
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

A Quasilinear-Time CVP Algorithm for Triangular

Lattice Based Fuzzy Extractors and Fuzzy Signatures

Kenta Takahashi* and Wataru Nakamura†
*Hitachi, Ltd., Yokohama, Japan

E-mail: kenta.takahashi.bw@hitachi.com
†Hitachi, Ltd., Yokohama, Japan

E-mail: wataru.nakamura.va@hitachi.com

Abstract— Fuzzy Extractor (FE) and Fuzzy Signature (FS) are

useful schemes for generating cryptographic keys from fuzzy data

such as biometric features. To implement FE and FS for fuzzy

data in a Euclidean space, such as facial feature vectors, several

techniques have been proposed that use lattice-based error correc-

tion. In these techniques, it is necessary to find the closest vector

in the lattice to a given fuzzy data at the time of key reproduction

or signing. However, the closest vector problem (CVP) in a general

lattice is known to be NP-hard. Therefore, it is necessary to use a

special lattice in which an efficient CVP algorithm can be con-

structed. In this paper, we propose a faster algorithm for CVP in

triangular lattices with 𝑶(𝒏 𝐥𝐨𝐠 𝒏)-time compared to the conven-

tional 𝑶(𝒏𝟐)-time algorithm.

I. INTRODUCTION

Fuzzy Extractor (FE) [1] is a general method to extract the

same random numbers from fuzzy data within a certain error

margin. FE enables the realization of cryptographic systems us-

ing biometric information or PUFs (Physically Unclonable

Function) [2] as key management mediums. Similarly, Fuzzy

Signature (FS) [3] is a digital signature scheme that uses fuzzy

data itself as a signing key.

The specific algorithms of FE and FS depend on the metric

space to which the fuzzy data belong and the error range to be

tolerated. For example, if the fuzzy data is in 𝑛-bit Hamming

space and you want to tolerate up to 𝑡-bit errors, there are

known FE algorithms using 𝑛-bit error correcting codes that

can correct 𝑡-bit errors [1]. With respect to the strength of the

keys to be extracted, the error correcting code (ECC) should

have as many codewords as possible for given (𝑛, 𝑡). In this

sense, it is ideal for the ECC to be a perfect code1, which divides

the 𝑛-bit space completely with Hamming spheres of radius 𝑡.

On the other hand, in biometric authentication methods such

as face recognition, features are often extracted as 𝑛-dimen-

sional vectors by machine learning or other methods, and errors

are often evaluated as Euclidean distance2. Applying FE and FS

1 Although there are a limited number of (𝑛, 𝑡) pairs for which a perfect

code exists.
2 Feature extraction methods such as CosFace [4] and ArcFace [5], where a

feature vector is 𝐿2-normalized and the 'closeness' between two vectors 𝒙, 𝒚

here requires an error correction mechanism in Euclidean space,

but since 𝑛-dimensional space cannot be divided by 𝑛-dimen-

sional hyperspheres, an approximate division must be used in-

stead. As a technique for this purpose, a method using an 𝑛-

dimensional lattice structure has been proposed [6,7,8]. The de-

sirable properties of the lattice to be applied to FE and FS are

as follows.

(1) The lattice gives a dense sphere packing.

(2) The closest lattice point to a given arbitrary vector can be

computed efficiently.

The first property is important to ensure the strength of the

key to be extracted. Such lattice structures have been studied

for many years in the context of the sphere packing problem

[9], but for the densest structures it is an open problem except

in 𝑛 = 1, 2, 3, 8 and 24 dimensions. The second require-

ment is also important to optimize the balance between security

and performance. However, the CVP in general lattices is

known to be NP-hard [10].

As a lattice structure that satisfies these properties to some

extent, Yoneyama et al. proposed the use of triangular lattices

and constructed an efficient algorithm for CVP with 𝑂(𝑛2)-

time complexity for 𝑛-dimensions by exploiting the high sym-

metry of the lattice [6]. However, when applied to biometric

systems, this algorithm may take too much time to compute.

For example, the typical number of feature dimensions in face

recognition is around 𝑛 = 128 ∼ 512, and when applied to a

1:N authentication system with 𝑁 = 100,000, the evaluated

processing time is 3.8 ∼ 62 seconds, as shown in sections

IV.B.

In this paper, we propose a fast CVP algorithm for triangular

lattices with a computational time complexity of 𝑂(𝑛 log 𝑛).

The main ideas are as follows. The first is to speed up the co-

ordinate transformation subroutine, which conventionally took

𝑂(𝑛2)-time, to 𝑂(𝑛)-time by using a kind of memorization

technique that exploits the properties of the expression of the

basis matrix of the triangular lattice. The second is to speed up

is defined by the cosine similarity 𝑆𝐶(𝒙, 𝒚):=
𝒙⋅𝒚

‖𝒙‖‖𝒚‖
= 𝒙 ⋅ 𝒚, are often used

for face recognition. This is equivalent to using Euclidean distance,

since ‖𝒙 − 𝒚‖2 = 2(1 − 𝑆𝐶(𝒙, 𝒚)).

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

the subroutine that searches for the closest vector from 𝑛 can-

didates, which conventionally took 𝑂(𝑛2)-time, to 𝑂(𝑛)-time

by showing that the sequence of distances from the target vec-

tor to the suitably sorted candidates is convex and introducing

a binary search.

II. PRELIMINARIES AND RELATED WORKS

A. Triangular Lattice

In an 𝑛-dimensional real Euclidean space ℝ𝑛, take 𝑛 inde-

pendent vectors 𝒃1, ⋯ , 𝒃𝑛 ∈ ℝ𝑛 (basis vectors) and let 𝐵 =

(𝒃1, ⋯ , 𝒃𝑛) be a matrix (basis matrix). Then the lattice 𝐿(𝐵)

is defined as

𝐿(𝐵): = {𝐵𝒙 | 𝒙 ∈ ℤ𝑛}.

That is, 𝐿(𝐵) is the set of all vectors 𝒃1, ⋯ , 𝒃𝑛 linearly com-

bined with integer coefficients.

A lattice 𝐿 is called a triangular lattice if it has a basis 𝐵 =

(𝒃1, ⋯ , 𝒃𝑛) satisfying the following conditions.

∀𝑖 ‖𝒃
𝑖‖ = 𝑐 (constant), ∀𝑖≠𝑗 𝒃

𝑖 ⋅ 𝒃𝑗 =
𝑐2

2
 .

The above conditions imply that an angle between any two ba-

sis vectors is π/3 (Figure 1). Triangular lattices have been

proven to give the densest sphere-packing in two and three di-

mensions. It has also been shown experimentally to have rela-

tively good performance in higher dimensions when applied to

FE [6].

Figure 1: Black dots are the points of a triangular lattice in ℝ𝟐 spanned by

𝑩 = (𝒃𝟏, 𝒃𝟐). The gray hexagon represents a Voronoi cell centered at lattice

point 𝒗. The shaded disk represents a sphere with center 𝒗 whose radius is

half the minimum distance.

For simplicity, and without loss of generality, the following

discussion deals with the triangular lattice with 𝑐 = 1 and a

basis matrix expressed as

𝐵 =

(

𝛼1 𝛽1 𝛽1 ⋯ 𝛽1
0 𝛼2 𝛽2 ⋯ 𝛽2
0 0 𝛼3 ⋯ 𝛽3
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝛼𝑛)

. (1)

where 𝛼𝑘and 𝛽𝑘are constants computed by the following sim-

ultaneous difference equations:

𝛼𝑘 = √1 −∑𝛽𝑖
2

𝑘−1

𝑖=1

, 𝛽𝑘 =

1
2
− ∑ 𝛽𝑖

2𝑘−1
𝑖=1

𝛼𝑘
 (𝑘 ∈ [𝑛]), (2)

where [𝑛] denotes the set {1,⋯ , 𝑛}. The first few values are

as follows:

𝛼1 = 1, 𝛼2 =
√3

2
, 𝛼3 =

√6

3
, ⋯ ,

𝛽1 =
1

2
, 𝛽2 =

√3

6
, 𝛽3 =

√6

12
, ⋯.

B. Conventional CVP Algorithm for Triangular Lattices

A CVP algorithm takes as input a target vector 𝒚 ∈ ℝ𝑛 and

outputs the closest lattice point. In the following, we outline the

conventional CVP algorithm for triangular lattices proposed by

Yoneyama et al. See reference [6] for details.

Conventional CVP Algorithm 𝐶𝑉(𝒚)

Input: 𝒚 ∈ ℝ𝑛

1: (𝑥1, ⋯ , 𝑥𝑛)
𝑡 ← 𝐵−1𝒚

2: for 𝑖 ← 1,⋯ , 𝑛 do

𝑤𝑖 ← ⌊𝑥𝑖⌋

𝑟𝑖 ← 𝑥𝑖 − 𝑤𝑖

end for

𝒘 ← (𝑤1, ⋯ , 𝑤𝑛)
𝑡

3: (𝑟𝜎(1), ⋯ , 𝑟𝜎(𝑛)) ← 𝑆𝑜𝑟𝑡(𝑟1, ⋯ , 𝑟𝑛) // descending or-

der

4: for 𝑘 ← 0,⋯ , 𝑛 do

𝒛𝑘 ← (𝑧1
𝑘 , ⋯ , 𝑧𝑛

𝑘)𝑡 where

𝑧𝑗
𝑘 ← {

1, for 𝑗 ← 𝜎(1),⋯ , 𝜎(𝑘)
0, for 𝑗 ← 𝜎(𝑘 + 1),⋯ , 𝜎(𝑛)

end for

5: 𝒛 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝒛𝑘∈{𝒛0,⋯,𝒛𝑛}‖𝐵𝒓 − 𝐵𝒛
𝑘‖

6: return 𝐵(𝒘 + 𝒛)

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

The time complexity of each step is 𝑂(𝑛2) for step 1, 4 and

6, 𝑂(𝑛) for step 2 and 𝑂(𝑛 log 𝑛) for step 3. Step 5 appears

to take 𝑂(𝑛3)-time at first glance, but can be computed in

𝑂(𝑛2)-time by using the following difference equation:

𝐵𝒛𝑛 = 0,

𝐵𝒛𝑘−1 = 𝐵𝒛𝑘 + 𝒃𝜎(𝑘) (for 𝑘 = 𝑛, 𝑛 − 1,⋯ ,1).

Therefore, the total complexity is 𝑂(𝑛2).

III. PROPOSED ALGORITHM

Based on the conventional algorithm, let us consider speed-

ing up steps 1, 4, 5, and 6, which take O(𝑛2)-time. Specifically,

the coordinate transformation process (product of basis matrix

and vector) in steps 1 and 6 and the closest vector search (enu-

meration of candidate vectors and distance calculation) in steps

4 and 5 are accelerated as subroutines, respectively.

A. Coordinate Transformation Subroutine

Let us consider algorithms for mutual transformation be-

tween 𝒚 = (𝑦1, ⋯ , 𝑦𝑛)
𝑡 (Cartesian coordinate system) and

𝒙 = (𝑥1, ⋯ , 𝑥𝑛)
𝑡 (triangular lattice basis coordinate system)

that satisfies the following relation:

𝒚 = 𝐵𝒙 ⇔ 𝒙 = 𝐵−1𝒚.

In general, the product of a matrix and a vector requires

𝑂(𝑛2)-time, but by utilizing the basis matrix representation in

Eq (1), a linear-time algorithm can be constructed as follows.

Defining 𝑠𝑘 (𝑘 ∈ [𝑛]) as

𝑠𝑘: = ∑ 𝑥𝑘

𝑛

𝑖=𝑘+1

 ,

we have

𝑠𝑛 = 0, (3)

𝑠𝑘−1 = 𝑠𝑘 + 𝑥𝑘 (𝑘 = 2,⋯ , 𝑛). (4)

Furthermore, from Eq (1) the following equation holds:

𝑦𝑘 = 𝛼𝑘𝑥𝑘 + 𝛽𝑘𝑠𝑘 (𝑘 = 1,⋯ , 𝑛). (5)

Therefore, given (𝑥1, ⋯ , 𝑥𝑛), (𝑦1 , ⋯ , 𝑦𝑛) can be obtained by

solving equation (3), (4) and (5) sequentially in the following

order: 𝑦𝑛 → 𝑠𝑛−1 → 𝑦𝑛−1 → 𝑠𝑛−2 → ⋯ → 𝑠1 → 𝑦1. Similarly,

given (𝑦1, ⋯ , 𝑦𝑛) , we can obtain (𝑥1, ⋯ , 𝑥𝑛) by solving

equation (3), (4) and (5) sequentially in the following order:

𝑥𝑛 → 𝑠𝑛−1 → 𝑥𝑛−1 → 𝑠𝑛−2 → ⋯ → 𝑠1 → 𝑥1 . The time com-

plexity of these algorithms is 𝑂(𝑛).

Triangular to Cartesian Coordinates 𝑇2𝐶(𝒙)

Input: 𝒙 = (𝑥1, ⋯ , 𝑥𝑛)
𝑡 ∈ ℝ𝑛

1: 𝑠𝑛 ← 0

2: for 𝑘 ← 𝑛, 𝑛 − 1,⋯ ,1 do

𝑦𝑘 ← 𝛼𝑘𝑥𝑘 + 𝛽𝑘𝑠𝑘

𝑠𝑘−1 ← 𝑠𝑘 + 𝑥𝑘

end for

3: return 𝒚 = (𝑦1, ⋯ , 𝑦𝑛)
𝑡

Cartesian to Triangular Coordinates 𝐶2𝑇(𝒚)

Input: 𝒚 = (𝑦1, ⋯ , 𝑦𝑛)
𝑡 ∈ ℝ𝑛

1: 𝑠𝑛 ← 0

2: for 𝑘 ← 𝑛, 𝑛 − 1,⋯ ,1 do

𝑥𝑘 ←
𝑦𝑘 − 𝛽𝑘𝑠𝑘

𝛼𝑘

𝑠𝑘−1 ← 𝑠𝑘 + 𝑥𝑘

end for

3: return 𝒙 = (𝑥1,⋯ , 𝑥𝑛)
𝑡

B. Closest Vector Search Subroutine

Here we describe an idea to speed up steps 4 and 5 of the

conventional CVP algorithm. The goal here is to efficiently de-

termine the 𝑘 that minimize 𝑑𝑘: = ‖𝐵𝒓 − 𝐵𝒛
𝑘‖2 without

calculating 𝒛𝑘 and 𝑑𝑘 for each 𝑘 = 0,1,⋯ , 𝑛 . 𝑑𝑘 can be

expanded as follow:

𝑑𝑘 = ‖𝐵𝒓‖
2 + ‖𝐵𝒛𝑘‖2 − 2𝐵𝒓 ⋅ 𝐵𝒛𝑘

= ‖𝐵𝒓‖2 + ‖𝒃𝜎(1) +⋯+ 𝒃𝜎(𝑘) ‖
2
− 2(𝑟1𝒃

1 +⋯𝑟𝑛𝒃
𝑛)

⋅ (𝒃𝜎(1) +⋯+ 𝒃𝜎(𝑘))

= ‖𝐵𝒓‖2 +
1

2
𝑘(𝑘 + 1)

− 𝑘(𝑟1 +⋯𝑟𝑛) − (𝑟𝜎(1) +⋯+ 𝑟𝜎(𝑘))

= ‖𝐵𝒓‖2 +
1

2
𝑘2 + 𝑘 (

1

2
− 𝑟𝑠𝑢𝑚) −∑𝑟𝜎(𝑖)

𝑘

𝑖=1

,

where 𝑟𝑠𝑢𝑚: = ∑ 𝑟𝑖
𝑛
𝑖=1 . Therefore the first and second order

differences of 𝑑𝑘 are:

Δ𝑘 ≔ 𝑑𝑘 − 𝑑𝑘−1 = 𝑘 − 𝑟𝑠𝑢𝑚 − 𝑟𝜎(𝑘),

Δ𝑘
2 : = Δ𝑘 − Δ𝑘−1 = 1 − (𝑟𝜎(𝑘) − 𝑟𝜎(𝑘−1)).

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Since 0 ≤ 𝑟𝑖 < 1 (𝑖 ∈ [𝑛]) we have Δ𝑘
2 > 0. Therefore, if

we regard 𝑑𝑘 as a (discrete) function of 𝑘, it is convex down-

wards, and the 𝑘 that gives the minimum value is:

i. if Δ1 ≥ 0 then 𝑘 = 0,

ii. if Δ𝑛 ≤ 0 then 𝑘 = 𝑛,

iii. otherwise the 𝑘 ∈ [𝑛 − 1] satisfying Δ𝑘 ≤ 0 ≤

Δ𝑘+1.

In case iii, 𝑘 can be found in 𝑂(log 𝑛) time by a binary search

for 𝛥𝑘 .

C. Fast CVP Algorithm

The following is the proposed CVP algorithm that uses the

subroutine described in sections III.A and III.B to speed up the

conventional algorithm.

Proposed Fast CVP Algorithm 𝐹𝑎𝑠𝑡𝐶𝑉(𝒚)

Input: 𝒚 ∈ ℝ𝑛

1: (𝑥1, ⋯ , 𝑥𝑛)
𝑡 ← 𝐶2𝑇(𝒚)

2: for 𝑖 ← 1,⋯ , 𝑛 do

𝑤𝑖 ← ⌊𝑥𝑖⌋

 𝑟𝑖 ← 𝑥𝑖 − 𝑤𝑖

end for

𝒘 ← (𝑤1, ⋯ , 𝑤𝑛)
𝑡

3: (𝑟𝜎(1), ⋯ , 𝑟𝜎(𝑛)) ← 𝑆𝑜𝑟𝑡(𝑟1, ⋯ , 𝑟𝑛) //descending or-

der.

4: 𝑟𝑠𝑢𝑚 ← ∑ 𝑟𝑖
𝑛
𝑖=1

5: If 1 − 𝑟𝑠𝑢𝑚 − 𝑟𝜎(1) ≥ 0 then

𝑘 ← 0

else if 𝑛 − 𝑟𝑠𝑢𝑚 − 𝑟𝜎(𝑛) ≤ 0 then

𝑘 ← 𝑛

Otherwise

determine 𝑘 ∈ [𝑛 − 1] satisfying the following in-

equality by a binary search:

𝑘 − 𝑟𝜎(𝑘) ≤ 𝑟𝑠𝑢𝑚 ≤ 𝑘 + 1 − 𝑟𝜎(𝑘+1)

end if

6: 𝒛 ← (𝑧1, ⋯ , 𝑧𝑛)
𝑡 where

𝑧𝑗 ← {
1, for 𝑗 ← 𝜎(1),⋯ , 𝜎(𝑘)
0, for 𝑗 ← 𝜎(𝑘 + 1),⋯ , 𝜎(𝑛)

7: return 𝑇2𝐶(𝒘 + 𝒛)

IV. EVALUATION

A. Asymptotic Complexity

Let us evaluate the time complexity of the proposed CVP al-

gorithm 𝐹𝑎𝑠𝑐𝑡𝐶𝑉 . The complexity of coordinate transfor-

mation algorithms 𝐶2𝑇 and 𝑇2𝐶 in Steps 1 and 7 is 𝑂(𝑛)-

time as described in III.A. Step 3 can be computed in

𝑂(𝑛 log 𝑛)-time. Step 5 is a subroutine described in III.B and

can be computed in 𝑂(log 𝑛) -time. Since other steps are

𝑂(𝑛)-time, the total complexity of 𝐹𝑎𝑠𝑡𝐶𝑉 is 𝑂(𝑛 log 𝑛)-

time.

B. Experimental Evaluation

We implemented the proposed CVP algorithm and the con-

ventional algorithm to evaluate their computation times exper-

imentally. We randomly selected 10,000 real vectors

𝒚1, ⋯ , 𝒚10000 from the range 𝒚𝑖 ∈ [−100,100]
𝑛 as target

vectors, executed 𝐶𝑉(𝒚𝑖) and 𝐹𝑎𝑠𝑡𝐶𝑉(𝒚𝑖) for all 𝒚𝑖 (𝑖 =

1,⋯ ,10000), measured the total computation time for each al-

gorithm, and evaluated the average time per run for each algo-

rithm. The results for 𝑛 = 128, 256, and 512 are shown in

Table 1 and Figure 2. The computing environment is as fol-

lows: OS: Windows 10 Pro, CPU: Intel(R) Core(TM) i7-8700K

@ 3.70GHz, memory 32GB, storage: SSD.

The proposed algorithm is about 6.6 times faster than the

conventional algorithm when 𝑛 = 128, about 12 times faster

when 𝑛 = 256, and about 24 times faster when 𝑛 = 512. The

number of processes per second when 𝑛 = 512 is 3.82 ×

104 with the proposed algorithm while it is 1.60 × 103 with

the conventional algorithm.

Table 1: Average Computation time of the algorithms (𝝁𝒔)

Algorithm 𝑛 = 128 𝑛 = 256 𝑛 = 512

Conventional 38.2 156 623

Proposed 5.8 12.5 26.2

V. CONCLUSIONS

In this paper, we proposed a fast algorithm for the closest

vector problem (CVP) on high-dimensional triangular lattices.

The time complexity of the proposed algorithm is 𝑂(𝑛 log𝑛),

whereas that of conventional algorithms is 𝑂(𝑛2) for 𝑛 di-

mensions. Experimental evaluation shows that the proposed al-

gorithm achieves a speedup of about 24 times when 𝑛 = 512.

The CVP algorithm for high-dimensional triangular lattices is

useful for constructing Fuzzy Extractors (FE) and Fuzzy Sig-

natures (FS) using biometric data such as facial feature vectors.

Therefore it is expected to realize real-time biometric identifi-

cation for large-scale users with biometric template protection

[11] based on FE and FS such as the Public Biometric

Fig. 2 Graphical comparison of the computation time of the algorithms.

0

100

200

300

400

500

600

700

0 200 400 600

Conventional Proposed

μs

n (dimension)

2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Infrastructure (PBI) [3]. A more detailed evaluation (e.g., using

large-scale face datasets) is a subject for future work.

REFERENCES

[1] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin and Adam

Smith, “Fuzzy extractors: How to generate strong keys from bio-

metrics and other noisy data,” SIAM Journal on Computing,

Vol.38, No.1, 97–139. 2008.

[2] Roel Maes, “Physically unclonable functions: Constructions,

Properties and Applications,” Springer. ISBN 978-3-642-41395-

7, 2013.

[3] Kenta Takahashi, Takahiro Matsuda, Takao Murakami, Goichiro

Hanaoka and Masakatsu Nishigaki, “Signature schemes with a

fuzzy private key,” in International Journal of Information Secu-

rity, vol. 18 (2019), 581–617.

[4] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong,

Jingchao Zhou, Zhifeng Li and Wei Liu, “CosFace: Large Margin

Cosine Loss for Deep Face Recognition,” in Proc. of CVPR, 2018.

[5] Jiankang Deng, Jia Guo, Niannan Xue and Stefanos Zafeiriou,

“ArcFace: Additive Angular Margin Loss for Deep Face Recog-

nition,” in Proc. of CVPR, 2019.

[6] Yuta Yoneyama, Kenta Takahashi and Masakatsu Nishigaki,

“Closest Vector Problem on Triangular Lattice and Its Applica-

tion to Fuzzy Signature,” in IEICE Trans. Fundamentals (Japa-

nese Edition), Vol.J98-A，No.6，pp.427-435, 2015.

[7] Kaiyi Zhang, Hongrui Cui and Yu Yu, “Facial Template Protec-

tion via Lattice-based Fuzzy Extractors,” IACR Cryptology

ePrint Arch. 2021: 1559, 2021.

[8] Shuichi Katsumata, Takahiro Matsuda, Wataru Nakamura,

Kazuma Ohara and Kenta Takahashi, “Revisiting Fuzzy Signa-

tures: Towards a More Risk-Free Cryptographic Authentication

System based on Biometrics,” CCS 2021: 2046-2065, 2021.

[9] J. H. Conway and N. J. A. Sloane, “Sphere Packings, Lattices and

Groups,” second ed., Grundlehren der Mathematischen Wissen-

schaften Band 290, Springer-Verlag, New York, 1993.

[10] I. Dinur, G. Kindler, R. Raz and S. Safra, “Approximating CVP

to Within Almost-Polynomial Factors is NP-Hard,” in Combina-

torica, vol. 23, pp. 205–243, 2003.

[11] ISO/IEC 24745:2022, “Information security, cybersecurity and

privacy protection – Biometric information protection,” Standard.

International Organization for Standardization, Geneva, CH 2022.

