameter [0,1/2,2,0] for the
scaled PSIAF of 𝑥(𝑡). As can be seen from the Fig. 1 and Fig.
2, the instantaneous frequency of each component of the LFM
signal varies with time, and the chirp frequency is shown by
the slope, and the central frequency is the frequency value at
𝑡 = 0. After taking the scaling operation for the PSIAF, the
slope of the auto-terms become zero. Because of 𝛾0 = 𝛾1, the
Cr1 still exists, however since 𝛾0 ≠ 𝛾2 and 𝛾1 ≠ 𝛾2, Cr2 and
Cr3 oscillate according to the cosine function respectively, as
can be clearly seen from formulas (12).

Secondly, by taking LCT with parameter [0,1/2,2,0] of the
Fig. 2 with repect to 𝜏, we can obtain the WVL’s result,
which is depicted in Fig. 3. When applying the WVL to
the multicomponent LFM signal 𝑥(𝑡), it can be observed
that the auto-terms are delta functions, indicating that WVL
exhibits the characteristic of auto-terms energy accumulation.
The energy of the cross-terms is negligible compared to the
peaks of the auto-terms.

V. CONCLUTION
Combining the advantages of the WVD and the LCT in

the TF domain, this paper proposes the WVL and explores
its conjugation symmetry and shifting properties. Especially
in processing multicomponent LFM signals, WVL has the
advantages of concentrating auto-term energy and eliminating
some cross-terms. First, by scaling the PSIAF, the coupling
between time variable and lag variable is eliminated. Then, by
performing a 2D LCT on 𝑡 and 𝜏, each auto-term component

Au3(-20,5)

Au1(10,-15)

Au2(10,5)

Fig. 3. WVL of multicomponent LFM signal

of the LFM signal can be easily identified in the WVL plane
through peak detection. Additionally, the frequency parameters
can be directly extracted from the coordinate values, and
simulations have verified these conclusions. Therefore, the
proposed WVL in this paper has important role for detecting
and processing multicomponent LFM signals.
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