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Abstract—In this paper, for the discrete-valued signal estima-
tion, we propose a regularized least squares model but with a
nonconvex enhancement of the so-called SOAV convex regularizer.
To design more contrastive regularizers whose minima corre-
spond to desired discrete values, we propose a class of nonconvex
functions with Generalized Moreau Enhancement (GME) of the
weighted ℓ1-norm. Promisingly, by tuning properly the design
parameters of the proposed GME regularizers, (i) we can make
the nonconvexly-regularized least squares model convex; and
(ii) we can use an iterative algorithm for finding a global
minimizer of the proposed model. We also propose a pair
of simple technical improvements, of the proposed algorithm,
called respectively a generalized superiorization and an iterative
reweighting. Numerical experiments demonstrate the effectiveness
of the proposed model and algorithms in a scenario of MIMO
signal detection.

I. INTRODUCTION

Many tasks in signal processing, including digital commu-
nication and discrete-valued control [1]–[7], have been formu-
lated as the following discrete-valued estimation problem:

Problem 1 (A discrete-valued estimation problem).

Find x⋆ ∈ D such that y = Ax⋆ + ε, (1)

where D := {s1, s2, . . . , sLN } = AN := {a1, a2, . . . , aL}N ⊂
RN , y ∈ RM is an observed vector, A ∈ RM×N is a known
matrix, and ε ∈ RM is noise (Note: the complex version of
this problem can also be formulated as Problem 1 essentially
via simple C ⇄ R2 translation (see Appendix A)).

Problem 1 is a special instance of the mixed integer pro-
gramming [8], but a direct application of naive solvers for the
mixed integer programming leads to exponential computational
complexity in N . From a practical viewpoint, continuous
optimization approaches [9]–[14] have been utilized for Prob-
lem 1 as computationally efficient alternatives. For example,
Problem 1 has been tackled with projection of a tentative
estimate, say x⋄ ∈ RN , onto D after solving a relaxed
continuous optimization problem:

Scheme 1 (A scheme for (1) via regularized least squares).
Step 1:

Find x⋄ ∈ argmin
x∈D̃⊂RN

JΘ(x) :=
1

2
∥y −Ax∥22 + µΘ(x), (2)

where the constraint set D̃ ⊃ D is chosen usually as a con-
nected subset (e.g., the convex hull of D) of RN , Θ : RN → R
is a regularizer, and µ > 0 is a regularization parameter.
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Fig. 1: Illustrations of the values of Θ in the case where D =
A := {al := exp[j(l − 1)π/4] | l = 1, 2, . . . , 8 =: L} ⊂ C ≡
R2, ωl,1 = 1/8 (l = 1, 2, . . . , 8), and N = 1. (a) Θ

⟨1⟩
SOAV(x),

(b) a proposed nonconvex enhancement ΘGME of Θ
⟨1⟩
SOAV by

GME (5) with B⟨l⟩ = I (l = 1, 2, . . . , 8).

Step 2: With x⋄ ∈ D̃ ⊂ RN , compute the final estimate of
x⋆ ∈ D in (1) as

x♮ = PD(x⋄) ∈ argmin
s∈D

∥s− x⋄∥2,

where PD : RN → D : x 7→ PD(x) is defined to choose
randomly one of nearest vectors from x.

In (2), the first term 1
2∥y −Ax∥22 is called a data-fidelity

term evaluating the consistency with the linear regression
model in (1), while the second term µΘ : RN → R is called
a regularization term designed strategically based on a prior
knowledge on x⋆.

For achieving an acceptable estimation of a signal in Prob-
lem 1, various prior knowledge, e.g., statistical properties,
has been exploited for designing Θ in (2). For example, in
a scenario of MIMO signal detection [15], the regularizer Θ
in (2) has been found, e.g., as Θ = ∥·∥pp (p = 1, 2) [9], [10]
and Θ = ∥·∥1 ◦ D [11], where D is a first order difference
operator.

For the relaxed continuous constrained optimization problem
in (2), it would be desired for the regularizer Θ to penalize any
point not in D. Along this regularization strategy, the so-called
SOAV function [13], [14]

Θ
⟨1⟩
SOAV(x) :=

L∑
l=1

∥x− al1∥ωl,1 :=

L∑
l=1

N∑
n=1

ωl,n|xn − al|, (3)

has been used with weighting vectors ωl :=
[ωl,1, ωl,2, . . . , ωl,N ]⊤ ∈ RN

+ (l = 1, 2, . . . , L)

satisfying
∑L

l=1 ωl,n = 1 (n = 1, 2, . . . , N), where



∥x∥ωl,1 :=
∑N

n=1 ωl,n|xn| stands for the weighted ℓ1-norm
associated with ωl.

Indeed, the weighted SOAV (W-SOAV) model [14] used (2)
with Θ = Θ

⟨1⟩
SOAV and D̃ := RN for MIMO signal detection.

Clearly, in this case, the model (2) is a convex model thanks to
the convexity of Θ⟨1⟩

SOAV, and therefore, a solution of (2) can be
approximated iteratively by a convex optimization solver [14].
However, Fig. 1 (a) suggests that penalization by Θ

⟨1⟩
SOAV is

not contrastive enough for use as Θ in (2) because any point
sq ∈ D ⊂ C1 is never unique minimizer of Θ

⟨1⟩
SOAV over any

neighborhood of sq . More contrastive regularizer than Θ
⟨1⟩
SOAV

has been certainly desired for use in (2) of Step 1 of Scheme 1
(see, e.g., Fig. 1 (b) and Fig. 2).

We are interested in the following natural questions:
(Q1) Can we design a class of functions that contains fairly

contrastive regularizers Θ for use in (2) ?
(Q2) Can we choose any reasonable function Θ, from such

a function class, which is tractable for minimization
of JΘ ?

(Q1) has been examined in special cases, e.g., Θ⟨p⟩
SOAV(x) :=∑L

l=1∥x− al1∥ωl,p (0 ≤ p < 1) [16] as nonconvex variants
of (3). However, any algorithm, of guaranteed to convergence
to a global minimizer of J

Θ
⟨p⟩
SOAV

, has not yet been established
mainly because of the severe nonconvexity of J

Θ
⟨p⟩
SOAV

. This
situation tells us that computational tractability of (2) must be
considered carefully from the beginning, i.e., (Q1) and (Q2)
should be considered simultaneously.

In this paper, we present a positive answer to these questions
i) by designing a function class as

ΘGME(x) :=

L∑
l=1

(∥·∥ωl,1)B⟨l⟩(x− al1), (4)

where (∥·∥ωl,1)B⟨l⟩ is a nonconvex enhancement (called
Generalized Moreau Enhancement (GME)) of ∥·∥ωl,1

with a tunable matrix B⟨l⟩ (see (5)) (Note: ΘGME re-
produces Θ

⟨1⟩
SOAV with B⟨l⟩ = O (zero matrix));

ii) by exemplifying a fairly contrastive function (see
Fig. 1 (b)) in the proposed class of ΘGME;

iii) by presenting a choice of B⟨l⟩ (l = 1, 2, . . . , L) (see (9)
and (10)) which achieves the overall convexity of JΘGME ;

iv) by proposing an iterative algorithm (see Algorithm 1),
based on a relaxation of even symmetric condition [17,
Problem 1] required for the so-called seed convex func-
tion in cLiGME model (see Section II), with guaranteed
to convergence to a global minimizer of JΘGME over D̃
under the overall convexity condition.

Indeed, via numerical experiments in a scenario of MIMO sig-
nal detection, we demonstrate the effectiveness of the proposed
regularizer ΘGME in the model (2).

We also propose a pair of simple technical improvements for
the proposed iterative algorithm in Step 1 of Scheme 1 by ex-
ploiting adaptively the discrete information regarding D. More
precisely, we propose (i) to use a strategic perturbation (14)
to move the estimate closer to D at each iteration k ∈ N
(this idea is inspired by superiorization [18], [19]), and (ii) to
update the weights ωl,n (l = 1, 2, . . . , L;n = 1, 2, . . . , N)
in (4) adaptively (see (15)) by assigning larger weight to ωl,n

for (l, n) such that the distance between al ∈ A and nth
coordinate xn ∈ R of the latest estimate x ∈ RN is smaller
(this idea is inspired by iterative reweighting of SOAV [14]).
Experimental results demonstrate that these simple techniques
improve numerical performance of the proposed Algorithm 1.

Notation. N,R,R+,R++ and C denote respectively the set
of all nonnegative integers, all real numbers, all nonnegative
real numbers, all positive real numbers and all complex num-
bers (j stands for the imaginary unit, and ℜ(·) and ℑ(·) stand
respectively for real and imaginary parts).

LetH,K be finite dimensional real Hilbert spaces. The set of
all proper lower semicontinuous convex functions1 defined on
H is denoted by Γ0(H). f ∈ Γ0(H) is said to be prox-friendly
if Proxγf : H → H : x 7→ argminy∈H[f(y)+ 1

2γ ∥y − x∥2H] is
available as a computable operator for any γ ∈ R++. A closed
convex set C ⊂ H is said to be simple if the metric projection
PC : H → H : x 7→ argminy∈H∥x− y∥H is available as
a computable operator. The set of bounded linear operators
from H to K is denoted by B(H,K). For L ∈ B(H,K), L∗ ∈
B(K,H) denotes the adjoint operator of L (i.e., (∀(x, y) ∈
H ×K) ⟨Lx, y⟩K = ⟨x,L∗y⟩H).

For discussion in Euclidean space, we use boldface letters to
express vectors and general font letters to represent scalars. For
a matrix X ∈ Rm×n, X⊤ ∈ Rn×m denotes the transpose of
X. The symbols I, O and 1 respectively stand for the identity
matrix, the zero matrix and the all one vector.

II. BRIEF INTRODUCTION TO CLIGME

Problem 2 (cLiGME model [20], [21]). Let X , Y , Zl (l =
1, 2, . . . , L), Z̃l (l = 1, 2, . . . , L) and Z be finite dimensional
real Hilbert spaces. Suppose that (a) A ∈ B(X ,Y), y ∈ Y and
µ > 0; (b) for each l = 1, 2, . . . , L, B⟨l⟩ ∈ B(Zl, Z̃l), L⟨l⟩ ∈
B(X ,Zl) and µl > 0; (c) C(⊂ Z) is a nonempty simple closed
convex set and C ∈ B(X ,Z); (d) Ψ⟨l⟩ ∈ Γ0(Zl) is coercive,
domΨ⟨l⟩ = Zl, even symmetry (i.e., Ψ⟨l⟩ ◦ (−Id) = Ψ⟨l⟩),
and prox-friendly. Then

i) with a tunable matrix B⟨l⟩ ∈ B(ZlZ̃l), the Generalized
Moreau Enhancement (GME) of Ψ⟨l⟩ is defined by

Ψ
⟨l⟩
B⟨l⟩(·):=Ψ⟨l⟩(·)−min

v∈Zl

[
Ψ⟨l⟩(v)+

1

2
∥B⟨l⟩(·−v)∥2Z̃l

]
; (5)

ii) the constrained LiGME (cLiGME) model is given as

Find x⋄∈argmin
Cx∈C

1

2
∥y−Ax∥2Y+µ

L∑
l=1

µlΨ
⟨l⟩
B⟨l⟩◦L⟨l⟩(x). (6)

The regularizer Ψ⟨l⟩
B⟨l⟩ was proposed originally in [17] as an

extension of the so-called GMC penalty in [22] mainly for the
sparsity aware estimation. Furthermore, although Ψ

⟨l⟩
B⟨l⟩ with

B⟨l⟩ ̸= O is nonconvex, the convexity of the cost function
in (6) is achieved by a strategic tuning of GME matrices B⟨l⟩

(l = 1, 2, . . . , L) (see, e.g., [23]).

1A function f : H → (−∞,∞] is (i) proper if dom(f) := {x ∈ H |
f(x) < ∞} ≠ ∅, (ii) lower semicontinuous if {x ∈ H | f(x) ≤ α} is
closed for ∀α ∈ R, (iii) convex if f(θx+(1− θ)y) ≤ θf(x)+ (1− θ)f(y)
for ∀x, y ∈ H, 0 < θ < 1.



III. PROPOSED REGULARIZER AND ALGORITHM FOR
DISCRETE-VALUED SIGNAL ESTIMATION

A. Proposed GME regularizer and cLiGME algorithm
In this section, we propose a class of regularizers ΘGME

in (4), which is designed with the GME functions (5) of
∥·∥ωl,1 (l = 1, 2, . . . , L). Indeed, as seen from Fig. 1 (b)
(see also Fig. 2), the class of the proposed regularizers ΘGME
contains fairly contrastive functions. Moreover, if B⟨l⟩ = O

(l = 1, 2, . . . , L), then ΘGME = Θ
⟨1⟩
SOAV holds. By using ΘGME

(see (4)) in Step 1 of Scheme 1, we propose the following
model:

Find x⋄∈ argmin
x∈D̃⊂RN

1

2
∥y−Ax∥22+µ

L∑
l=1

(∥·∥ωl,1)B⟨l⟩(x−al1)︸ ︷︷ ︸
=ΘGME(x)︸ ︷︷ ︸

=JΘGME (x)

,

(7)
where D̃ ⊃ D is a closed convex set.

In order to solve (7), we consider the following problem
which contains (7) as its special instance (see Remark 1).

Problem 3. Let X , Y and Z̃l (l = 1, 2, . . . , L) be finite dimen-
sional real Hilbert spaces. Suppose that (a) A ∈ B(X ,Y), y ∈
Y and µ > 0; (b) for each l = 1, 2, . . . , L, B⟨l⟩ ∈ B(X , Z̃l),
z⟨l⟩ ∈ X and µl > 0; (c) C(⊂ X ) is a nonempty simple closed
convex set; (d) Ψ⟨l⟩ ∈ Γ0(X ) is coercive, domΨ⟨l⟩ = X , even
symmetry, and prox-friendly. Then, consider

Find x⋄∈argmin
x∈C

1

2
∥y−Ax∥2Y +µ

L∑
l=1

µlΨ
⟨l⟩
B⟨l⟩(x−z⟨l⟩)︸ ︷︷ ︸

=:J(x)

, (8)

where Ψ
⟨l⟩
B⟨l⟩ : X → R is a GME function (5), with a tuning

matrix B⟨l⟩, of a convex function Ψ⟨l⟩ (l = 1, 2, . . . , L).

Remark 1. The model (7) is a special instance of Problem 3
with X = RN , Y = RM , C = D̃, Ψ⟨l⟩ = ∥·∥ωl,1 (l =
1, 2, . . . , L), z⟨l⟩ = al1 (l = 1, 2, . . . , L) and µl = 1 (l =
1, 2, . . . , L).

By tuning properly the design parameters of the proposed
GME regularizers, we can make the nonconvexly-regularized
least squares model convex.

Fact 1 (Overall convexity condition [17] for (8)). Consider
Problem 3. Then J in (8) is convex if (B⟨l⟩)Ll=1 satisfy

A∗A− µ

L∑
l=1

µlB
⟨l⟩∗B⟨l⟩ is positive semidefinite. (9)

For example, the following B⟨l⟩ [22] satisfy (9):

B⟨l⟩ :=

√
γl
µµl

A ∈ B(X ,Y) (l = 1, 2, . . . , L), (10)

where γl ∈ R+ (l = 1, 2, . . . , L) are chosen to satisfy∑L
l=1 γl ≤ 1.

In a special case where z⟨l⟩ = 0 ∈ X (l = 1, 2, . . . , L), the
model (8) is reduced to the cLiGME model (6) with Z = Z =

X , L⟨l⟩ = Id (l = 1, 2, . . . , L) and C = Id. For this special
case under the condition (9), we can find a global minimizer
of (8), by cLiGME algorithm [20], [21].

In the following, we present an iterative algorithm applicable
even to general cases z⟨l⟩ ∈ X (l = 1, 2, . . . , L). The
proposed algorithm (12) in Theorem 1 is a variant of cLiGME
algorithm [20], [21], [24] (see Remark 2), and Algorithm 1
illustrates a concrete expression of (12) (see also Remark 1).

Theorem 1 (A relaxation of cLiGME algorithm for Prob-
lem 3). Consider Problem 3 under the overall convexity con-
dition (9). Assume argminx∈CJ(x) ̸= ∅2. Define the operator
T : H := X×(X )L×(X )L → H :

(
x, (v⟨l⟩)Ll=1, (w

⟨l⟩)Ll=1

)
7→(

ξ, (ζ⟨l⟩)Ll=1, (η
⟨l⟩)Ll=1

)
by

ξ := PC

[(
Id− 1

σ (A
∗A− µ

∑L
l=1 µlB

⟨l⟩∗B⟨l⟩)
)
x

−µ
σ

∑L
l=1

(
µlB

⟨l⟩∗B⟨l⟩v⟨l⟩ + w⟨l⟩)+ 1
σA

∗y
]
,

ζ⟨l⟩ := z⟨l⟩ + Proxµµl
τ Ψ⟨l⟩

[
µµl

τ B⟨l⟩∗B⟨l⟩(2ξ − x)

+
(
Id− µµl

τ B⟨l⟩∗B⟨l⟩)v⟨l⟩ − z⟨l⟩
]
,

η⟨l⟩ :=
(
Id− ProxµlΨ⟨l⟩

)(
2ξ − x+ w⟨l⟩ − z⟨l⟩

)
,

where (σ, τ, κ) ∈ R++ × R++ × (1,∞) is chosen to satisfy3{
(σ−µL)Id− κ

2A
∗A is positive definite,

τ ≥ (κ2 +
2
κ )µmax{µl∥B⟨l⟩∥2OP | l=1,2,. ..,L}. (11)

Then, (a) T is an averaged nonexpansive operator4 by defining
a proper inner product on H (see, e.g., [17], [21]), and (b) for
any initial point u0 ∈ H, the sequence (uk)k∈N ⊂ H with
uk :=

(
xk, (v

⟨l⟩
k )Ll=1, (w

⟨l⟩
k )Ll=1

)
generated by the following

Picard-type fixed point iteration:

(k ∈ N) uk+1 = T (uk) (12)

converges to a fixed point u =
(
x, (v⟨l⟩)Ll=1, (w

⟨l⟩)Ll=1

)
∈

Fix(T ) := {u ∈ H | T (u) = u} ⊂ H, where x ∈ X enjoys the
condition as a global minimizer x⋄ ∈ C, in (8), of J over C.

Remark 2. For Problem 3, the condition (9) and Theorem 1
are obtained by the following steps5.

i) By defining Ψ̃⟨l⟩ := Ψ⟨l⟩(· − z⟨l⟩) (l = 1, 2, . . . , L), we
can check that Ψ̃⟨l⟩

B⟨l⟩ = Ψ
⟨l⟩
B⟨l⟩(· − z⟨l⟩).

ii) By using Ψ̃⟨l⟩, we can express J in (8) equivalently as

J(x) =
1

2
∥y −Ax∥2Y + µ

L∑
l=1

µlΨ̃
⟨l⟩
B⟨l⟩(x). (13)

2argminx∈CJ(x) ̸= ∅ is guaranteed in many cases, e.g., if C is compact
(not limited to this case).

3 For example, choose κ > 1 and compute (σ, τ) by{
σ := κ

2
∥A∥2OP + µL+ (κ− 1),

τ := (κ
2
+ 2

κ
)µmax{µl∥B⟨l⟩∥2OP | l = 1, 2, . . . , L}+ (κ− 1),

where ∥B⟨l⟩∥OP denotes the operator norm of B⟨l⟩ (i.e., ∥B⟨l⟩∥OP :=
supx∈X ,∥x∥X≤1∥B⟨l⟩x∥Z̃l

).
4An operator T : X → X is said to be nonexpansive if (∀x, y ∈

X ) ∥T (x)− T (y)∥ ≤ ∥x− y∥, in particular, (α-) averaged nonexpansive if
there exists α ∈ (0, 1) and a nonexpansive operator R : X → X such that
T = (1− α)Id + αR.

5 Even for Problem 2 with a replacement of the seed convex function Ψ⟨l⟩

by its shifted seed convex function Ψ̃⟨l⟩ = Ψ⟨l⟩(· − z⟨l⟩), via an essentialy
same discussion, we can derive the overall convexity condition of the objective
function and an iterative algorithm with guaranteed convergence to a global
minimizer.



Algorithm 1 A relaxation of cLiGME algorithm for (7)

1: Choose
(
x0,(v

⟨l⟩
0 )Ll=1,(w

⟨l⟩
0 )Ll=1

)
∈RN×(RN )L×(RN )L.

2: Choose (σ, τ, κ) ∈ R++ × R++ × (1,∞) satisfying (11).
3: for k = 0, 1, 2, . . . do
4: { Insert modification in Section III-B if necessary. }
5: xk+1 ← PD̃

[(
I− 1

σ (A
⊤A− µ

∑L
l=1 B

⟨l⟩⊤B⟨l⟩)
)
xk

−µ
σ

∑L
l=1

(
B⟨l⟩⊤B⟨l⟩v

⟨l⟩
k +w

⟨l⟩
k

)
+ 1

σA
⊤y

]
6: for l = 1, 2, . . . , L do
7: v

⟨l⟩
k+1←al1+Proxµ

τ ∥·∥ωl,1

[
µ
τ B

⟨l⟩⊤B⟨l⟩(2xk+1−xk)

+
(
I− µ

τ B
⟨l⟩⊤B⟨l⟩)v⟨l⟩

k − al1
]

8: w
⟨l⟩
k+1←

(
Id−Prox∥·∥ωl,1

)(
2xk+1−xk+w

⟨l⟩
k −al1

)
9: end for

10: end for
11: return xk+1

iii) The overall convexity condition (9) for J in (8) is derived
by applying [17, Proposition 1] to (13).

iv) Since Ψ̃⟨l⟩ is not even symmetry in general, we can-
not apply the cLiGME algorithm [20], [21] directly
for (13). However, we can relax the even symmetric
condition to z⟨l⟩-symmetric condition (i.e., Ψ̃⟨l⟩(z⟨l⟩ +
·) = Ψ̃⟨l⟩(z⟨l⟩ − ·)).

B. Two simple techniques for further improvement
For further improvement of Algorithm 1, we introduce two

simple techniques in Algorithm 1 to exploit adaptively the
discrete information regarding D.

1) Generalized superiorization of cLiGME algorithm:
Superiorization [18], [19] is known as a technique for an

iterative algorithm, e.g., Picard-type fixed point iteration, to
reduce a certain objective cost by adding strategic bounded
perturbations to updated estimate xk (k ∈ N).

We propose to incorporate a superiorization technique into
Algorithm 1 in order to move the estimate closer to D at each
iteration. More precisely, we use a modification

xk ← xk + βk (PD − Id)(xk)︸ ︷︷ ︸
=:dk

(14)

in line 4 of Algorithm 1, where (βk)k∈N ⊂ R+, and
(dk)k∈N ⊂ RN is inspired by [19]. The global convergence
guarantee is not violated even by the modification (14) if
(βk)k∈N is summable and (dk)k∈N is bounded (see Ap-
pendix B2). However, we dare to propose to use more general
(βk)k∈N ⊂ R+ which is not necessarily summable. We call
such a modification generalized superiorization. As will be
shown in numerical experiments (see Section IV), the proposed
generalized superiorization is effective to guide the sequence
(xk)k∈N to the discrete set D.

2) Iterative reweighting of cLiGME algorithm:
The iterative reweighting technique, e.g., [25], has been used

to enhance the effectiveness of the regularizer by updating
the weights of the regularizer adaptively in an iterative algo-
rithm. Iterative reweighting techniques are also used for Prob-
lem 1 [14], [26]. To utilize such a technique in Algorithm 1,

(a) Overall view (b) Enlarged view around a1

Fig. 2: Illustrations of the values of ΘGME(x) in Eq.(4) with
B⟨l⟩ in (17) under the setting of Section IV. For visualization,
we set xn = 0 (n = 2, 3, . . . , 50).

we propose to set ωl,n (l = 1, 2, . . . , L; n = 1, 2, . . . , N) in
the seed functions ∥·∥ωl,1 (l = 1, 2, . . . , L) adaptively by using
the latest estimate x := [x1, x2, . . . , xN ]⊤ as [26]

ωl,n =
(|xn − al|+ ϵ)−1∑L

l′=1(|xn − al′ |+ ϵ)−1
. (15)

where ϵ > 0 is a small number. If |xn − al| is small, then the
corresponding ωl,n becomes large and xn will be close to al.
This iterative reweighting method can be realized by inserting

if k mod K == 0 then
Update ωl = [ωl,1, ωl,2, . . . , ωl,N ]⊤ (l = 1, 2, . . . , L)

as (15) with x = xk.

end if

(16)

in line 4 of Algorithm 1, where K ∈ N\{0} controls the
frequency of reweighting.

IV. NUMERICAL EXPERIMENTS

We conducted numerical experiments in a scenario of
MIMO signal detection [12] with N -transmit antennas and
M -receive antennas (N = 50,M = 45) in 8PSK (phase
shift keying) modulation with constellation set A := {al :=
exp[j(l− 1)π/4] | l = 1, 2, . . . , 8 =: L} ⊂ C. The task of this
experiment is to estimate the transmitted signal x⋆ ∈ CN from
the received signal y = Ax⋆ + ε ∈ CM with the channel ma-
trix A ∈ CM×N and a noise ε ∈ CM . In this experiment, we
chose randomly (i) x⋆ ∈ D := AN , (ii) A :=

√
RG ∈ CM×N ,

where each entry of G ∈ CM×N was sampled from the
complex gaussian distribution CN (0, 1/M), and R ∈ RM×M

satisfies (R)i,j = 0.5|i−j| (i = 1, 2, . . . ,M ; j = 1, 2, . . . ,M),
and (iii) each entry of ε ∈ CM was sampled from CN (0, σ2

ε)
with a variance σ2

ε > 0, which was chosen so that 10 log10
1
σ2
ε

achieved a given SNR (signal-to-noise ratio).
We consider to estimate x⋆ ∈ D with Scheme 1 by employ-

ing the convex hull conv(D) of D as D̃ in (2) via C ⇄ R2

translation (see Appendix A). In this experiment, we compared
numerical performance of (i) the proposed cLiGME model (7),
i.e., the model (2) with Θ = ΘGME in (4), with that of (ii) the
SOAV model [14], i.e., the model (2) with Θ = Θ

⟨1⟩
SOAV in (3).
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Fig. 3: BER vs SNR (8PSK, N = 50, M = 45)
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For the cLiGME model, we used Algorithm 1 (denoted by
‘cLiGME’) by employing the following tuning matrices in (7)

B⟨l⟩ =
√
0.99/µLpA (l = 1, 2, . . . , L) (17)

to achieve the overall convexity condition (9), where µ is
a predetermined regularization parameter, and pA is obtained
via C ⇄ R2 translation (see (18)). Since SOAV model
can be reduced to the cLiGME model (7) with B⟨l⟩ = O
(l = 1, 2, . . . , L), we used Algorithm 1 (denoted by ‘SOAV’)
with B⟨l⟩ = O (l = 1, 2, . . . , L) for the SOAV model. For both
‘cLiGME’ and ‘SOAV’, we employed the same (i) stepsize
(σ, τ, κ) ∈ R++ × R++ × (1,∞) as footnote 3 in Theorem 1
with κ = 1.001, and (ii) initial points x0 = 0, v⟨l⟩

0 = 0 and
w

⟨l⟩
0 = 0 (l = 1, 2, . . . , L). Since D̃ is compact, ‘cLiGME’

and ‘SOAV’ can find their global minimizers, respectively (see
Theorem 1). Algorithm 1 were terminated when the iteration
number k exceeded 500.

Before evaluating numerical performance, let us examine
contrastiveness of ΘGME used in these experiments. Fig. 2
shows the function values of ΘGME in (4) designed with B⟨l⟩

in (17) hence achieving the overall convexity condition (9).
Each numerical value of ΘGME(x) is computed with ISTA-
type algorithm [27] (Note: the function value of ΘGME is not
required in the proposed Algorithm 1). As seen from Fig. 2 (b),
we observe numerically that ΘGME(x) is certainly contrastive
as a regularizer for discrete-valued signal estimation because
each constellation point in A corresponds to a local minimizer
of ΘGME(x) as we expected.

As a performance metric, we adopted averaged BER (bit
error rate) over 1,000 independent realizations of (x⋆,A, ε).
The parameter µ was chosen to achieve the lowest BER from
the set {10i | i = −10,−9, . . . , 2} at each SNR.

Fig. 3 (a) shows BER of ‘SOAV’ and ‘cLiGME’ at each
SNR, where ωl,n = 1/8 (l = 1, 2, . . . , 8; n = 1, 2, . . . , N)
in (7) were fixed. From Fig. 3 (a), ‘cLiGME’ achieves lower
BER than ‘SOAV’, which implies the effectiveness of the
proposed contrastive nonconvex regularizer ΘGME compared
with the convex regularizer ΘSOAV.

In the following, we verify the further performance im-
provements of ‘cLiGME‘ by the proposed (i) generalized
superiorization and (ii) iterative reweighting.

To examine the impact of choices of (βk)k∈N in generalized
superiorization (14), we compared generalized superiorization
of ‘cLiGME’ with (i) βk = 0 (which reduces to the original
‘cLiGME’), (ii) βk = 0.99k ((βk)k∈N is summable), (iii) βk =

k−1/2 ((βk)k∈N is nonsummable but βk → 0 (k →∞)), and
(iv) βk = 0.01. Fig. 4 shows history of BER achieved by
generalized superiorization of ‘cLiGME’ with such (βk)k∈N
in (14), where SNR = 20 dB, µ = 10−4 and ωl,n = 1/8
(l = 1, 2, . . . , 8; n = 1, 2, . . . , N). From Fig. 4, βk = 0.01
outperforms the others. Fig. 3 (b) shows BER, at each SNR,
of ‘cLiGME’ and generalized superiorization of ‘cLiGME’
(denoted by ‘GS-cLiGME’) with βk = 0.01. From Fig. 3 (b),
we see ‘GS-cLiGME’ improves ‘cLiGME’.

Fig. 3 (c) shows BER, at each SNR, of (i) ‘cLiGME’,
(ii) iterative reweighting in (16) of ‘cLiGME’ (denoted by ‘IW-
cLiGME’), and (iii) iterative reweighting in (16) of ‘SOAV’
(denoted by ‘IW-SOAV’), where the frequency period K =
100 in (16) was used (Note: the iterative reweighting of SOAV
model was initially proposed [14], [26] with an ADMM-
type algorithm). From Fig. 3 (c), ‘IW-cLiGME’ improves
‘cLiGME’, while even ‘cLiGME’ outperforms ‘IW-SOAV’.

V. CONCLUSION

We proposed a class of fairly contrastive regularizers for
discrete-valued estimation problems, and presented an iterative
algorithm with guaranteed convergence to a global mini-
mizer of the nonconvexly-regularized least squares model.
We also proposed two simple techniques for performance
improvements. The numerical experiments demonstrate that
the proposed model and algorithm have a great potential for
challenging discrete-valued signal estimation problem, and that
two simple techniques successfully contribute to performance
improvements of the proposed algorithm.

APPENDIX

A. C ⇄ R2 translation

Consider the complex version of Problem 1 where D(⊂
CN ) is a finite set and (x⋆,y,A, ε) ∈ CN ×CM ×CM×N ×
CM . The C ⇄ R2 translation in this paper should be
understood in the following sense:

pD :=

{[
ℜ(s)
ℑ(s)

]
∈ R2N

∣∣∣∣ s ∈ D

}
,

px⋆ :=

[
ℜ(x⋆)
ℑ(x⋆)

]
∈ pD ⊂ R2N , py :=

[
ℜ(y)
ℑ(y)

]
∈ R2M ,

pA :=

[
ℜ(A) −ℑ(A)
ℑ(A) ℜ(A)

]
∈ R2M×2N , pε :=

[
ℜ(ε)
ℑ(ε)

]
∈ R2M .

(18)



Clearly, via (18), we can translate y = Ax⋆ + ε into py =
pApx⋆+ pε, and can estimate px⋆ by applying Algorithm 1 to the
translated real model.

B. Bounded perturbation for Picard-type fixed point iteration
1) Picard iteration: Let H be a finite dimensional real

Hilbert space. Suppose T : H → H is an averaged nonexpan-
sive operator such that Fix(T ) := {u ∈ H | T (u) = u} ̸= ∅.
Then, a sequence (uk)k∈N, generated by the so-called Picard
iteration: uk+1 = T (uk) (k ∈ N) with any initial point u0 ∈ H,
is guaranteed to converge to a certain fixed point in Fix(T ).

2) Bounded perturbation resilience of Picard iteration [18],
[19]: Let (βk)k∈N be a summable sequence in R+ and
(dk)k∈N be a bounded sequence inH, where such a (βkdk)k∈N
is said to be a sequence of bounded perturbations. Then, with
any initial point u0 ⊂ H, (uk)k∈N generated by

(∀k ∈ N) uk+1 = T (uk + βkdk)

also converges to a point u ∈ Fix(T ).
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massive mimo detection algorithms: Theory and im-
plementation,” Advanced Radio Frequency Antennas for
Modern Communication and Medical Systems, 2020.

[7] P. Sarangi and P. Pal, “Measurement matrix design
for sample-efficient binary compressed sensing,” IEEE
Signal Processing Letters, 2022.

[8] M. Toyoda and M. Tanaka, “Efficient iterative method
for soav minimization problem with linear equality and
box constraints and its linear convergence,” Journal of
the Franklin Institute, 2022.

[9] H. Zhu and G. B. Giannakis, “Exploiting sparse user
activity in multiuser detection,” IEEE Transactions on
Communications, 2011.

[10] M. Wu, C. Dick, J. R. Cavallaro, and C. Studer, “High-
throughput data detection for massive mu-mimo-ofdm
using coordinate descent,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, 2016.

[11] A. Kudeshia, A. K. Jagannatham, and L. Hanzo, “Total
variation based joint detection and state estimation for
wireless communication in smart grids,” IEEE Access,
2019.

[12] J.-C. Chen, “Manifold optimization approach for data
detection in massive multiuser mimo systems,” IEEE
Transactions on Vehicular Technology, 2018.

[13] M. Nagahara, “Discrete signal reconstruction by sum of
absolute values,” IEEE Signal Processing Letters, 2015.

[14] R. Hayakawa and K. Hayashi, “Convex optimization-
based signal detection for massive overloaded mimo
systems,” IEEE Transactions on Wireless Communica-
tions, 2017.

[15] M. A. Albreem, W. Salah, A. Kumar, et al., “Low
complexity linear detectors for massive mimo: A com-
parative study,” IEEE Access, 2021.

[16] R. Hayakawa and K. Hayashi, “Discrete-valued vector
reconstruction by optimization with sum of sparse reg-
ularizers,” in EUSIPCO, 2019.

[17] J. Abe, M. Yamagishi, and I. Yamada, “Linearly in-
volved generalized Moreau enhanced models and their
proximal splitting algorithm under overall convexity
condition,” Inverse Problems, 2020.

[18] Y. Censor, R. Davidi, and G. T. Herman, “Perturbation
resilience and superiorization of iterative algorithms,”
Inverse Problems, 2010.

[19] J. Fink, R. L. G. Cavalcante, and S. Stańczak, “Su-
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