A Discrete-Valued Signal Estimation by Nonconvex Enhancement of SOAV with cLiGME Model

Satoshi Shoji, Wataru Yata, Keita Kume and Isao Yamada

Dept. of Information and Communication Engineering, Institute of Science Tokyo E-mail: {shoji, yata, kume, isao}@sp.ict.e.titech.ac.jp

Abstract—In this paper, for the discrete-valued signal estimation, we propose a regularized least squares model but with a nonconvex enhancement of the so-called SOAV convex regularizer. To design more contrastive regularizers whose minima correspond to desired discrete values, we propose a class of nonconvex functions with Generalized Moreau Enhancement (GME) of the weighted ℓ_1 -norm. Promisingly, by tuning properly the design parameters of the proposed GME regularizers, (i) we can make the nonconvexly-regularized least squares model convex; and (ii) we can use an iterative algorithm for finding a global minimizer of the proposed model. We also propose a pair of simple technical improvements, of the proposed algorithm, called respectively a generalized superiorization and an iterative reweighting. Numerical experiments demonstrate the effectiveness of the proposed model and algorithms in a scenario of MIMO signal detection.

I. INTRODUCTION

Many tasks in signal processing, including digital communication and discrete-valued control [1]–[7], have been formulated as the following discrete-valued estimation problem:

Problem 1 (A discrete-valued estimation problem).

Find
$$\mathbf{x}^* \in \mathfrak{D}$$
 such that $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \boldsymbol{\varepsilon}$, (1)

where $\mathfrak{D} \coloneqq {\mathbf{s}_1, \mathbf{s}_2, \ldots, \mathbf{s}_{L^N}} = \mathfrak{A}^N \coloneqq {\{a_1, a_2, \ldots, a_L\}}^N \subset \mathbb{R}^N, \mathbf{y} \in \mathbb{R}^M$ is an observed vector, $\mathbf{A} \in \mathbb{R}^{M \times N}$ is a known matrix, and $\boldsymbol{\varepsilon} \in \mathbb{R}^M$ is noise (Note: the complex version of this problem can also be formulated as Problem 1 essentially via simple $\mathbb{C} \rightleftharpoons \mathbb{R}^2$ translation (see Appendix A)).

Problem 1 is a special instance of the mixed integer programming [8], but a direct application of naive solvers for the mixed integer programming leads to exponential computational complexity in N. From a practical viewpoint, continuous optimization approaches [9]–[14] have been utilized for Problem 1 as computationally efficient alternatives. For example, Problem 1 has been tackled with projection of a tentative estimate, say $\mathbf{x}^{\diamond} \in \mathbb{R}^N$, onto \mathfrak{D} after solving a relaxed continuous optimization problem:

Scheme 1 (A scheme for (1) via regularized least squares). Step 1:

Find
$$\mathbf{x}^{\diamond} \in \operatorname*{argmin}_{\mathbf{x} \in \widetilde{\mathfrak{O}} \subset \mathbb{R}^{N}} J_{\Theta}(\mathbf{x}) \coloneqq \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \mu \Theta(\mathbf{x}),$$
 (2)

where the constraint set $\mathfrak{D} \supset \mathfrak{D}$ is chosen usually as a connected subset (e.g., the convex hull of \mathfrak{D}) of $\mathbb{R}^N, \Theta : \mathbb{R}^N \to \mathbb{R}$ is a regularizer, and $\mu > 0$ is a regularization parameter.

Fig. 1: Illustrations of the values of Θ in the case where $\mathfrak{D} = \mathfrak{A} := \{a_l := \exp[j(l-1)\pi/4] \mid l = 1, 2, \dots, 8 =: L\} \subset \mathbb{C} \equiv \mathbb{R}^2, \ \omega_{l,1} = 1/8 \ (l = 1, 2, \dots, 8), \text{ and } N = 1. \text{ (a) } \Theta_{\text{SOAV}}^{\langle 1 \rangle}(\mathbf{x}),$ (b) a proposed nonconvex enhancement Θ_{GME} of $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$ by GME (5) with $\mathbf{B}^{\langle l \rangle} = \mathbf{I} \ (l = 1, 2, \dots, 8).$

Step 2: With $\mathbf{x}^{\diamond} \in \widetilde{\mathfrak{D}} \subset \mathbb{R}^N$, compute the final estimate of $\mathbf{x}^{\star} \in \mathfrak{D}$ in (1) as

$$\mathbf{x}^{\natural} = P_{\mathfrak{D}}(\mathbf{x}^{\diamond}) \in \underset{\mathbf{s} \in \mathfrak{D}}{\operatorname{argmin}} \|\mathbf{s} - \mathbf{x}^{\diamond}\|_{2}$$

where $P_{\mathfrak{D}} : \mathbb{R}^N \to \mathfrak{D} : \mathbf{x} \mapsto P_{\mathfrak{D}}(\mathbf{x})$ is defined to choose randomly one of nearest vectors from \mathbf{x} .

In (2), the first term $\frac{1}{2} ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2$ is called a data-fidelity term evaluating the consistency with the linear regression model in (1), while the second term $\mu\Theta : \mathbb{R}^N \to \mathbb{R}$ is called a regularization term designed strategically based on a prior knowledge on \mathbf{x}^* .

For achieving an acceptable estimation of a signal in Problem 1, various prior knowledge, e.g., statistical properties, has been exploited for designing Θ in (2). For example, in a scenario of MIMO signal detection [15], the regularizer Θ in (2) has been found, e.g., as $\Theta = \|\cdot\|_p^p$ (p = 1, 2) [9], [10] and $\Theta = \|\cdot\|_1 \circ D$ [11], where D is a first order difference operator.

For the relaxed continuous constrained optimization problem in (2), it would be desired for the regularizer Θ to penalize any point not in \mathfrak{D} . Along this regularization strategy, the so-called SOAV function [13], [14]

$$\Theta_{\text{SOAV}}^{\langle 1 \rangle}(\mathbf{x}) \coloneqq \sum_{l=1}^{L} \|\mathbf{x} - a_l \mathbf{1}\|_{\boldsymbol{\omega}_l, 1} \coloneqq \sum_{l=1}^{L} \sum_{n=1}^{N} \omega_{l,n} |x_n - a_l|, \quad (3)$$

has been used with weighting vectors $\boldsymbol{\omega}_l := [\omega_{l,1}, \omega_{l,2}, \dots, \omega_{l,N}]^\top \in \mathbb{R}^N_+$ $(l = 1, 2, \dots, L)$ satisfying $\sum_{l=1}^L \omega_{l,n} = 1$ $(n = 1, 2, \dots, N)$, where

This work was supported by JSPS Grants-in-Aid (19H04134,23KJ0945) and by JST SICORP (JPMJSC20C6).

 $\|\mathbf{x}\|_{\omega_{l},1} \coloneqq \sum_{n=1}^{N} \omega_{l,n} |x_{n}|$ stands for the weighted ℓ_{1} -norm associated with ω_{l} .

Indeed, the weighted SOAV (W-SOAV) model [14] used (2) with $\Theta = \Theta_{\text{SOAV}}^{\langle 1 \rangle}$ and $\widetilde{D} := \mathbb{R}^N$ for MIMO signal detection. Clearly, in this case, the model (2) is a convex model thanks to the convexity of $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$, and therefore, a solution of (2) can be approximated iteratively by a convex optimization solver [14]. However, Fig. 1 (a) suggests that penalization by $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$ is not contrastive enough for use as Θ in (2) because any point $\mathbf{s}_q \in \mathfrak{D} \subset \mathbb{C}^1$ is never unique minimizer of $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$ over any neighborhood of \mathbf{s}_q . More contrastive regularizer than $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$ has been certainly desired for use in (2) of Step 1 of Scheme 1 (see, e.g., Fig. 1 (b) and Fig. 2).

We are interested in the following natural questions:

- (Q1) Can we design a class of functions that contains fairly contrastive regularizers Θ for use in (2) ?
- (Q2) Can we choose any reasonable function Θ , from such a function class, which is tractable for minimization of J_{Θ} ?

(Q1) has been examined in special cases, e.g., $\Theta_{\text{SOAV}}^{\langle p \rangle}(\mathbf{x}) \coloneqq \sum_{l=1}^{L} \|\mathbf{x} - a_l \mathbf{1}\|_{\omega_l, p}$ $(0 \le p < 1)$ [16] as nonconvex variants of (3). However, any algorithm, of guaranteed to convergence to a global minimizer of $J_{\Theta_{\text{SOAV}}^{\langle p \rangle}}$, has not yet been established mainly because of the severe nonconvexity of $J_{\Theta_{\text{SOAV}}^{\langle p \rangle}}$. This situation tells us that computational tractability of (2) must be considered carefully from the beginning, i.e., (Q1) and (Q2) should be considered simultaneously.

In this paper, we present a positive answer to these questions

i) by designing a function class as

$$\Theta_{\text{GME}}(\mathbf{x}) \coloneqq \sum_{l=1}^{L} (\|\cdot\|_{\boldsymbol{\omega}_{l},1})_{\mathbf{B}^{\langle l \rangle}} (\mathbf{x} - a_{l}\mathbf{1}), \qquad (4)$$

where $(\|\cdot\|_{\omega_l,1})_{\mathbf{B}^{\langle l \rangle}}$ is a nonconvex enhancement (called *Generalized Moreau Enhancement (GME)*) of $\|\cdot\|_{\omega_l,1}$ with a tunable matrix $\mathbf{B}^{\langle l \rangle}$ (see (5)) (Note: Θ_{GME} reproduces $\Theta_{\text{SOAV}}^{\langle 1 \rangle}$ with $\mathbf{B}^{\langle l \rangle} = \mathbf{O}$ (zero matrix));

- ii) by exemplifying a fairly contrastive function (see Fig. 1 (b)) in the proposed class of Θ_{GME} ;
- iii) by presenting a choice of $\mathbf{B}^{\langle l \rangle}$ (l = 1, 2, ..., L) (see (9) and (10)) which achieves the overall convexity of $J_{\Theta_{GME}}$;
- iv) by proposing an iterative algorithm (see Algorithm 1), based on a relaxation of even symmetric condition [17, Problem 1] required for the so-called seed convex function in cLiGME model (see Section II), with guaranteed to convergence to a global minimizer of $J_{\Theta_{\rm GME}}$ over $\widetilde{\mathfrak{D}}$ under the overall convexity condition.

Indeed, via numerical experiments in a scenario of MIMO signal detection, we demonstrate the effectiveness of the proposed regularizer Θ_{GME} in the model (2).

We also propose a pair of simple technical improvements for the proposed iterative algorithm in Step 1 of Scheme 1 by exploiting adaptively the discrete information regarding \mathfrak{D} . More precisely, we propose (i) to use a strategic perturbation (14) to move the estimate closer to \mathfrak{D} at each iteration $k \in \mathbb{N}$ (this idea is inspired by *superiorization* [18], [19]), and (ii) to update the weights $\omega_{l,n}$ ($l = 1, 2, \ldots, L; n = 1, 2, \ldots, N$) in (4) adaptively (see (15)) by assigning larger weight to $\omega_{l,n}$ for (l, n) such that the distance between $a_l \in \mathfrak{A}$ and *n*th coordinate $x_n \in \mathbb{R}$ of the latest estimate $\mathbf{x} \in \mathbb{R}^N$ is smaller (this idea is inspired by iterative reweighting of SOAV [14]). Experimental results demonstrate that these simple techniques improve numerical performance of the proposed Algorithm 1.

Notation. \mathbb{N} , \mathbb{R} , \mathbb{R}_+ , \mathbb{R}_{++} and \mathbb{C} denote respectively the set of all nonnegative integers, all real numbers, all nonnegative real numbers and all complex numbers (*j* stands for the imaginary unit, and $\Re(\cdot)$ and $\Im(\cdot)$ stand respectively for real and imaginary parts).

Let \mathcal{H}, \mathcal{K} be finite dimensional real Hilbert spaces. The set of all proper lower semicontinuous convex functions¹ defined on \mathcal{H} is denoted by $\Gamma_0(\mathcal{H})$. $f \in \Gamma_0(\mathcal{H})$ is said to be prox-friendly if $\operatorname{Prox}_{\gamma f} : \mathcal{H} \to \mathcal{H} : x \mapsto \operatorname{argmin}_{y \in \mathcal{H}} [f(y) + \frac{1}{2\gamma} || y - x ||_{\mathcal{H}}^2]$ is available as a computable operator for any $\gamma \in \mathbb{R}_{++}$. A closed convex set $C \subset \mathcal{H}$ is said to be simple if the metric projection $P_C : \mathcal{H} \to \mathcal{H} : x \mapsto \operatorname{argmin}_{y \in \mathcal{H}} || x - y ||_{\mathcal{H}}$ is available as a computable operator. The set of bounded linear operators from \mathcal{H} to \mathcal{K} is denoted by $\mathcal{B}(\mathcal{H}, \mathcal{K})$. For $\mathfrak{L} \in \mathcal{B}(\mathcal{H}, \mathcal{K}), \mathfrak{L}^* \in$ $\mathcal{B}(\mathcal{K}, \mathcal{H})$ denotes the adjoint operator of \mathfrak{L} (i.e., $(\forall (x, y) \in$ $\mathcal{H} \times \mathcal{K}) \langle \mathfrak{L}x, y \rangle_{\mathcal{K}} = \langle x, \mathfrak{L}^*y \rangle_{\mathcal{H}})$.

For discussion in Euclidean space, we use boldface letters to express vectors and general font letters to represent scalars. For a matrix $\mathbf{X} \in \mathbb{R}^{m \times n}$, $\mathbf{X}^{\top} \in \mathbb{R}^{n \times m}$ denotes the transpose of **X**. The symbols **I**, **O** and **1** respectively stand for the identity matrix, the zero matrix and the all one vector.

II. BRIEF INTRODUCTION TO CLIGME

Problem 2 (cLiGME model [20], [21]). Let $\mathcal{X}, \mathcal{Y}, \mathcal{Z}_l$ (l = 1, 2, ..., L), $\tilde{\mathcal{Z}}_l$ (l = 1, 2, ..., L) and \mathfrak{Z} be finite dimensional real Hilbert spaces. Suppose that (a) $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y}), y \in \mathcal{Y}$ and $\mu > 0$; (b) for each l = 1, 2, ..., L, $B^{\langle l \rangle} \in \mathcal{B}(\mathcal{Z}_l, \tilde{\mathcal{Z}}_l), \mathfrak{L}^{\langle l \rangle} \in \mathcal{B}(\mathcal{X}, \mathcal{Z}_l)$ and $\mu_l > 0$; (c) $C(\subset \mathfrak{Z})$ is a nonempty simple closed convex set and $\mathfrak{C} \in \mathcal{B}(\mathcal{X}, \mathfrak{Z})$; (d) $\Psi^{\langle l \rangle} \in \Gamma_0(\mathcal{Z}_l)$ is coercive, dom $\Psi^{\langle l \rangle} = \mathcal{Z}_l$, even symmetry (i.e., $\Psi^{\langle l \rangle} \circ (-\mathrm{Id}) = \Psi^{\langle l \rangle}$), and prox-friendly. Then

i) with a tunable matrix $B^{\langle l \rangle} \in \mathcal{B}(\mathcal{Z}_l \widetilde{\mathcal{Z}}_l)$, the *Generalized* Moreau Enhancement (GME) of $\Psi^{\langle l \rangle}$ is defined by

$$\Psi_{B^{\langle l \rangle}}^{\langle l \rangle}(\cdot) := \Psi^{\langle l \rangle}(\cdot) - \min_{v \in \mathcal{Z}_l} \left[\Psi^{\langle l \rangle}(v) + \frac{1}{2} \| B^{\langle l \rangle}(\cdot - v) \|_{\widetilde{\mathcal{Z}}_l}^2 \right];$$
(5)

ii) the constrained LiGME (cLiGME) model is given as

Find
$$x^{\diamond} \in \underset{\mathfrak{C}x \in C}{\operatorname{argmin}} \frac{1}{2} \|y - Ax\|_{\mathcal{Y}}^{2} + \mu \sum_{l=1}^{L} \mu_{l} \Psi_{B^{\langle l \rangle}}^{\langle l \rangle} \circ \mathfrak{L}^{\langle l \rangle}(x).$$
 (6)

The regularizer $\Psi_{B^{\langle l \rangle}}^{\langle l \rangle}$ was proposed originally in [17] as an extension of the so-called *GMC penalty* in [22] mainly for the sparsity aware estimation. Furthermore, although $\Psi_{B^{\langle l \rangle}}^{\langle l \rangle}$ with $B^{\langle l \rangle} \neq O$ is nonconvex, the convexity of the cost function in (6) is achieved by a strategic tuning of GME matrices $B^{\langle l \rangle}$ $(l = 1, 2, \ldots, L)$ (see, e.g., [23]).

¹A function $f : \mathcal{H} \to (-\infty, \infty]$ is (i) proper if $\operatorname{dom}(f) := \{x \in \mathcal{H} \mid f(x) < \infty\} \neq \emptyset$, (ii) lower semicontinuous if $\{x \in \mathcal{H} \mid f(x) \leq \alpha\}$ is closed for $\forall \alpha \in \mathbb{R}$, (iii) convex if $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y)$ for $\forall x, y \in \mathcal{H}, 0 < \theta < 1$.

III. PROPOSED REGULARIZER AND ALGORITHM FOR DISCRETE-VALUED SIGNAL ESTIMATION

A. Proposed GME regularizer and cLiGME algorithm

In this section, we propose a class of regularizers Θ_{GME} in (4), which is designed with the GME functions (5) of $\|\cdot\|_{\omega_l,1}$ (l = 1, 2, ..., L). Indeed, as seen from Fig. 1 (b) (see also Fig. 2), the class of the proposed regularizers Θ_{GME} contains fairly contrastive functions. Moreover, if $\mathbf{B}^{\langle l \rangle} = \mathbf{O}$ (l = 1, 2, ..., L), then $\Theta_{\text{GME}} = \Theta_{\text{SOAV}}^{\langle 1 \rangle}$ holds. By using Θ_{GME} (see (4)) in Step 1 of Scheme 1, we propose the following model:

Find
$$\mathbf{x}^{\diamond} \in \underset{\mathbf{x} \in \widetilde{\mathfrak{O}} \subset \mathbb{R}^{N}}{\operatorname{argmin}} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{2}^{2} + \mu \underbrace{\sum_{l=1}^{L} (\| \cdot \|_{\boldsymbol{\omega}_{l},1})_{\mathbf{B}^{(l)}} (\mathbf{x} - a_{l} \mathbf{1})}_{=\Theta_{\mathrm{GME}}(\mathbf{x})},$$

$$\underbrace{= J_{\Theta_{\mathrm{GME}}}(\mathbf{x})}_{=J_{\Theta_{\mathrm{GME}}}(\mathbf{x})}$$
(7)

where $\widetilde{\mathfrak{D}} \supset \mathfrak{D}$ is a closed convex set.

In order to solve (7), we consider the following problem which contains (7) as its special instance (see Remark 1).

Problem 3. Let \mathcal{X}, \mathcal{Y} and $\widetilde{\mathcal{Z}}_l$ (l = 1, 2, ..., L) be finite dimensional real Hilbert spaces. Suppose that (a) $A \in \mathcal{B}(\mathcal{X}, \mathcal{Y}), y \in \mathcal{Y}$ and $\mu > 0$; (b) for each l = 1, 2, ..., L, $B^{\langle l \rangle} \in \mathcal{B}(\mathcal{X}, \widetilde{\mathcal{Z}}_l)$, $z^{\langle l \rangle} \in \mathcal{X}$ and $\mu_l > 0$; (c) $C(\subset \mathcal{X})$ is a nonempty simple closed convex set; (d) $\Psi^{\langle l \rangle} \in \Gamma_0(\mathcal{X})$ is coercive, dom $\Psi^{\langle l \rangle} = \mathcal{X}$, even symmetry, and prox-friendly. Then, consider

Find
$$x^{\diamond} \in \underset{x \in C}{\operatorname{argmin}} \underbrace{\frac{1}{2} \|y - Ax\|_{\mathcal{Y}}^{2} + \mu \sum_{l=1}^{L} \mu_{l} \Psi_{B^{\langle l \rangle}}^{\langle l \rangle}(x - z^{\langle l \rangle})}_{=:J(x)}, (8)$$

where $\Psi_{B^{\langle l \rangle}}^{\langle l \rangle} : \mathcal{X} \to \mathbb{R}$ is a GME function (5), with a tuning matrix $B^{\langle l \rangle}$, of a convex function $\Psi^{\langle l \rangle}$ (l = 1, 2, ..., L).

Remark 1. The model (7) is a special instance of Problem 3 with $\mathcal{X} = \mathbb{R}^N$, $\mathcal{Y} = \mathbb{R}^M$, $C = \widetilde{\mathfrak{D}}$, $\Psi^{\langle l \rangle} = \|\cdot\|_{\omega_{l},1}$ (l = 1, 2, ..., L), $z^{\langle l \rangle} = a_l \mathbf{1}$ (l = 1, 2, ..., L) and $\mu_l = 1$ (l = 1, 2, ..., L).

By tuning properly the design parameters of the proposed GME regularizers, we can make the nonconvexly-regularized least squares model convex.

Fact 1 (Overall convexity condition [17] for (8)). Consider Problem 3. Then J in (8) is convex if $(B^{\langle l \rangle})_{l=1}^{L}$ satisfy

$$A^*A - \mu \sum_{l=1}^{L} \mu_l B^{\langle l \rangle^*} B^{\langle l \rangle} \text{ is positive semidefinite.}$$
(9)

For example, the following $B^{\langle l \rangle}$ [22] satisfy (9):

$$B^{\langle l \rangle} \coloneqq \sqrt{\frac{\gamma_l}{\mu \mu_l}} A \in \mathcal{B}(\mathcal{X}, \mathcal{Y}) \quad (l = 1, 2, \dots, L),$$
(10)

where $\gamma_l \in \mathbb{R}_+$ (l = 1, 2, ..., L) are chosen to satisfy $\sum_{l=1}^{L} \gamma_l \leq 1$.

In a special case where $z^{\langle l \rangle} = 0 \in \mathcal{X}$ (l = 1, 2, ..., L), the model (8) is reduced to the cLiGME model (6) with $\mathcal{Z} = \mathfrak{Z} =$

 $\mathcal{X}, \mathfrak{L}^{\langle l \rangle} = \text{Id} \ (l = 1, 2, ..., L) \text{ and } \mathfrak{C} = \text{Id}.$ For this special case under the condition (9), we can find a global minimizer of (8), by cLiGME algorithm [20], [21].

In the following, we present an iterative algorithm applicable even to general cases $z^{\langle l \rangle} \in \mathcal{X}$ (l = 1, 2, ..., L). The proposed algorithm (12) in Theorem 1 is a variant of cLiGME algorithm [20], [21], [24] (see Remark 2), and Algorithm 1 illustrates a concrete expression of (12) (see also Remark 1).

Theorem 1 (A relaxation of cLiGME algorithm for Problem 3). Consider Problem 3 under the overall convexity condition (9). Assume $\operatorname{argmin}_{x \in C} J(x) \neq \emptyset^2$. Define the operator $T: \mathcal{H} := \mathcal{X} \times (\mathcal{X})^L \times (\mathcal{X})^L \to \mathcal{H}: (x, (v^{\langle l \rangle})_{l=1}^L, (w^{\langle l \rangle})_{l=1}^L) \mapsto (\xi, (\zeta^{\langle l \rangle})_{l=1}^L, (\eta^{\langle l \rangle})_{l=1}^L)$ by

$$\begin{cases} \xi \coloneqq P_C \left[\left(\operatorname{Id} - \frac{1}{\sigma} (A^* A - \mu \sum_{l=1}^{L} \mu_l B^{\langle l \rangle^*} B^{\langle l \rangle} \right) \right) x \\ - \frac{\mu}{\sigma} \sum_{l=1}^{L} \left(\mu_l B^{\langle l \rangle^*} B^{\langle l \rangle} v^{\langle l \rangle} + w^{\langle l \rangle} \right) + \frac{1}{\sigma} A^* y \right], \\ \zeta^{\langle l \rangle} \coloneqq z^{\langle l \rangle} + \operatorname{Prox}_{\frac{\mu \mu_l}{\tau} \Psi^{\langle l \rangle}} \left[\frac{\mu \mu_l}{\tau} B^{\langle l \rangle^*} B^{\langle l \rangle} (2\xi - x) \right. \\ \left. + \left(\operatorname{Id} - \frac{\mu \mu_l}{\tau} B^{\langle l \rangle^{\frac{\tau}{4}}} B^{\langle l \rangle} \right) v^{\langle l \rangle} - z^{\langle l \rangle} \right], \\ \eta^{\langle l \rangle} \coloneqq \left(\operatorname{Id} - \operatorname{Prox}_{\mu_l \Psi^{\langle l \rangle}} \right) \left(2\xi - x + w^{\langle l \rangle} - z^{\langle l \rangle} \right), \end{cases}$$

where $(\sigma, \tau, \kappa) \in \mathbb{R}_{++} \times \mathbb{R}_{++} \times (1, \infty)$ is chosen to satisfy³

$$\begin{cases} (\sigma - \mu L) \operatorname{Id} - \frac{\kappa}{2} A^* A \text{ is positive definite,} \\ \tau \ge (\frac{\kappa}{2} + \frac{2}{\kappa}) \mu \max\{\mu_l \| B^{\langle l \rangle} \|_{\operatorname{OP}}^2 | l = 1, 2, \dots, L\}. \end{cases}$$
(11)

Then, (a) T is an averaged nonexpansive operator⁴ by defining a proper inner product on \mathcal{H} (see, e.g., [17], [21]), and (b) for any initial point $\mathfrak{u}_0 \in \mathcal{H}$, the sequence $(\mathfrak{u}_k)_{k\in\mathbb{N}} \subset \mathcal{H}$ with $\mathfrak{u}_k := \left(x_k, (v_k^{\langle l \rangle})_{l=1}^L, (w_k^{\langle l \rangle})_{l=1}^L\right)$ generated by the following Picard-type fixed point iteration:

$$(k \in \mathbb{N}) \quad \mathfrak{u}_{k+1} = T(\mathfrak{u}_k)$$
 (12)

converges to a fixed point $\overline{\mathfrak{u}} = (\overline{x}, (\overline{v}^{\langle l \rangle})_{l=1}^L, (\overline{w}^{\langle l \rangle})_{l=1}^L) \in \operatorname{Fix}(T) := {\mathfrak{u} \in \mathcal{H} \mid T(\mathfrak{u}) = \mathfrak{u}} \subset \mathcal{H}$, where $\overline{x} \in \mathcal{X}$ enjoys the condition as a global minimizer $x^{\diamond} \in C$, in (8), of J over C.

Remark 2. For Problem 3, the condition (9) and Theorem 1 are obtained by the following steps⁵.

- i) By defining $\widetilde{\Psi}^{\langle l \rangle} := \Psi^{\langle l \rangle}(\cdot z^{\langle l \rangle})$ (l = 1, 2, ..., L), we can check that $\widetilde{\Psi}^{\langle l \rangle}_{B^{\langle l \rangle}} = \Psi^{\langle l \rangle}_{B^{\langle l \rangle}}(\cdot z^{\langle l \rangle})$.
- ii) By using $\tilde{\Psi}^{\langle l \rangle}$, we can express J in (8) equivalently as

$$J(x) = \frac{1}{2} \|y - Ax\|_{\mathcal{Y}}^2 + \mu \sum_{l=1}^{L} \mu_l \widetilde{\Psi}_{B^{\langle l \rangle}}^{\langle l \rangle}(x).$$
(13)

²argmin_{$x \in C$} $J(x) \neq \emptyset$ is guaranteed in many cases, e.g., if C is compact (not limited to this case).

 3 For example, choose $\kappa>1$ and compute (σ,τ) by

 $\left\{ \begin{array}{ll} \sigma \coloneqq \frac{\kappa}{2} \|A\|_{\mathrm{OP}}^2 + \mu L + (\kappa - 1), \\ \tau \coloneqq (\frac{\kappa}{2} + \frac{2}{\kappa}) \mu \max\{\mu_l \|B^{\langle l \rangle}\|_{\mathrm{OP}}^2 \mid l = 1, 2, \dots, L\} + (\kappa - 1), \end{array} \right.$

where $||B^{\langle l \rangle}||_{OP}$ denotes the operator norm of $B^{\langle l \rangle}$ (i.e., $||B^{\langle l \rangle}||_{OP} \coloneqq \sup_{x \in \mathcal{X}, ||x||_{\mathcal{X}} \leq 1} ||B^{\langle l \rangle}x||_{\widetilde{Z}_{l}}$).

⁴An operator $T : \mathcal{X} \to \mathcal{X}$ is said to be *nonexpansive* if $(\forall x, y \in \mathcal{X}) ||T(x) - T(y)|| \le ||x - y||$, in particular, (α -) averaged nonexpansive if there exists $\alpha \in (0, 1)$ and a nonexpansive operator $R : \mathcal{X} \to \mathcal{X}$ such that $T = (1 - \alpha) \operatorname{Id} + \alpha R$.

⁵ Even for Problem 2 with a replacement of the seed convex function $\Psi^{\langle l \rangle}$ by its shifted seed convex function $\widetilde{\Psi}^{\langle l \rangle} = \Psi^{\langle l \rangle}(\cdot - z^{\langle l \rangle})$, via an essentially same discussion, we can derive the overall convexity condition of the objective function and an iterative algorithm with guaranteed convergence to a global minimizer.

Algorithm 1 A relaxation of cLiGME algorithm for (7)

1: Choose $(\mathbf{x}_{0}, (\mathbf{v}_{0}^{\langle l \rangle})_{l=1}^{L}, (\mathbf{w}_{0}^{\langle l \rangle})_{l=1}^{L}) \in \mathbb{R}^{N} \times (\mathbb{R}^{N})^{L} \times (\mathbb{R}^{N})^{L}$. 2: Choose $(\sigma, \tau, \kappa) \in \mathbb{R}_{++} \times \mathbb{R}_{++} \times (1, \infty)$ satisfying (11). 3: for k = 0, 1, 2, ... do 4: { Insert modification in Section III-B if necessary. } 5: $\mathbf{x}_{k+1} \leftarrow P_{\widehat{\mathfrak{D}}}[(\mathbf{I} - \frac{1}{\sigma}(\mathbf{A}^{\top}\mathbf{A} - \mu \sum_{l=1}^{L} \mathbf{B}^{\langle l \rangle^{\top}}\mathbf{B}^{\langle l \rangle}))\mathbf{x}_{k} - \frac{\mu}{\sigma} \sum_{l=1}^{L} (\mathbf{B}^{\langle l \rangle^{\top}}\mathbf{B}^{\langle l \rangle}\mathbf{v}_{k}^{\langle l \rangle} + \mathbf{w}_{k}^{\langle l \rangle}) + \frac{1}{\sigma}\mathbf{A}^{\top}\mathbf{y}]$ 6: for l = 1, 2, ..., L do 7: $\mathbf{v}_{k+1}^{\langle l \rangle} \leftarrow a_{l}\mathbf{1} + \operatorname{Prox}_{\frac{\mu}{\tau} \parallel \cdot \parallel \omega_{l}, 1} [\frac{\mu}{\tau}\mathbf{B}^{\langle l \rangle^{\top}}\mathbf{B}^{\langle l \rangle})\mathbf{v}_{k}^{\langle l \rangle} - a_{l}\mathbf{1}]$ 8: $\mathbf{w}_{k+1}^{\langle l \rangle} \leftarrow (\operatorname{Id} - \operatorname{Prox}_{\parallel \cdot \parallel \omega_{l}, 1}) (2\mathbf{x}_{k+1} - \mathbf{x}_{k} + \mathbf{w}_{k}^{\langle l \rangle} - a_{l}\mathbf{1})$ 9: end for 10: end for 11: return \mathbf{x}_{k+1}

iv) Since $\Psi^{\langle l \rangle}$ is not even symmetry in general, we cannot apply the cLiGME algorithm [20], [21] directly for (13). However, we can relax the even symmetric condition to $z^{\langle l \rangle}$ -symmetric condition (i.e., $\Psi^{\langle l \rangle}(z^{\langle l \rangle} + \cdot) = \Psi^{\langle l \rangle}(z^{\langle l \rangle} - \cdot))$.

B. Two simple techniques for further improvement

For further improvement of Algorithm 1, we introduce two simple techniques in Algorithm 1 to exploit adaptively the discrete information regarding \mathfrak{D} .

1) Generalized superiorization of cLiGME algorithm:

Superiorization [18], [19] is known as a technique for an iterative algorithm, e.g., Picard-type fixed point iteration, to reduce a certain objective cost by adding strategic bounded perturbations to updated estimate \mathbf{x}_k ($k \in \mathbb{N}$).

We propose to incorporate a superiorization technique into Algorithm 1 in order to move the estimate closer to \mathfrak{D} at each iteration. More precisely, we use a modification

$$\mathbf{x}_{k} \leftarrow \mathbf{x}_{k} + \beta_{k} \underbrace{(P_{\mathfrak{D}} - \mathrm{Id})(\mathbf{x}_{k})}_{=:\mathbf{d}_{k}}$$
(14)

in line 4 of Algorithm 1, where $(\beta_k)_{k\in\mathbb{N}} \subset \mathbb{R}_+$, and $(\mathbf{d}_k)_{k\in\mathbb{N}} \subset \mathbb{R}^N$ is inspired by [19]. The global convergence guarantee is not violated even by the modification (14) if $(\beta_k)_{k\in\mathbb{N}}$ is summable and $(\mathbf{d}_k)_{k\in\mathbb{N}}$ is bounded (see Appendix B2). However, we dare to propose to use more general $(\beta_k)_{k\in\mathbb{N}} \subset \mathbb{R}_+$ which is not necessarily summable. We call such a modification generalized superiorization. As will be shown in numerical experiments (see Section IV), the proposed generalized superiorization is effective to guide the sequence $(\mathbf{x}_k)_{k\in\mathbb{N}}$ to the discrete set \mathfrak{D} .

2) Iterative reweighting of cLiGME algorithm:

The iterative reweighting technique, e.g., [25], has been used to enhance the effectiveness of the regularizer by updating the weights of the regularizer adaptively in an iterative algorithm. Iterative reweighting techniques are also used for Problem 1 [14], [26]. To utilize such a technique in Algorithm 1,

(a) Overall view

(b) Enlarged view around a_1

Fig. 2: Illustrations of the values of $\Theta_{\text{GME}}(\mathbf{x})$ in Eq.(4) with $\mathbf{B}^{\langle l \rangle}$ in (17) under the setting of Section IV. For visualization, we set $x_n = 0$ (n = 2, 3, ..., 50).

we propose to set $\omega_{l,n}$ (l = 1, 2, ..., L; n = 1, 2, ..., N) in the seed functions $\|\cdot\|_{\boldsymbol{\omega}_l,1}$ (l = 1, 2, ..., L) adaptively by using the latest estimate $\mathbf{x} \coloneqq [x_1, x_2, ..., x_N]^{\top}$ as [26]

$$\omega_{l,n} = \frac{(|x_n - a_l| + \epsilon)^{-1}}{\sum_{l'=1}^{L} (|x_n - a_{l'}| + \epsilon)^{-1}}.$$
(15)

where $\epsilon > 0$ is a small number. If $|x_n - a_l|$ is small, then the corresponding $\omega_{l,n}$ becomes large and x_n will be close to a_l . This iterative reweighting method can be realized by inserting

if $k \mod K == 0$ then

Update
$$\boldsymbol{\omega}_l = [\omega_{l,1}, \omega_{l,2}, \dots, \omega_{l,N}]^\top \ (l = 1, 2, \dots, L)$$

as (15) with $\mathbf{x} = \mathbf{x}_k$. (16)

end if

in line 4 of Algorithm 1, where $K \in \mathbb{N} \setminus \{0\}$ controls the frequency of reweighting.

IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments in a scenario of MIMO signal detection [12] with *N*-transmit antennas and *M*-receive antennas (N = 50, M = 45) in 8PSK (phase shift keying) modulation with constellation set $\mathfrak{A} := \{a_l := \exp[j(l-1)\pi/4] \mid l = 1, 2, \ldots, 8 =: L\} \subset \mathbb{C}$. The task of this experiment is to estimate the transmitted signal $\mathbf{x}^* \in \mathbb{C}^N$ from the received signal $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \boldsymbol{\varepsilon} \in \mathbb{C}^M$ with the channel matrix $\mathbf{A} \in \mathbb{C}^{M \times N}$ and a noise $\boldsymbol{\varepsilon} \in \mathbb{C}^M$. In this experiment, we chose randomly (i) $\mathbf{x}^* \in \mathfrak{D} := \mathfrak{A}^N$, (ii) $\mathbf{A} := \sqrt{\mathbf{R}} \mathbf{G} \in \mathbb{C}^{M \times N}$, where each entry of $\mathbf{G} \in \mathbb{C}^{M \times N}$ was sampled from the complex gaussian distribution $\mathcal{CN}(0, 1/M)$, and $\mathbf{R} \in \mathbb{R}^{M \times M}$ satisfies (\mathbf{R})_{*i*, *j* = $0.5^{|i-j|}$ (*i* = $1, 2, \ldots, M$; *j* = $1, 2, \ldots, M$), and (iii) each entry of $\boldsymbol{\varepsilon} \in \mathbb{C}^M$ was sampled from $\mathcal{CN}(0, \sigma_{\varepsilon}^2)$ with a variance $\sigma_{\varepsilon}^2 > 0$, which was chosen so that $10 \log_{10} \frac{1}{\sigma_{\varepsilon}^2}$ achieved a given SNR (signal-to-noise ratio).}

We consider to estimate $\mathbf{x}^* \in \mathfrak{D}$ with Scheme 1 by employing the convex hull $\operatorname{conv}(\mathfrak{D})$ of \mathfrak{D} as $\widetilde{\mathfrak{D}}$ in (2) via $\mathbb{C} \rightleftharpoons \mathbb{R}^2$ translation (see Appendix A). In this experiment, we compared numerical performance of (i) the proposed cLiGME model (7), i.e., the model (2) with $\Theta = \Theta_{\text{GME}}$ in (4), with that of (ii) the SOAV model [14], i.e., the model (2) with $\Theta = \Theta_{\text{SOAV}}^{(1)}$ in (3).

For the cLiGME model, we used Algorithm 1 (denoted by 'cLiGME') by employing the following tuning matrices in (7)

$$\mathbf{B}^{\langle l \rangle} = \sqrt{0.99/\mu L} \widehat{\mathbf{A}} \quad (l = 1, 2, \dots, L) \tag{17}$$

to achieve the overall convexity condition (9), where μ is a predetermined regularization parameter, and $\hat{\mathbf{A}}$ is obtained via $\mathbb{C} \rightleftharpoons \mathbb{R}^2$ translation (see (18)). Since SOAV model can be reduced to the cLiGME model (7) with $\mathbf{B}^{\langle l \rangle} = \mathbf{O}$ (l = 1, 2, ..., L), we used Algorithm 1 (denoted by 'SOAV') with $\mathbf{B}^{\langle l \rangle} = \mathbf{O}$ (l = 1, 2, ..., L) for the SOAV model. For both 'cLiGME' and 'SOAV', we employed the same (i) stepsize $(\sigma, \tau, \kappa) \in \mathbb{R}_{++} \times \mathbb{R}_{++} \times (1, \infty)$ as footnote 3 in Theorem 1 with $\kappa = 1.001$, and (ii) initial points $\mathbf{x}_0 = \mathbf{0}$, $\mathbf{v}_0^{\langle l \rangle} = \mathbf{0}$ and $\mathbf{w}_0^{\langle l \rangle} = \mathbf{0}$ (l = 1, 2, ..., L). Since $\tilde{\mathfrak{D}}$ is compact, 'cLiGME' and 'SOAV' can find their global minimizers, respectively (see Theorem 1). Algorithm 1 were terminated when the iteration number k exceeded 500.

Before evaluating numerical performance, let us examine contrastiveness of Θ_{GME} used in these experiments. Fig. 2 shows the function values of Θ_{GME} in (4) designed with $\mathbf{B}^{\langle l \rangle}$ in (17) hence achieving the overall convexity condition (9). Each numerical value of $\Theta_{GME}(\mathbf{x})$ is computed with ISTAtype algorithm [27] (Note: the function value of Θ_{GME} is not required in the proposed Algorithm 1). As seen from Fig. 2 (b), we observe numerically that $\Theta_{GME}(\mathbf{x})$ is certainly contrastive as a regularizer for discrete-valued signal estimation because each constellation point in \mathfrak{A} corresponds to a local minimizer of $\Theta_{GME}(\mathbf{x})$ as we expected.

As a performance metric, we adopted averaged BER (bit error rate) over 1,000 independent realizations of $(\mathbf{x}^*, \mathbf{A}, \varepsilon)$. The parameter μ was chosen to achieve the lowest BER from the set $\{10^i \mid i = -10, -9, \dots, 2\}$ at each SNR.

Fig. 3 (a) shows BER of 'SOAV' and 'cLiGME' at each SNR, where $\omega_{l,n} = 1/8$ (l = 1, 2, ..., 8; n = 1, 2, ..., N) in (7) were fixed. From Fig. 3 (a), 'cLiGME' achieves lower BER than 'SOAV', which implies the effectiveness of the proposed contrastive nonconvex regularizer Θ_{GME} compared with the convex regularizer Θ_{SOAV} .

In the following, we verify the further performance improvements of 'cLiGME' by the proposed (i) generalized superiorization and (ii) iterative reweighting.

To examine the impact of choices of $(\beta_k)_{k\in\mathbb{N}}$ in generalized superiorization (14), we compared generalized superiorization of 'cLiGME' with (i) $\beta_k = 0$ (which reduces to the original 'cLiGME'), (ii) $\beta_k = 0.99^k$ ($(\beta_k)_{k\in\mathbb{N}}$ is summable), (iii) $\beta_k =$

 $k^{-1/2}$ ($(\beta_k)_{k\in\mathbb{N}}$ is nonsummable but $\beta_k \to 0$ ($k \to \infty$)), and (iv) $\beta_k = 0.01$. Fig. 4 shows history of BER achieved by generalized superiorization of 'cLiGME' with such $(\beta_k)_{k\in\mathbb{N}}$ in (14), where SNR = 20 dB, $\mu = 10^{-4}$ and $\omega_{l,n} = 1/8$ ($l = 1, 2, \ldots, 8$; $n = 1, 2, \ldots, N$). From Fig. 4, $\beta_k = 0.01$ outperforms the others. Fig. 3 (b) shows BER, at each SNR, of 'cLiGME' and generalized superiorization of 'cLiGME' (denoted by 'GS-cLiGME') with $\beta_k = 0.01$. From Fig. 3 (b), we see 'GS-cLiGME' improves 'cLiGME'.

Fig. 3 (c) shows BER, at each SNR, of (i) 'cLiGME', (ii) iterative reweighting in (16) of 'cLiGME' (denoted by 'IWcLiGME'), and (iii) iterative reweighting in (16) of 'SOAV' (denoted by 'IW-SOAV'), where the frequency period K =100 in (16) was used (Note: the iterative reweighting of SOAV model was initially proposed [14], [26] with an ADMMtype algorithm). From Fig. 3 (c), 'IW-cLiGME' improves 'cLiGME', while even 'cLiGME' outperforms 'IW-SOAV'.

V. CONCLUSION

We proposed a class of fairly contrastive regularizers for discrete-valued estimation problems, and presented an iterative algorithm with guaranteed convergence to a global minimizer of the nonconvexly-regularized least squares model. We also proposed two simple techniques for performance improvements. The numerical experiments demonstrate that the proposed model and algorithm have a great potential for challenging discrete-valued signal estimation problem, and that two simple techniques successfully contribute to performance improvements of the proposed algorithm.

Appendix

A. $\mathbb{C} \rightleftharpoons \mathbb{R}^2$ translation

Consider the complex version of Problem 1 where $\mathfrak{D}(\subset \mathbb{C}^N)$ is a finite set and $(\mathbf{x}^{\star}, \mathbf{y}, \mathbf{A}, \boldsymbol{\varepsilon}) \in \mathbb{C}^N \times \mathbb{C}^M \times \mathbb{C}^{M \times N} \times \mathbb{C}^M$. The $\mathbb{C} \rightleftharpoons \mathbb{R}^2$ translation in this paper should be understood in the following sense:

$$\begin{split} &\widehat{\mathfrak{D}} \coloneqq \left\{ \begin{bmatrix} \Re(\mathbf{s}) \\ \Im(\mathbf{s}) \end{bmatrix} \in \mathbb{R}^{2N} \, \middle| \, \mathbf{s} \in \mathfrak{D} \right\}, \\ &\widehat{\mathbf{x}}^{\star} \coloneqq \begin{bmatrix} \Re(\mathbf{x}^{\star}) \\ \Im(\mathbf{x}^{\star}) \end{bmatrix} \in \widehat{\mathfrak{D}} \subset \mathbb{R}^{2N}, \\ &\widehat{\mathbf{A}} \coloneqq \begin{bmatrix} \Re(\mathbf{A}) & -\Im(\mathbf{A}) \\ \Im(\mathbf{A}) & \Re(\mathbf{A}) \end{bmatrix} \in \mathbb{R}^{2M \times 2N}, \\ &\widehat{\boldsymbol{\varepsilon}} \coloneqq \begin{bmatrix} \Re(\varepsilon) \\ \Im(\varepsilon) \end{bmatrix} \in \mathbb{R}^{2M}. \end{split}$$
(18)

Clearly, via (18), we can translate $\mathbf{y} = \mathbf{A}\mathbf{x}^* + \boldsymbol{\varepsilon}$ into $\hat{\mathbf{y}} = \hat{\mathbf{A}}\hat{\mathbf{x}}^* + \hat{\boldsymbol{\varepsilon}}$, and can estimate $\hat{\mathbf{x}}^*$ by applying Algorithm 1 to the translated real model.

B. Bounded perturbation for Picard-type fixed point iteration

1) Picard iteration: Let \mathcal{H} be a finite dimensional real Hilbert space. Suppose $T : \mathcal{H} \to \mathcal{H}$ is an averaged nonexpansive operator such that $\operatorname{Fix}(T) := \{u \in \mathcal{H} \mid T(u) = u\} \neq \emptyset$. Then, a sequence $(u_k)_{k \in \mathbb{N}}$, generated by the so-called Picard iteration: $u_{k+1} = T(u_k)$ ($k \in \mathbb{N}$) with any initial point $u_0 \in \mathcal{H}$, is guaranteed to converge to a certain fixed point in $\operatorname{Fix}(T)$.

2) Bounded perturbation resilience of Picard iteration [18], [19]: Let $(\beta_k)_{k \in \mathbb{N}}$ be a summable sequence in \mathbb{R}_+ and $(d_k)_{k \in \mathbb{N}}$ be a bounded sequence in \mathcal{H} , where such a $(\beta_k d_k)_{k \in \mathbb{N}}$ is said to be a sequence of bounded perturbations. Then, with any initial point $u_0 \subset \mathcal{H}$, $(u_k)_{k \in \mathbb{N}}$ generated by

$$(\forall k \in \mathbb{N}) \ u_{k+1} = T(u_k + \beta_k d_k)$$

also converges to a point $\overline{u} \in Fix(T)$.

REFERENCES

- [1] V. Bioglio, G. Coluccia, and E. Magli, "Sparse image recovery using compressed sensing over finite alphabets," in *ICIP*, 2014.
- [2] A.-J. Van der Veen, S. Talwar, and A. Paulraj, "Blind estimation of multiple digital signals transmitted over fir channels," *IEEE Signal Processing Letters*, 1995.
- [3] B. Knoop, F. Monsees, C. Bockelmann, D. Peters-Drolshagen, S. Paul, and A. Dekorsy, "Compressed sensing k-best detection for sparse multi-user communications," in *EUSIPCO*, 2014.
- [4] A. Bemporad and M. Morari, "Control of systems integrating logic, dynamics, and constraints," *Automatica*, 1999.
- [5] S. M. Fosson and M. Abuabiah, "Recovery of binary sparse signals from compressed linear measurements via polynomial optimization," *IEEE Signal Processing Letters*, 2019.
- [6] B. Trotobas, A. Nafkha, and Y. Louët, "A review to massive mimo detection algorithms: Theory and implementation," Advanced Radio Frequency Antennas for Modern Communication and Medical Systems, 2020.
- [7] P. Sarangi and P. Pal, "Measurement matrix design for sample-efficient binary compressed sensing," *IEEE Signal Processing Letters*, 2022.
- [8] M. Toyoda and M. Tanaka, "Efficient iterative method for soav minimization problem with linear equality and box constraints and its linear convergence," *Journal of the Franklin Institute*, 2022.
- [9] H. Zhu and G. B. Giannakis, "Exploiting sparse user activity in multiuser detection," *IEEE Transactions on Communications*, 2011.
- [10] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, "Highthroughput data detection for massive mu-mimo-ofdm using coordinate descent," *IEEE Transactions on Circuits and Systems I: Regular Papers*, 2016.
- [11] A. Kudeshia, A. K. Jagannatham, and L. Hanzo, "Total variation based joint detection and state estimation for wireless communication in smart grids," *IEEE Access*, 2019.

- [12] J.-C. Chen, "Manifold optimization approach for data detection in massive multiuser mimo systems," *IEEE Transactions on Vehicular Technology*, 2018.
- [13] M. Nagahara, "Discrete signal reconstruction by sum of absolute values," *IEEE Signal Processing Letters*, 2015.
- [14] R. Hayakawa and K. Hayashi, "Convex optimizationbased signal detection for massive overloaded mimo systems," *IEEE Transactions on Wireless Communications*, 2017.
- [15] M. A. Albreem, W. Salah, A. Kumar, *et al.*, "Low complexity linear detectors for massive mimo: A comparative study," *IEEE Access*, 2021.
- [16] R. Hayakawa and K. Hayashi, "Discrete-valued vector reconstruction by optimization with sum of sparse regularizers," in *EUSIPCO*, 2019.
- [17] J. Abe, M. Yamagishi, and I. Yamada, "Linearly involved generalized Moreau enhanced models and their proximal splitting algorithm under overall convexity condition," *Inverse Problems*, 2020.
- [18] Y. Censor, R. Davidi, and G. T. Herman, "Perturbation resilience and superiorization of iterative algorithms," *Inverse Problems*, 2010.
- [19] J. Fink, R. L. G. Cavalcante, and S. Stańczak, "Superiorized adaptive projected subgradient method with application to mimo detection," *IEEE Transactions on Signal Processing*, 2023.
- [20] W. Yata, M. Yamagishi, and I. Yamada, "A constrained LiGME model and its proximal splitting algorithm under overall convexity condition," *Journal of Applied and Numerical Optimization*, 2022.
- [21] W. Yata and I. Yamada, "Imposing early and asymptotic constraints on ligme with application to bivariate nonconvex enhancement of fused lasso models," 2024. arXiv: 2309.14082.
- [22] I. Selesnick, "Sparse regularization via convex analysis," *IEEE Transactions on Signal Processing*, 2017.
- [23] Y. Chen, M. Yamagishi, and I. Yamada, "A unified design of generalized moreau enhancement matrix for sparsity aware ligme models," *IEICE Transactions* on Fundamentals of Electronics, Communications and Computer Sciences, 2023.
- [24] D. Kitahara, R. Kato, H. Kuroda, and A. Hirabayashi, "Multi-contrast CSMRI using common edge structures with LiGME model," in *EUSIPCO*, 2021.
- [25] E. J. Candès, M. B. Wakin, and S. P. Boyd, "Enhancing sparsity by reweighted ℓ_1 minimization," *Journal of Fourier Analysis and Applications*, 2008.
- [26] R. Hayakawa and K. Hayashi, "Reconstruction of complex discrete-valued vector via convex optimization with sparse regularizers," *IEEE Access*, 2018.
- [27] P. L. Combettes and V. R. Wajs, "Signal recovery by proximal forward-backward splitting," *Multiscale Modeling & Simulation*, 2005.