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Abstract—Voice Activity Detection (VAD) is a critical pre-
processing step in Automatic Speech Recognition (ASR) systems,
tasked with distinguishing speech from non-speech segments in
audio signals. The accuracy of this segmentation is essential, as
errors can significantly impair ASR performance. This study
integrates multiple VAD algorithms with ASR systems and
analyzes their interaction by focusing on the Word Error Rate
(WER) of ASR in relation to VAD’s recall and precision. The
research reveals a strong correlation between ASR’s insertion
and deletion errors and VAD’s performance metrics. Insertions
are mainly due to VAD misclassifying non-speech as speech,
while deletions stem from misclassifying speech as non-speech. To
address these issues, we introduce the Aligned Token Word Error
Rate (atWER), a novel metric based on forced alignment from
the Connectionist Temporal Classification (CTC) framework. Our
experiments show that atWER accurately reflects the impact
of VAD on ASR performance, effectively reducing discrepancies
between VAD annotations and classification outcomes.

I. INTRODUCTION

Voice Activity Detection (VAD) is a crucial initial step
in Automatic Speech Recognition (ASR) systems, designed
to accurately distinguish speech from non-speech elements
within audio signals. The precision of this segmentation is
vital, as non-speech interference—such as ambient noise or
silence—can significantly impair ASR performance.

The accuracy of VAD is critical; incorrect classification
of speech and non-speech can lead to a cascade of errors
in ASR processing. Misclassifications may result in the loss
of essential speech data or the inclusion of irrelevant noise,
undermining the system’s ability to accurately interpret and
respond to spoken commands.

The correlation between VAD effectiveness and ASR error
types is complex and significant [1]. The precision of the VAD
mechanism significantly impacts the two predominant error
categories in ASR systems, namely the occurrences of insertion
and deletion errors.

• Insertion Errors in ASR occur when the system mis-
interprets non-speech sounds as speech, a failure of the
VAD to filter out background noise. This leads to the ASR
system processing unnecessary acoustic data, contaminat-
ing the output with false linguistic content and reducing
reliability.

• Deletion Errors in ASR happen when the system misses
actual speech segments due to the VAD misclassifying
them as non-speech. This oversight can be due to stringent
VAD detection criteria or inadequate representation of
atypical speech in the training data, resulting in incom-
plete ASR outputs.

This study investigates the integration of VAD and ASR sys-
tems to enhance their performance. The methodology includes:

• A comparative temporal analysis of System VAD versus
Oracle VAD using case studies, revealing a significant
correlation between their metrics and temporal alignment.

• Experimental scrutiny was employed to examine the re-
lationship between VAD and ASR metrics. The results
indicated that when VAD and ASR systems are integrated
sequentially, the composite performance metrics are pre-
dominantly determined by the VAD system’s characteris-
tics.

• Introduction of an algorithm for calculating Aligned To-
ken Word Error Rate (atWER) to address error propa-
gation challenges in the sequential deployment of VAD
and ASR systems, mitigating misalignment between VAD
annotations and classification outcomes.

II. RELATED WORK

VAD, serving as a pivotal component in the pre-processing
phase of ASR systems, has garnered escalating significance.
The primary goal of VAD is to identify vocal segments
within a continuous audio signal while reducing the impact
of background noise and non-vocal sounds. This segmentation
is vital for enhancing ASR system performance by minimiz-
ing incorrect interpretations and improving efficiency through
reduced data processing.

Advancements in deep learning have propelled the develop-
ment of VAD methods. Recurrent Neural Networks (RNNs)
have been instrumental in capturing the temporal dynamics
of audio signals [2]. Convolutional Neural Networks (CNNs)
have also demonstrated effectiveness in feature extraction [3].
The Convolutional Recurrent Deep Neural Network (CRDNN)
combines CNN and RNN features, utilizing convolutional
layers for feature extraction and recurrent layers for time



series processing. This hybrid approach effectively captures
relevant audio features to distinguish between speech and non-
speech segments. The Feedback Sequential Memory Network
(FSMN) leverages a feedforward architecture with memory
units capable of storing and updating information, optimizing
the handling of time series data [4].

Despite these advancements, challenges remain, particularly
in the robustness of VAD systems when dealing with diverse
accents, dialects, and noisy environments. The performance
of VAD directly influences ASR outcomes. A recent study [5]
introduces a multi-task learning framework that integrates VAD
into the ASR system. This framework aims to improve ASR
performance by using VAD alignment information during the
training phase. [6] primarily introduces a novel method that
applies Minimum Word Error training to a RNN to optimize
VAD for improving the accuracy of speech recognition, espe-
cially on noisy data.

However, [7] point out that ASR systems are typically
deployed in conjunction with a VAD system to operate ASR
only on the voiced acoustic signals, thereby maintaining ASR
performance by removing unnecessary non-speech parts from
input audio signals during inference. However, if VAD fails
to correctly split speech and non-speech segments, errors can
propagate. Particularly in noisy environments or unknown
acoustic domains, VAD is more prone to failure, which can
trigger more significant insertion errors in ASR. [8] exper-
imented with the hyperparameters of multi-channel VAD to
mitigate the problems of insertion and deletion errors in ASR,
but the approach continues to depend on the precision of the
front-end System’s VAD.

The problem of ASR accuracy being affected by VAD
metrics such as Recall and accuracy is still resolved. Insertion
errors in ASR can occur when VAD incorrectly classifies non-
speech as speech, while deletion errors arise when speech is
mistakenly categorized as non-speech.

III. METHODS

A. System VAD and Oracle VAD

This section aims to delve into the intricacies of two
significant approaches within the VAD domain: System VAD
and Oracle VAD.

In System VAD, the decision-making process can be mod-
eled as a binary classification problem, where the system must
classify each frame of the audio signal as either speech or non-
speech. A common approach is to define a decision function
fvad that takes a feature vector xvad as input and outputs a
binary decision yvad:

yvad = fvad(xvad, θ) (1)

Here, xvad represents the feature vector extracted from the
audio signal, which could include spectral, temporal, and
statistical features. θ denotes the parameters of the VAD
algorithm, which are typically learned from a training dataset.

Oracle VAD is an idealized model that represents the
perfect detector with complete knowledge of the true speech

segments. It serves as a theoretical benchmark to evaluate the
performance of System VAD algorithms. The oracle detector
can be mathematically represented as:

yoracle vad = 1[xvad ∈ Speech] (2)

Here, 1 is the indicator function that returns 1 if the condition is
true (i.e., the feature vector xvad belongs to a speech segment)
and 0 otherwise.

B. VAD Metrics

The objective of this research is to delve into the effec-
tiveness of VAD systems by examining four critical evaluation
metrics: Accuracy (Acc), Precision (Pre), Recall, and F1-Score
(F1). These metrics are essential for assessing the performance
of VAD algorithms, providing a comprehensive view of their
reliability and efficiency in detecting speech segments.

Acc =
TP + TN

TP + TN + FP + FN
(3)

Pre =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1 = 2 ∗ Pre ∗Recall

Pre+Recall
(6)

where true positives (TP) is the number of segments correctly
identified as speech, true negatives (TN) is the number of
segments correctly identified as non-speech, false positives
(FP) is the number of non-speech segments incorrectly iden-
tified as speech, and false negatives (FN) is the number of
speech segments incorrectly identified as non-speech. Precision
measures the proportion of true speech segments among all
segments identified as speech by the system. Recall measures
the proportion of true speech segments correctly identified
out of all actual speech segments. The F1-Score provides
a balanced measure, taking into account both precision and
recall.

C. CTC-based and non-CTC-based ASR models

This section delves into the heart of ASR technology, exam-
ining two distinct approaches: CTC (Connectionist Temporal
Classification)-based models and their non-CTC counterparts.

CTC-based ASR Models: The Connectionist Temporal Clas-
sification framework, introduced in [9], has been a pivotal
breakthrough in the field of ASR. CTC-based models excel
in handling variable-length input and output sequences, mak-
ing them ideal for tasks where the alignment between the
speech signal and the corresponding text is not predefined.
This approach has been instrumental in the development of
deep learning-based ASR systems, particularly those utilizing
Transformer, RNN, and CNN. The CTC loss function, which
allows for the direct alignment of input sequences with output
labels, has been a key factor in the success of these models.

Non-CTC-based ASR Models: While CTC has set the
standard for many ASR systems, alternative approaches have
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emerged that challenge the status quo. Non-CTC-based mod-
els, such as those utilizing Attention Mechanisms and Trans-
former architectures, have gained prominence due to their abil-
ity to capture long-range dependencies and contextual infor-
mation more effectively. These models often employ encoder-
decoder frameworks that can directly predict the output se-
quence from the input sequence, offering a more interpretable
and flexible approach to speech recognition.

D. ASR Metric

The WER (Word Error Rate) is an important metric for
evaluating the performance of ASR systems. It measures the
accuracy of recognition by quantifying the differences between
the predicted text and the reference text. The formula for
calculating WER is as follows:

WER =
S +D + I

N
(7)

where S represents the number of substitution (SUB) errors, D
represents the number of deletion (DEL) errors, I represents
the number of insertion (INS) errors, and N represents the
total number of words or characters in the reference text. The
lower the WER value, the better the performance of the ASR
system.

E. atWER

In this section, we will focus on introducing the atWER
method, which mainly includes two steps: the alignment of
the hypothesis and label, and the calculation of atWER.

We utilized the U2 Attention rescoring method [10] to
recognize speech after VAD segmentation. Meanwhile, the
CTC algorithm effectively addressed the alignment issue in
sequence labeling by introducing a blank symbol and dynamic
programming techniques.

Specifically, the CTC algorithm initially procures the n-
best candidate ensemble in a sequential stream, which is then
subjected to the attention-based rescoring mechanism. This
mechanism refines the n-best candidates through an appor-
tioned scoring methodology, culminating in the derivation of
a hypothesis that encapsulates sequence alignment data. Ulti-
mately, the alignment outcomes at the character tier, predicated
on the aforementioned hypothesis, are harmonized with the
reference label of the Oracle VAD. The token is deemed
credible when both the System VAD and the Oracle VAD are
concurrently operational.The formula for calculating atWER is
as follows:

atWER =
Sc +Dc + Ic

Nc
(8)

where Sc represents the number of SUB errors among the
credible tokens, Dc represents the number of DEL errors
among the credible tokens, Ic represents the number of INS
errors among the credible tokens, and Nc represents the total
number of words or characters in the reference text within the
credible tokens. The lower the atWER value, the better the
performance of the ASR system.

VAD Model Acc F1 Recall Pre
FSMN VAD 0.92 0.9 0.84 0.99

CRDNN VAD 0.73 0.71 0.73 0.7
Silero VAD 0.89 0.85 0.75 1.0

TABLE I
COMPARISON OF DIFFERENT SYSTEM VADS.
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Fig. 1. Radar chart of the performance of different systems in different
sessions on the DEV dataset.

IV. EXPERIMENT

This section delineates the specific contents of the experi-
ments conducted in this study.

A. VAD System Evaluation

This section assesses the performance of three VAD mod-
els—the FSMN [4], CRDNN, and Silero [11] VAD mod-
els—on the LibriParty 1 dataset using the metrics introduced
in Section III-E.

Initially, the experiment evaluated the performance of three
VAD models using the Development (DEV) dataset, calcu-
lating metrics such as Accuracy, F1-score, Precision, and
Recall. The results were compared using radar charts, as
depicted in Figure 1. Figures 1.a and 1.b illustrate that the
CRDNN VAD model outperforms the other two models in
overall performance. However, Figure 1.c reveals a higher
false positive rate for the CRDNN VAD model, indicating a
propensity to misclassify non-speech segments as speech.

Subsequently, the experiment assessed the models’ scores
on the Evaluation (EVAL) dataset, as shown in Figure 2.

1https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriParty
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Fig. 2. Radar chart of the performance of different systems in different
sessions on the EVAL dataset.

The findings diverged from the previous experiment, with the
CRDNN VAD model significantly underperforming compared
to the other models. Figures 2.a and 2.b demonstrate that the
FSMN VAD model achieved the best performance, closely
followed by the Silero VAD model. The latter’s slightly
lower performance is primarily attributed to its tendency to
misclassify speech segments as non-speech, as illustrated in
Figure 2.d.

The paper further illustrates the performance of the VAD
models through visual representations of sample results in Fig-
ures 3 and 4. These figures delineate the manual segmentation
outcomes in blue and the model predictions in green. Notably,
in Figure 3.b and 3.e, the CRDNN VAD model is observed to
misclassify non-speech frames as speech. Conversely, Figures
3.a, 3.c, 3.d, and 3.f indicate a tendency for both the FSMN and
Silero VAD models to classify speech frames as non-speech, a
behavior that is also evident in Figure 4. The sample analyses
corroborate the findings from the radar chart assessments,
reinforcing the consistency of the models’ performance across
different evaluation methods.

This experiment also systematically documents the compar-
ative performance of the three VAD models across two datasets
in Table I. The FSMN VAD model leads in performance,
closely followed by the Silero VAD model, with the CRDNN
VAD model ranking third. A minor performance discrepancy
exists between the FSMN and Silero models, particularly in the
Recall metric. This discrepancy aligns with our observations
that the Silero VAD model is more prone to false negatives.
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For the session_22 in the dev dataset, a comparison chart of the timelines between oracle VAD and fsmn VAD.
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For the session_41 in the dev dataset, a comparison chart of the timelines between oracle VAD and fsmn VAD.

(d) FMSN VAD for session 41
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(b) CRDNN VAD for session 22
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(e) CRDNN VAD for session 41
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For the session_22 in the dev dataset, a comparison chart of the timelines between oracle VAD and silero VAD.

(c) Silero VAD for session 22
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(f) Silero VAD for session 41
Fig. 3. Sampled dev session 22 and dev session 41 from the DEV dataset,
the alignment results of the Oracle VAD (blue) and the System VAD (green)
on the timeline.

B. VAD cascading ASR System Evaluation

To assess the impact of cascading VAD systems on ASR
systems, we integrated the three VAD systems from Section
IV-A with the Paraformer [12] model and the SenseVoice [13]
model, respectively, and measured the evaluation outcomes
based on WER and atWER. The results are presented in
Table II and III. In accordance with the principles of atWER,
this experiment aligned the System VAD outcomes with the
VAD labels, evaluating ASR results only under true positive
conditions. It was observed that all three types of ASR errors
were reduced, with the most significant decrease observed in
deletion errors.

We argue that the atWER metric excludes false positive
cases, where System VAD misclassifies non-speech as speech,
from the evaluation. Consequently, the content erroneously
identified as speech does not influence the atWER assessment.
Additionally, atWER does not consider false negatives, where
speech is misclassified as non-speech, resulting in omitted
content in ASR recognition. We posit that these misclassifi-
cations are beyond the purview of ASR system enhancements
and should not be included in ASR evaluation metrics. As a
result, in our statistical analysis, we have excluded insertion
and deletion errors associated with these scenarios.

Furthermore, we observed an unexpected increase in substi-
tution errors, which seemingly conflicts with the anticipated
effects of atWER. This anomaly can be explained by the
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(a) FSMN VAD for session 1
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For the session_47 in the eval dataset, a comparison chart of the timelines between oracle VAD and fsmn VAD.

(d) FSMN VAD for session 47
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(b) CRDNN VAD for session 1
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(e) CRDNN VAD for session 47
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(c) Silero VAD for session 1
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(f) Silero VAD for session 47
Fig. 4. Sampled eval session 1 and eval session 47 from the EVAL dataset,
the alignment results of the Oracle VAD (blue) and the System VAD (green)
on the timeline.

Exp Evaluation Method WER SUB INS DEL

E1: FSMN VAD WER 40.0 2121 198 6212
atWER 38.88 2122 198 5821

E2: CRDNN VAD WER 31.75 2250 304 4727
atWER 30.24 2240 208 4379

E3: Silero VAD WER 40.02 2695 202 6281
atWER 38.83 2685 191 5861

TABLE II
WER RESULTS AND ATWER RESULTS OF THE VAD-CASCADED ASR

SYSTEM EVALUATION ON THE DEV DATASET.

fact that atWER, by eliminating insertion errors, paradoxically
generates new deletion errors. These deletions, in turn, can
merge with existing errors, transforming them into a single
substitution error.

V. CONCLUSIONS

This research presented highlights the significant corre-
lation between the effectiveness of VAD and the types of
errors encountered in ASR systems, specifically insertion and
deletion errors. To address the challenges posed by insertion
and deletion errors, this paper introduces the atWER metric
calculation algorithm. This novel approach aims to resolve the
alignment discrepancies between VAD labels and classification
results, thereby enhancing the reliability and accuracy of both
VAD and ASR systems. By improving the accuracy of speech
detection and addressing the alignment issues between VAD
and ASR, we can significantly enhance the user experience

Exp Evaluation Method WER SUB INS DEL

E1: FSMN VAD WER 34.5 2462 285 5165
atWER 33.93 2444 215 5092

E2: CRDNN VAD WER 67.45 1482 76 12828
atWER 57.53 1359 56 7990

E3: Silero VAD WER 42.38 2678 196 6164
atWER 39.67 2681 196 5201

TABLE III
WER RESULTS AND ATWER RESULTS OF THE VAD-CASCADED ASR

SYSTEM EVALUATION ON THE EVAL DATASET.

and the practical utility of speech recognition technologies in
various applications.
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