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Abstract—Multimodal models such as GPT-4 and Claude 3
have shown remarkable performance with vision capabilities,
enabling exciting new applications with multimodal interactions.
With new opportunities, new security concerns come along.
Previous studies showed that attackers can force multimodal
models to generate unwanted output by manipulating image
modality. However, images manipulated by previous attacks are
noisy and do not work across different multimodal models. To
this end, we propose a new adversarial attack against multimodal
models that is stealthy and effective in attacking multiple models.
Specifically, we reinforce the previous common weakness attack
with multiple surrogate vision transformers to attain strength and
utilize an attention mask to focus on essential areas in the image.
By doing so, the proposed attack does not add noise to the whole
area of the image while maintaining attack strength. Experiment
results show that the proposed attack is stealthy (noise patterns
in manipulated images by the proposed method are invisible) and
can attack two open-source multimodal models, LLaVA 1.5 and
MiniGPT-4, in gray-box settings assuming surrogate models are
similar to the ones used by targeted victim multimodal models.

I. INTRODUCTION

In recent years, vision-language models (VLMs) have gar-
nered enormous attention and acclaim for their remarkable
versatility across a spectrum of tasks, ranging from Visual
Question Answering (VQA) [1], [2] to image captioning [3],
[4] and beyond [5], [6]. This surge in popularity stems from
their ability to seamlessly integrate information from diverse
modalities, offering unprecedented performance in understand-
ing and generating content. However, amidst the fervor sur-
rounding their capabilities, a pressing concern emerges, that
is, the vulnerability of these models to adversarial attacks.

In this paper, we delve into a concerning scenario where a
user encounters an image online (e.g., on social media) that
has been manipulated by a malicious actor and unknowingly
interacts with a VLM using the image. For example, a user can
ask a VLM about a food recipe by showing a food image, and
the VLM may output harmful/toxic content. The manipulated
image is a carefully crafted adversarial example where imper-
ceptible noise is injected to mislead VLMs like MiniGPT-4
[7]1 or LLaVA [8]. As the output of VLMs is compromised,
VLMs may potentially generate harmful content that will lead
to spreading misinformation or amplifying toxic narratives.
Consequently, safeguarding the integrity and trustworthiness of

Target Text: This little girl is taking tennis lessons to learn how to play.

r . [Can you describe the image? ]

Human
| | There is a person standing next to the animal,

holding its paw. The person has brown hair and is @
wearing a white shirt and black pants. The image  |MiniGpT-4
is likely a playful depiction of a child interacting

L]

’ [Can you describe the image? ]
Human

LLaVa 1.5

|| The image features a person holding a tennis ball
in their hand, with a tennis racket nearby. The
person is standing next to a large stuffed animal,
which appears to be a dog. [...]

Fig. 1. Example of adversarial example by the proposed attack that reflects
target text on LLaVa 1.5 and MiniGPT-4. The adversarial example is generated
with perturbation budget € of 4/255 under maximum norm £oo.

VLMs against such threats is imperative, not only to preserve
the reliability of VLMs but to also uphold the societal well-
being reliant upon their outputs.

Towards the robustness of VLMs, researchers have proposed
attacks such as AttackVLM [9] and the common weakness
attack (CWA) [10]. These previous attacks add adversarial
noise to the whole image. Therefore, the noise produced by
these attacks becomes visible as the strength of the attacks is
increased. In addition, AttackVLM utilizes only one surrogate
model and works only on one multimodal model. To this end,
we propose a new adversarial attack reinforcing CWA [10]
by drawing inspiration from the methodologies outlined for
AttackVLM [9]. An example of adversarial example by the
proposed attack on different VLMs are shown in Fig. 1. The
proposed attack leverages the attention flow of vision trans-
formers used in VLMs to achieve stealthiness while preserving
the efficacy of the attack. We make the following contributions
in this paper.

e« We propose a novel adversarial attack against VLMs

that exploits perturbed attention regions reinforced by



AttackVLM [9] and CWA [10] to achieve strength and
stealthiness. Consequently, the adversarial examples that
the proposed attack produces can fool multiple VLMs
(MiniGPT-4 [7] and LLaVA 1.5 [8]) under gray-box
settings.
« We conduct experiments to verify the effectiveness of the
proposed attack.
This paper aims to elucidate the inherent vulnerabilities shared
across multiple VLMs by synthesizing insights from diverse
attack methodologies, underscoring the urgency of fortifying
their defenses against adversarial manipulation.

II. RELATED WORK

In this section, we briefly review vision language models
(VLMs) and existing adversarial attacks on them.

A. Vison-Language Models (VLMs)

Multimodal models are current artificial intelligence (AI)
frontiers. VLMs are multimodal models that can process and
understand textual and visual information [1], [7], [8], [11],
[12]. Most of these models utilize a pre-trained large language
model (LLM) and a large vision encoder such as CLIP. During
training, the vision encoder remains fixed. Only a projection
layer or cross-attention that bridges vision and language is
trained. Among the many VLMs, we focus on LLaVA 1.5 [8]
and MiniGPT-4 [7] for their remarkable performance and open-
source nature to evaluate the proposed attack in this paper.

B. Adversarial Attacks on VLMs

Generally, adversarial examples are carefully perturbed input
data (usually imperceptible) to machine learning models that
cause the models to make erroneous predictions [13]-[15].
Adversarial example generation (adversarial attacks) can be
categorized into two major settings, white-box and black-
box, according to the knowledge of the targeted victim model
available to the attacker. The white-box threat model assumes
the attacker has full knowledge of the model, including its
weights and training data. In contrast, the attacker does not
know the model in black-box settings. When partial knowledge
of the model is available, adversarial example generation is
often categorized as gray-box instead of black-box. Depend-
ing on the attacker’s goal, adversarial attacks that generate
adversarial examples can also be classified as targeted or non-
targeted attacks. Targeted attacks force the model to output the
attacker’s intended output, and non-targeted attacks cause the
model to make erroneous predictions without specifications.

In the multimodal domain, researchers have also investigated
adversarial examples against VLMs. Nonetheless, compared
with adversarial examples in the unimodal domain, adversarial
examples against multimodal models are less explored. An
early work showed that multimodal attacks are stronger than
unimodal attacks in gray-box settings and demonstrated the
attacks against visual question answering (VQA) and image
captioning tasks [16]. Another work proposed an adversar-
ial attack that forces a generative model to produce toxic
and harmful outputs [17]. Similar to adversarial examples
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Fig. 2. Overview of proposed method.

for image classification models, this study demonstrated that
adversarial examples can be crafted against the OpenFlamingo
model [18]. More recent works include AttackVLM [9] that
introduces attacking strategies to VLMs, AttackBard [19] that
investigates the adversarial robustness of Google’s Bard, a mul-
timodal language model with image processing capabilities,
and the common weakness attack (CWA) [10], which is a
powerful transfer-based attack for various models.

In this paper, we focus on gray-box adversarial attacks
assuming that surrogate models are highly similar to those used
in victim multimodal models. Such gray-box settings are prac-
tical in real-world scenarios because open-source foundation
models are publicly available online. Specifically, we focus on
a transfer-based gray-box attack similar to CWA [10] against
two victim VLMs: LLaVA 1.5 [8] and MiniGPT-4 [7].

III. METHOD

The proposed attack is a targeted attack against VLMs.
Given a clean image Xq, € [0,1]°"*™ with channel ¢, height
h, and width w and a targeted text P, our goal is to create
an adversarial example x that forces a VLM py parameterized
by 6 that takes x and a query ¢ to output a response that
reflects the targeted text P (i.e., po(x,q) ~ P). For example,
q may be “describe the image” or “what is unusual about
the image” or any content-related question, and py outputs the
response related to P instead of the actual content of Xjy.
To achieve this, by taking inspiration from AttackVLM [9],
we first convert the targeted text P to a targeted image
X by utilizing existing text-to-image models such as Stable
Diffusion [20]. Then, we match the features of xs with those
of x as in AttackVLM, leveraging a common weakness attack
(CWA) with an attention mask for stealthiness. Fig. 2 depicts
an overview of the proposed attack.

There are three major components in the proposed attack:
image-image feature matching from AttackVLM [9], the com-
mon weakness attack (CWA) [10], and targeting important
regions in an image with an attention mask. Next, we pro-
vide some background on these components and present the
proposed attack.



A. Image-Image Feature Matching

Inspired by previous works, the authors of the paper on
AttackVLM [9] pointed out that VLMs might not be reliable
for optimizing similarity across different modalities. There-
fore, they introduced matching image-image similarity (same
modalities) by utilizing a public text-to-image model (e.g.,
Stable Diffusion [20]) to generate a targeted image first. Then,
they optimized the following objective,

arg max s(x)Ts(xtgt) 8.t [|Xem — X[|oo < €, (1
X

where s(-) is an image encoder (surrogate model). By doing
so, VLMs misinterpret adversarial images generated by At-
tackVLM as the targeted text. We adopt this objective as the
loss function in the proposed attack.

B. Common Weakness Attack

Informed by the previous work [21], the authors for the
common weakness attack (CWA) [10] indicate that optimizing
adversarial examples adheres to Empirical Risk Minimization
(ERM) principles, and a restricted number of training models
could result in significant generalization errors. Therefore, they
proposed optimizing the loss landscape’s flatness and the close-
ness between the local optima of different models to generate
more transferable adversarial examples. CWA also incorporates
the momentum iterative (MI) [22] attack and introduces MI-
CWA to improve the attack success rate further. We base the
proposed attack on the MI-CWA with two major modifications:
(1) a different loss function (image-image feature matching)
for targeting VLMs and (2) an attention mask for focusing on
important regions only to reduce the perturbation.

C. Attention Masks

Although CWA [10] is an effective state-of-the-art trans-
ferrable adversarial attack, it perturbs all pixels in an image,
resulting in visible noise artifacts. Therefore, we consider
focusing only on important regions of an image (i.e., atten-
tion) to reduce the impact of the noise added to adversarial
images. We explore two attention masks: rollout attention mask
(RAM) [23] and layer-wise relevance propagation attention
mask (LRP-AM) [24]. An example of the different attention
masks is shown in Fig. 3.

RAM [23]. Rollout attention was originally proposed to
quantify the attention flow in the Transformer for the natural
language processing domain. However, this technique was also
used for vision transformers (ViTs) to visualize attention in
images. Therefore, we utilize this attention mask to focus
on important regions of an image in the proposed attack.
Specifically, we use the image encoder components of ViT-
L/336 [25] and EVA-CLIP-giant/224 [26] to generate attention
masks for clean images. Then, we merge all masks from all
surrogate models by using the OR logic operation.

LRP-AM [24]. LRP is an explainability technique applicable
to deep neural networks. It functions by propagating prediction
backward through a neural network, using a predefined set of

(b) LRP-AM

(a) Clean (c) RAM

Fig. 3. Attention mask visualization. LRP-AM shows less noisy attention.

propagation rules designed for this purpose. As LRP provides
pixel-level relevance and highlights important regions that
influence VLMs, the mask produced by LRP (LRP-AM) offers
superior performance in our experiments. Unlike RAM, we use
ViT-L/336 [25] only to analyze each pixel’s relevance in clean
images directly.

D. Proposed Attack

We build the proposed attack on top of the MI-CWA [10].
Algorithm 1 details the procedure of the proposed attack.
First, we need to generate a targeted image Xy from a
given targeted text P using existing public text-to-image
models. We utilized Stable Diffusion [20] in our experiments.
Since we are attacking VLMs, we substitute the loss func-
tion in MI-CWA with image-image feature matching loss
(Eq. 1), as described in Section III-A. We generate a bi-
nary mask based on the attention mask described in Sec-
tion III-C to reduce the noise added to adversarial exam-
ples. We utilize two surrogate models in the proposed at-
tack (i.e., S = {ViT-L/336 [25], EVA-CLIP-giant/224 [26]}).
Given these two surrogate models with attention masks, we
run momentum-based optimization as in MI-CWA [10]. The
proposed attack can generate stealthier adversarial examples
against LLaVA 1.5 [8] and MiniGPT-4 [7] in transfer-based
gray-box settings.

IV. EXPERIMENTS

A. Settings

Datasets. We used two well-known datasets: a development
dataset used in a competition on adversarial attacks and de-
fense for NeurIPS 2017 (hereafter referred to as NIPS17) [27]
and ImageNet [28]. NIPS17 contains 1000 images that are
labelled with ImageNet labels. We utilized 200 images from
NIPS17. ImageNet contains 1.28 million images, and we used
1000 images from its validation set to represent a broad
range of visual content. We randomly sampled MS-COCO
captions [29] for targeted text descriptions, ensuring a diverse
set of image concepts encompassing a wide range of objects,
scenes, and activities.

Target Image Generation. We generated targeted images
from targeted texts by using Stable Diffusion [20] 2.1. We
used Pseudo Linear Multi-Step (PLMS) sampling for 50 steps
with a classifier-free guidance scale value of 7.5. The targeted
images had a dimension of 512 x 512.

Victim and Surrogate Models. Our experiments considered
two open-source VLMs, LLaVA 1.5 [8] and MiniGPT-4 [7],



Algorithm 1 Modified MI-CWA algorithm (Proposed)

Require: clean image X, targeted image X, perturbation
budget e, iterations 7', loss function L, surrogate models
S = {s;};_,. step sizes 3 and «

1: Initialize m < 0, inner momentum 1M < 0, Xg < Xcn
2: Generate a binary mask bm

3: foralli < 1,...,n do

4:  Calculate target features Fiy « 5;(Xg)

5: end for

6: forallt < 0,...,7—1 do

7 X? “— Xo

8: foralli<1,...,ndo

9 Calculate adversarlal features F{ e si(xi™h)
10: Calculate g < V, L(thgl ! Fa’d_V )

11: Update inner momentum by m <— u m+ Tols QHz
12: Update ] by x} < clip,, , (x4 3 m - bm)

13:  end for

14:  Calculate update g < =} — =y

15:  Update momentum m <— - m+g

16:  Update @;1 1 by 411 ¢ clip,,, (2 + a-sign(m))
17: end for

18: return xr

as victims for evaluation. We used two surrogate models, the
image encoder components of ViT-L/336 [25] and EVA-CLIP-
giant/224 [26], to generate attention masks and extract image
embeddings in the proposed attack.

Evaluation Method. Sentence T5 Large [30], a state-of-the-
art Sentence Transformer model, was chosen to evaluate the
semantic content of the captions. This selection leverages
Sentence TS5 Large’s ability to handle full-length descriptions,
capturing the nuances of the semantic relationships compared
with traditional text encoders with truncation limitations.

Implementation Details. We implemented the proposed attack
on top of the publicly available MI-CWA code'. We utilized
feature matching loss from the AttackVLM official code repos-
itory? and attention masks from the public code base’. The
parameters were an inner step size value of 250 and an outer
step size value of 2, and we ran the attack for 500 steps. The
perturbation budget ¢ had a value of 4/255 under maximum
norm {.,. For comparison, we ran AttackVLM image-image
feature matching (FM-ii) [9] with a step size of 1 and a
perturbation budget ¢ of 4/255 under ¢.,. We used the query
“Describe this image” when querying VLMs for both clean
and adversarial examples.
B. Results

To verify the effectiveness of the proposed attack, we
calculated the Sentence BERT score between the targeted texts
and generated texts mentioned in Section IV-A to measure
the attack strength. In addition, to assess visual quality while

1 https://github.com/huanranchen/Adversarial Attacks/
2https:// github.com/yunqing- me/Attack VLM
3 https://github.com/jacobgil/vit-explain
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Fig. 4. Examples of adversarial examples generated by AttackVLM [9],
CWA [10], and proposed attack with their corresponding noise maps.

TABLE I
SENTENCE BERT SCORE (1) BETWEEN TARGETED TEXTS AND VICTIM
MODEL GENERATED TEXTS. BEST RESULTS ARE IN BOLD, AND SECOND
BEST RESULTS ARE UNDERLINED.

NIPS17 (200 images) ImageNet (1000 images)

Attack LLaVA 1.5 MiniGPT-4  LLaVA 1.5 MiniGPT-4
Clean 0.66 0.67 0.66 0.67
CWA [10] 0.79 0.78 0.79 0.78
AttackVLM (FM-ii) [9] 0.80 0.67 0.79 0.67
Ours (w/ RAM) 0.73 0.72 0.72 0.71
Ours (w/ LRP-AM) 0.75 0.75 0.74 0.74

maintaining attack strength, we utilized three metrics: the
structural similarity index measure (SSIM), L2 distance, and
a state-of-the-art perceptual quality metric, TOPIQ [31]. We
also compared the performance of the proposed attack with
two state-of-the-art attacks against VLMs: CWA [10] and
AttackVLM (FM-ii) [9].

Sentence BERT Score. Table I summarizes the Sentence
BERT score for the two datasets: NIPS17 and ImageNet
(random 1000 validation images). The generated adversarial
examples were tested against the two VLMs: LLaVA 1.5 [§]
and MiniGPT-4 [7]. AttackVLM achieved the highest score
for LLaVA 1.5, but it did not work on MiniGPT-4. The reason
is that AttackVLM is designed to use one surrogate model.
In contrast, CWA and the proposed attack utilize multiple
surrogate models. Consequently, CWA and the proposed attack
could be applied to both VLMs. Although the proposed attack
did not achieve the highest score due to noise reduction, the
attack performance was comparable. Fig. 5 shows the output
of adversarial examples by victim VLM:s.

Visual Quality. Table II presents visual quality results for dif-
ferent metrics in comparison with the state-of-the-art methods.
As expected, the proposed method achieved the highest visual
quality performance across different metrics. The attention
masks used in the proposed attack effectively reduced noise
artifacts. Fig. 4 shows adversarial examples with their corre-
sponding noise maps by different methods. From the figure, ad-
versarial examples by the proposed attack contained less noise,
which was confirmed in an objective visual quality evaluation.
It is worth noting that the TOPIQ score for ImageNet (1000
images) was lower than that of NIPS17. One possibility is that
the size of ImageNet images varies, and we did not consider
the aspect ratio while resizing the images, which might have
affected the perceptual visual quality.
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Target Text: Two giraffes standing near each other in the zoo.

Target Text: There are flowered vases and framed pictures set against a wall
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Target Text: A man with a tennis racket is standing on a court.
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Fig. 5.

TABLE II
VISUAL QUALITY EVALUATION OF GENERATED ADVERSARIAL EXAMPLES.
BEST RESULTS ARE IN BOLD, AND SECOND BEST RESULTS ARE
UNDERLINED.

NIPS17 (200 images) ImageNet (1000 images)

Attack SSIM (1) L2 ()) TOPIQ (1) SSIM (1) L2(}) TOPIQ (1)
CWA [10] 079  17.22 0.65 079  19.29 0.35
AttackVLM (FM-ii) [9] 058  19.15 0.66 077 2212 0.36
Ours (w/ RAM) 0.93 9.5 071 091  10.39 0.38
Ours (w/ LRP-AM) 093 1047 0.76 092 1181 037

V. DISCUSSION

We demonstrated a transfer-based adversarial attack against
VLMs with comparable attack strength and less noise. Such
stealthier adversarial examples may be proliferated and dis-
tributed online by malicious actors. Honest users may feed
these adversarial examples to VLMs such as LLaVA 1.5 or
MiniGPT-4. As a result, VLMs may be compromised, poten-
tially generating harmful content, spreading misinformation, or
amplifying toxic narratives.

Responsible Artificial Intelligence (AI) Development. As
VLMs are still under development, paying attention to safety
early in development is indispensable. The ability to generate
high-quality adversarial examples emphasizes the importance
of responsible Al development. VLMs are increasingly inte-
grated into various applications, so it is crucial to consider the
potential for misuse. Our work highlights the need for robust
security measures and responsible development practices to en-
sure that VLMs are not weaponized to spread misinformation
or manipulate public discourse.

Limitations. While the proposed attack can generate finer
adversarial examples against VLMs, it still has limitations.
This paper evaluated the proposed attack against LLaVA 1.5
and MiniGPT-4. We shall investigate other VLMs for further
evaluation. In addition, the proposed attack in its current
form only deploys two surrogate models, so we shall further
investigate and explore more surrogate models to improve
transferability in our future work. We shall also conduct an
in-depth analysis of the relationship between surrogate models
and VLMs.

(b) Example 2

Ours

(c) Example 3

Responses of LLaVa 1.5 and MiniGPT-4 on clean images and adversarial examples by the proposed method, AttackVLM [9], and CWA [10].

VI. CONCLUSION

This paper proposes a transfer-based adversarial attack
against vision-language models (VLMs) using multiple surro-
gate models. Unlike the previous methods, the proposed attack
utilizes attention masks to reduce the noise added to adversarial
examples. Experiments confirmed that the proposed attack is
comparable to the previous attack methods in terms of attack
strength and is superior in terms of visual quality. We hope
that our work encourages model developers towards safe Al
system development.
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