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Abstract—This paper presents a filter transfer method for
estimating time-varying signals, i.e., Kalman filtering between two
different networks. In many sensor networks, observed signals
are associated with nodes (i.e., sensors), and edges of the network
represent the inter-node connectivity. For a large sensor network,
measuring the signal values at all nodes requires huge resources,
particularly in terms of energy consumption. To alleviate the
issue, one may extract one cluster from the network and perform
intra-cluster analysis based on the statistics in the cluster. The
statistics are then utilized to estimate the signals from another
cluster. This leads to the requirement for transferring a set of
parameters in the Kalman filter from one cluster to another.
In this paper, we propose a cooperative Kalman filter between
two networks. The proposed Kalman filter alternately estimates
signals in time between the two networks. We formulate a state-
space model in the source cluster and transfer it to the target
cluster on the basis of optimal transport. In the signal estimation
experiments, we validate the effectiveness of the proposed method.

I. INTRODUCTION

Sensor networks are used in various disciplines to analyze
sensor data using the interrelationships among sensors [1], [2],
where their nodes observe the signals of the corresponding
sensors and their edges represent the inter-node connectivity.
Their applications include bottleneck detection in traffic net-
works and leakage detection in infrastructure networks [3], [4].

A network often has a sub-network having similar statistics
called a community or cluster. In many clustered sensor
networks, sensor data in one cluster could impact on those
in different clusters as well as those obtained at the previous
time instances. Therefore, predictive control (PC) for networks
among clusters is crucial and has been extensively studied in
many application fields [5], [6].

Kalman filter is the most popular PC method for networks
[7], [8]. It linearly tracks and estimates time-varying signals on
a static network by minimizing the mean squared error (MSE)
between estimated and original signals. The system of Kalman
filter is modeled by a state-space model and its estimator is
performed in prediction and update steps.

We often encounter large networks, however, observing all
of their signals at every time instance may be costly in terms
of storage burdens and energy consumption, which may also
shorten the lifetime of sensors [9]. To alleviate this, one may
extract one cluster from the network and perform an intra-
cluster analysis based on the statistics in the cluster [10]. Since
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Fig. 1. Overview of a cooperative Kalman filter for the time-varying graph
signals on two static graphs. Colored areas denote the set of the source and
target at each time instance.

one cluster could affect another as previously mentioned, a
transfer method for a set of parameters on the PC is required,
especially for clusters having different sizes.

In this paper, we propose a cooperative Kalman filter for
estimating time-varying signals between two networks, i.e.,
graphs. In the estimation, graph signals, defined as signals
whose domain is the nodes in a graph [11], [12], are used to
model the signals observed in a network. We illustrate the
overview of the proposed method in Fig. 1. The proposed
Kalman filter performs its estimation alternately in time be-
tween two graphs. Therefore, the two graphs work as the
source and target alternately1. The set of parameters in the
source is transferred to the target and then it is used in the
Kalman estimator, which estimates the current target signal.

In the proposed method, first, we assume a cyclic graph wide
sense stationarity (CGWSS) of time-varying graph signals for
both of the source and target graphs. CGWSS is an extension
of static GWSS [13], [14], [15] to the case where its power
spectral density (PSD) changes periodically over time. Second,
we formulate the state-space model in the source graph. The
state equation is derived based on the optimal transport, which
is a mathematical tool to determine an efficient mapping
between two sets of random signals [16]. In our model, we
utilize the optimal transport as the signal transition filter from
the previous signal to the current signal within a graph. Finally,
we transfer the state-space model of the source into the target
graph by reflecting their statistics. In this transfer, we assume

1 While this paper focuses on estimation between two graphs for simplicity, it
could be generalized to three or more graphs.



that the statistics of the two graphs essentially differ in their
PSDs. To compensate for the gap of the PSDs, we utilize a
transfer method based on Bayesian inference [17]. As a result,
we obtain the state-space model of the target and derive the
corresponding control laws.

Our experiments on synthetic data demonstrate that the pro-
posed method effectively estimates time-varying graph signals
on two graphs.

II. PRELIMINARIES

In this section, we introduce preliminaries of random signals
defined on a graph, i.e., graph signals. Firstly, we review the
basics of graph signal processing (GSP). Second, we define
the notion of a graph wide sense stationarity (GWSS).

A. Basics of Graph Signal Processing

A weighted undirected graph is denoted by G = (V, E), in
which V and E are sets of nodes and edges, respectively. The
number of nodes and edges are denoted by N = |V| and E =
|E|, respectively. We use a weighted adjacency matrix W for
representing the connection between nodes, where its (m,n)-
element [W]mn ≥ 0 is the edge weight between the mth and
nth nodes; [W]mn = 0 for unconnected nodes. The degree
matrix D is a diagonal matrix whose element is defined as
[D]mm =

∑
n[W]mn. Using D and W, the graph Laplacian

is given by L = D−W. A graph signal x ∈ RN is defined as
x : V → RN where [x]n corresponds to the signal value at the
nth node. Since L is a real symmetric matrix, it has orthogonal
eigenvectors and can be diagonalized as L = UΛU⊤, where
U = [u0,u1, . . . ,uN−1] is a matrix whose ith column is
the eigenvector ui and Λ = diag(λ0, λ1, . . . , λN−1) is their
diagonal eigenvalue matrix. Without loss of generality, we can
assume 0 = λ0 ≤ λ1, . . . , λN−1 = λmax since L is a positive
semidefinite matrix [11]. In GSP, λi is referred to as a graph
frequency. Then, spectra of x in the graph frequency domain
are defined as x̂ = U⊤x: It is called graph Fourier transform
[11].

B. Graph Wide Sense Stationarity

A graph signal x is a graph wide sense stationary (GWSS)
process if the following two conditions are satisfied:

Definition 1 (GWSS [13]). Let x be a random signal on graph
G. The signal x follows a GWSS process if and only if the
following conditions are satisfied:

E [x] =µ = const, (1a)

E
[
xx⊤] =Σ = Udiag(p)U⊤, (1b)

where Σ and p are referred to as the covariance matrix and
power spectral density (PSD), respectively, and µ indicates the
mean.

In this paper, we assume GWSS signals x are ergodic: The
ensemble mean in Definition 1 is identical to the temporal
mean. Later, we will consider a time-varying version of the
GWSS process, whose PSD varies periodically over time.

III. RELATED WORK

In this section, we review the preliminary studies on a
transfer of Kalman filter. First, we introduce the standard
(linear) Kalman filter, which is related to the main part of our
framework. Then, we review optimal transport and a graph
filter transfer method.

A. Kalman Filter

Kalman filter is an online algorithm for sequentially tracking
and estimating dynamic signals from given observations [7],
[8], [18]. In the following, we revisit the system of the standard
Kalman filter and its control laws.

1) The System of Kalman Filter: Let the subscript t indi-
cates a time instance. The system of Kalman filter is modeled
by a state-space model. Generally, it is formulated as follows
[18], [19]:

xt =Axt−1 +But−1 + vt, vt ∼ N (0, σ2
vI), (2a)

yt =Cxt +wt, wt ∼ N (0, σ2
wI), (2b)

where xt ∈ RN and yt ∈ RM represent the current signal
and its observation, respectively, and ut ∈ RN indicates the
control input. In (2a) and (2b), the matrices A ∈ RN×N , B ∈
RN×N , and C ∈ RM×N represent the signal transition, input,
and observation matrices, respectively. The vector vt ∈ RN

represents system noise, and wt ∈ RM denotes observation
noise, conforming to white Gaussian noise with the standard
deviations σv and σw, respectively. Note that (2a) describes
the transition of the signals over time and (2b) represents the
observation model at t.

In the Kalman filtering, the objective is to minimize the
mean squared error (MSE) of the estimated signal for all t.
The optimization problem is formalized as:

min
x̃t

E[∥xt − x̃t∥22], (3)

where x̃t represents the estimated signal at t.
In the following, we show the control laws of Kalman filter

to estimate the current signal x̃t in (3).
2) Control Laws of Kalman Filter: Hereafter, we denote the

estimated signal conditioned on observations up to t, i.e., the
prior estimation, by x̃t|t−1 and denote the posterior one by x̃t.
The control laws are given as follows [18]:
Prediction step

i Calculating the prior signal estimation.

x̃t|t−1 = Ax̃t−1 +But−1, (4a)

ii Determining the error covariance matrix of the prior
signal estimation.

Pt|t−1 = APt−1A
⊤ + σvI, (4b)

where Pt−1 is the posterior error covariance at t− 1.
iii Deriving the optimal filter (Kalman gain) in (3) from

observations up to t− 1.

Kt|t−1 = Pt|t−1C
⊤(CPt|t−1C

⊤ + σwI)
−1, (4c)



Update step
i Estimating the current signal using the Kalman gain.

x̃t = x̃t|t−1 +Kt|t−1(yt −Cx̃t|t−1), (4d)

ii Updating the posterior error covariance matrix.

Pt = (I−Kt|t−1C)Pt|t−1. (4e)

iii Returning to the prediction step with t← t+ 1.
At the initial time instance, t = 1, Pt−1 in (4b) is usually set
to the scaled identity matrix, P0 = δI, where the δ > 0 is a
scaling factor.

In our setting, A may not be known a priori and needs to be
estimated based on statistics of xt. To this end, we introduce
the optimal transport in the next subsection.

B. Optimal Transport

Optimal transport theory is a mathematical tool to determine
the most efficient mapping between two sets of random signals
having different probability distributions [20]. Let us consider
the transport from an input signal x1 ∼ α to a subsequent
signal x2 ∼ β, where α and β are two different probabilistic
measures on RN . Then, the optimal transport seeks the assign-
ment γ such that it minimizes some transport cost from x1 to
x2. Given a transport cost function c : RN × RN → R+, the
optimal transport problem can be formulated as:

inf
γ∈Π(α,β)

E
x1∼α,T (x1)∼β

c(x1, T (x1)) s.t. T#α = β, (5)

where x2 = T (x1) and Π represents a subset of joint
distributions on RN × RN . The mapping T : RN → RN

is referred to as the optimal transport map, and T#α denotes
the push-forward measure of α under T [16].

The cost function often employs the ℓp-norm. If the ℓp-norm
is selected as the cost, the minimum value in (5) is referred
to as the p-Wasserstein distance [16]. Obtaining the optimal
transport map T analytically from (5) is generally challenging
due to its non-uniqueness [16]. Nevertheless, if both of α
and β are Gaussian distributions, i.e., α = N (µ1,Σ1) and
β = N (µ2,Σ2), the unique solution is obtained by the 2-
Wasserstein distance W 2

2 (α, β)[16]:

W 2
2 (α, β) =

∥µ1 − µ2∥22 + tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
)
.

(6)

Simultaneously, the optimal transport T is obtained [16] as

T (x1) = µ2+Σ
−1/2
1 (Σ

1/2
1 Σ2Σ

1/2
1 )1/2Σ

−1/2
1 (x1−µ1), (7)

where we suppose that Σ1 is non-singular.
In our proposed method, we use T in (7) as the signal

transition filter, which represents the optimal mapping from
xt−1 to xt in a graph, i.e., A in (2a). However, Σ2 in (7) is
not known in our setting. Therefore, we need to find it from
the known statistics in the other domain.

In the next subsection, we introduce a transfer learning
method to find Σ2 from the statistics in the other graph.

C. Graph Filter Transfer

In this section, we review an existing study on graph filter
transfer [17], which is mainly related to the proposed method.
The graph filter transfer aims to transfer parameters of a graph
filter for the source graph to the target one having different
(but similar) statistics. Specifically, we introduce the method
employed for probabilistic filters, such as the graph Wiener
filter, Kalman filter, and Bayesian filter [17].

Hereafter, we denote the source and target graphs by src and
trg, respectively. Let the subscript dom ∈ {src, trg} represent
one of the two graphs, and let xdom,t and ydom,t denote an
unknown graph signal at time t and its corresponding known
observation, defined in (2b). Now, we consider estimating
xsrc,t using a set of K historical observations, denoted by
Ysrc,t = [ysrc,t, . . . ,ysrc,t−K+1]. We assume that the original
graph signal xdom,t satisfies the GWSS conditions in Definition
1. Under the assumption, the probabilistic filters are generally
formulated through maximum a posteriori (MAP) estimation
[14], [17], which is expressed as:

x̃src,t = arg max
xsrc,t

P(xsrc,t|Ysrc,t,psrc), (8)

where P denotes a probability distribution function, and psrc
represents the PSD of xsrc,t. Since psrc governs the behavior of
the estimator in (8), transferring (8) to the target graph results
in adjusting psrc to adapt the target graph.

In general, the eigenvalue distributions of different graph
variation operators are different. This discrepancy presents a
challenge of estimating ptrg directly from psrc. To address the
issue, a graph filter transfer method in [17] is performed in the
following three steps, as visualized in Fig. 2:

1) Approximating psrc as a continuous ARMA graph filter
[21] based on the least-squares (LS). The approximated
PSD is denoted by pARMA(λ;αsrc), where λ ∈ [0,+∞)
and αdom represents a sequence of parameters of the
ARMA graph filter.

2) Adapting αsrc in pARMA(λ;αsrc) to the target graph using
Bayesian inference. The adapted parameters in the target
graph is represented as αtrg.

3) Discretizing pARMA(λ;αtrg) according to the eigenvalues
of Ltrg and estimating ptrg.

In the three steps, ptrg is indirectly estimated from psrc through
the parameters of the ARMA filter. This approach can transfer
a probabilistic filter from the source graph to the target graph
having different eigenvalue distributions. Please see [17] for
more details.

In the next section, we propose a cooperative Kalman filter
for time-varying graph signals between two networks utilizing
techniques introduced in this section.

IV. COOPERATIVE KALMAN FILTER

In this section, we derive a graph filter transfer method using
Kalman filter. Initially, we design a stochastic signal model for
time-varying graph signals and then formulate a state-space
model. We derive Kalman filter from the state-space model
and perform the transfer learning across two different graphs.
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Fig. 2. Overview of a graph filter transfer method for the PSD estimation in
the target graph in [17].

A. Signal Model

Here, we assume that xsrc and xtrg satisfy the conditions
defined below:

Definition 2 (Cyclic graph wide sense stationary (CGWSS)).
Let x be a random signal on the graph G. The signal x is a
cyclic graph wide sense stationary process if and only if the
two following conditions are satisfied:

E
[
xt (modP )

]
=µt (modP ) = const, (9a)

E
[
xt,(modP )x

⊤
t (modP )

]
=Σt (modP ) = Udiag(pt (modP ))U

⊤,

(9b)

where P denotes the period of CGWSS, and Σt and pt are
the periodically varying covariance and PSD, respectively.

The PSD of CGWSS thus periodically changes over time,
while that of the GWSS in Definition 1 is static2.

In this paper, we assume two graphs are disconnected but
the signals on them, xsrc,t−1 and xtrg,t have similar PSDs (see
Fig. 1). Specifically, we define their similarity in terms of the
graph filter kernels of the two PSDs, i.e., pdom,t(λi), where
pdom,t(λi) can be obtained by smoothly interpolating pdom,t

such that pdom,t(λi) := [pdom,t]i (see Section III). Formally,
we assume supλ(psrc,t−1(λ) − ptrg,t(λ))

2 < C where C is a
small constant.

In the following, we formulate a state-space model based
on Definition 2.

B. Control System

We consider the following state-space model similar to (2a)
and (2b).

xdom,t =T (xdom,t−2) +Budom,t−2 + vdom, vdom ∼ N (0, σ2
vI),

(10a)

ydom,t =Cxdom,t +wdom, wdom ∼ N (0, σ2
wI). (10b)

In (10a), we utilize the transition function T , which is not
necessarily to be time-invariant instead of the time-invariant
matrix A in (2a). In (10b), we employ the same model as
(2b).

2 When P = 1, CGWSS is identical to GWSS.

TABLE I
LIST OF SIGNALS. ✓ CORRESPONDS TO ACCESSIBLE (KNOWN) DATA. THE
BLANK IS UNKNOWN DATA. THE COLORED CELL INDICATES THE SIGNAL

WE ESTIMATE.

xt−2 xt−1 xt yt−2 yt−1 yt pt−2 pt−1 pt

src ✓ ✓ ✓

trg ✓ ✓ ✓ ✓

We summarize which variables are known or unknown in
Table I. Our aim is to estimate the unknown signals xtrg,t from
known signals. Note that Σtrg,t, which corresponds to T (·) in
(10a) and Σ2 in (7), is unknown. Therefore, we first estimate
ptrg,t from psrc,t−1.

In the standard Kalman filter introduced in Section III-A, its
estimator is derived in one cluster. In contrast, we perform the
estimation alternately in time between two clusters (graphs).
In the following, we derive the proposed Kalman filter.

C. Kalman Filter Transfer

We derive the cooperative Kalman filter between two graphs
based on (10a) and (10b). For simplicity, we replace the sub-
scripts ·trg,t−2 and ·trg,t with ·1 and ·2, respectively. Following
from Definition 2, Σ1 and Σ2 can be jointly diagonalized.
Therefore, the RHS in (7) in the target graph can be rewritten
as follows:

T (x1) =µ2 +Q(x1 − µ1), (11)

where Q = Utrgdiag(p2)diag(p1)
−1U⊤

trg.
To calculate the RHS in (11), the current PSD p2 ( = ptrg,t)

is required but unknown (see Table I). Therefore, we estimate
p2 from psrc,t−1 by using the graph filter transfer method
introduced in Section III-C. Consequently, the control laws
of the proposed Kalman filter is described as follows:
Preprocessing step

i. Estimating p2 from psrc,t−1 by using the graph filter
transfer method in Section III-C.

ii. Calculating the optimal transport map in (11) by using
the estimated p2. We denote the transport map as
Ttrg|src(x1).

Prediction step
i. Calculating the prior estimation of signals.

x̃2|1 = Ttrg|src(x̃1) +Bu1, (12a)

ii. Determining the prior error covariance matrix.

P2|1 = QP1Q
⊤ + σ2

vI, (12b)

iii. Deriving the Kalman gain.

K2|1 = P2|1C
⊤(CP2|1C

⊤ + σ2
wI)

−1, (12c)

Update step
i. Estimating the current signals using the Kalman gain.

x̃2 = x̃2|1 +K2|1(y2 −Cx̃2|1), (12d)



ii. Updating the posterior error covariance matrix.

P2 = (I−K2|1C)P2|1. (12e)

iii. Swapping src with trg and returning to the preprocess-
ing step with t← t+ 1.

In the initial estimation for each graph, P1 in (12b) is set to
P1 = δI, similar to the setting in Section III-A.

V. EXPERIMENT

In this section, we perform signal estimation experiments
for synthetic data.

1) Synthetic Graph Signals: We construct two different
random sensor (RS) graphs3 GA and GB with NA = 90 and
NB = 45. The period of CGWSS signals is set to P = 8
and their PSDs are given by four different low-pass filters
{pdom,p}p=0,...,P−1 as functions in Ldom:

[pdom,p]i =


1− λi/λmax (p = 0, 4),

exp(−λi/λmax) (p = 1, 5),

1/(1 + λi) (p = 2, 6),

cos(πλi/2λmax) (p = 3, 7).

(13)

Accordingly, we generate samples of the signals conforming
to N (1,Udomdiag(pdom,p)U

⊤
dom), where p = t(modP ) for t =

1, . . . , T . We denote the training and test datasets by Xtrain
dom ∈

RNdom×Ttrain and Xtest
dom ∈ RNdom×Ttest , consisting of Ttrain = 200

and Ttest = 40 samples, respectively.
Then, we consider a data update process for the sequential

signal estimation experiment. Let X(l)
dom,p ∈ RNdom×K be a data

slot at p, where K = Ttrain/P and l indicates the lth cycle,
i.e., it satisfies t = lP + p. We update the data slot at every
time instance in a warm-start manner:

X(l+1)
src,p =

Xtrain
src,p if l = 0,[
x̃trg,t,

[
X

(l)
src,p

]
:,1:K−1

]
otherwise,

(14)

where
[
X

(l)
src,p

]
:,1:K−1

denotes the submatrix of X
(l)
src,p whose

columns from 1 to K − 1. In (14), We divide Xtrain
dom into P

periods and set it as the initial value, Xtrain
dom,p.

2) Experimental Setup: The observation matrix C in (10b)
is set to a random sampling matrix with MA = 85 and MB =
43, respectively. For the initial estimation, we estimate psrc,0
and ptrg,1 (= p1) in (11), from the training data by using a
PSD estimation method [14], [22]. We set the scaling factor of
the initial error covariance δ = 1, and the initial estimation of
signal x̃1 =

[
Xtrain

trg,p

]
:1

in (12a). We use a proportional control
strategy for the control input [23]: B = I and u1 = η(x̃1 −
x̄trg,p), where η is a factor of proportionality and x̄trg,p is a
mean vector in the latest data slot. We empirically set η =
5.0× 10−2.

Since there is no prior work on the cooperative Kalman filter
to the best of our knowledge, we use the following well-known
methods as baseline methods.

3 Random sensor graphs are implemented by k nearest neighbor graphs whose
nodes are randomly distributed in 2-D space [0, 1]× [0, 1] (See [22]).

TABLE II
EXPERIMENTAL RESULTS ON SYNTHETIC DATASET

σw
Average MSE(10−2)

Proposed RRTK TGWF

0.05 0.33 0.92 2.38

0.10 1.00 1.31 2.94

0.15 2.26 2.34 4.29

Ridge regression with Tikhonov regularization: The first
baseline method is signal estimation based on Tikhonov
regularization (RRTK) [12]. By using the space model in
(10b), the estimated signal can be written as:

x̃RRTK
trg,t =arg min

xtrg,t

∥ytrg,t −Cxtrg,t∥22 + ζx⊤
trg,tLtrgxtrg,t

=(C⊤C+ ζLtrg)
−1C⊤ytrg,t,

(15)

where ζ is a parameter, which controls the intensity of
the regularization term and is set to ζ = 0.05.

Transferred graph Wiener filter: The Second one is signal
estimation based on a transferred graph Wiener filter
(TGWF) proposed in [17]. The estimated signal can be
written as:

x̃TGWF
trg,t = Hy + b, (16)

where H = ΣC⊤(CΣC⊤)−1, b = (I −HC)µ. The
covariance matrix Σ is calculated from the estimated PSD
ptrg,t (see Definition 2 and Section III-C).

Both of the baseline methods only use the space equation in
(10b). In contrast, the proposed method utilizes Kalman filter
derived from the state-space model.

The regularization term in (15) imposes the smoothness of
signals on the target graph and therefore RRTK does not rely
on GWSS assumptions. In contrast, TGWF assumes GWSS,
which requires the PSD for every time instance, as stated in
Sec. III-C. Therefore, in this experiment, TGWF estimates the
PSD using the method in [14] at each time instance and then
performs signal estimation for the target graph.

To perform the two baseline methods in our time-varying
setting, we repeat the baseline methods with alternately switch-
ing the source with the target at every time instance. We also
set σv = 0 in (10a) to conduct the experiments for a fair
comparison. We consider additive white Gaussian noise on
observations with three different standard deviations σw.

3) Results: We evaluate the estimation performance of the
proposed method with the MSE and compare it with the above
alternative methods. Table II summarizes the average MSE in
test datasets. We also visualize an example of absolute errors
between the original and estimated signals in Fig. 3. Fig. 4
plots MSEs over time.

In Table II, the proposed method outperforms alternative
methods for all σw. In Fig. 4, we observe that the proposed
method shows consistent estimation performance for all t,
while those of the other methods oscillate significantly over
time. This is because the proposed method can compensate
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Fig. 3. Signal estimation experiments for noisy graph signals on two different RS graphs with NA = 90, NB = 45 nodes at time t = 8, t = 7 within Ttest,
respectively. The color of a node represents the absolute error between original and estimated signals.

Fig. 4. Comparison of signal estimation MSEs for the RS graph (σw = 0.10).
The MSEs for each of the methods is plotted as a horizontal line.

its own estimation using signals on the previous time instance
and that on the different graph with similar statistics, while
other methods perform the estimation independently at all time
instances.

VI. CONCLUSION

In this paper, we propose a Kalman filter transfer method for
estimating time-varying signals between two different graphs
but having similar features. Initially, we assume that the time-
varying graph signals conform to CGWSS for both graphs in
our Kalman filter. We then formulate the control system based
on the state-space mode and optimal transport. To alternately
perform signal estimation over time in the source and target,
we transfer a set of parameters in the Kalman filter from the
source to the target. Our experiments demonstrate that the
proposed method effectively estimates the time-varying graph
signals.

REFERENCES

[1] C.-Y. Chong and S. P. Kumar, “Sensor networks: evolution, opportuni-
ties, and challenges,” Proc. IEEE, vol. 91, no. 8, pp. 1247–1256, 2003.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Comput. netw., vol. 38, no. 4, pp. 393–422,
2002.

[3] W.-H. Lee, S.-S. Tseng, J.-L. Shieh, and H.-H. Chen, “Discovering
traffic bottlenecks in an urban network by spatiotemporal data mining
on location-based services,” IEEE Trans. Intell. Transp. Syst., vol. 12,
no. 4, pp. 1047–1056, 2011.

[4] A. Martini, M. Troncossi, and A. Rivola, “Automatic leak detection in
buried plastic pipes of water supply networks by means of vibration
measurements,” Shock Vib., vol. 2015, no. 1, p. 165304, 2015.

[5] B. Kouvaritakis and M. Cannon, Model Predictive Control: Classical,
Robust and Stochastic. Springer, 2016.

[6] A. Mesbah, “Stochastic model predictive control: An overview and
perspectives for future research,” IEEE Control Syst. Mag., vol. 36, no. 6,
pp. 30–44, 2016.

[7] G. Sagi, N. Shlezinger, and T. Routtenberg, “Extended kalman filter for
graph signals in nonlinear dynamic systems,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP), pp. 1–5, IEEE, 2023.

[8] M. Ramezani-Mayiami and B. Beferull-Lozano, “Joint graph learning
and signal recovery via kalman filter for multivariate auto-regressive
processes,” in Proc. Eur. Signal Process. Conf. (EUSIPCO), pp. 907–
911, IEEE, 2018.

[9] C. Zhu, V. C. Leung, L. Shu, and E. C.-H. Ngai, “Green internet of
things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015.

[10] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, “Deep convolutional
transfer learning network: A new method for intelligent fault diagnosis
of machines with unlabeled data,” IEEE Trans. Ind. Electron., vol. 66,
no. 9, pp. 7316–7325, 2018.

[11] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.
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