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Abstract—Deconvolution-based speech dereverberation contin-
ues to present challenges due to the difficulties i n accurately 
acquiring Room Impulse Responses (RIRs) and the inherently 
ill-conditioned nature of deconvolution. Despite advancements in 
RIR measurement and estimation, substantial room for improve-
ment remains in addressing the latter challenge. This paper pro-
poses a novel prior-driven dereverberation framework utilizing 
Regularization by Denoising (RED) to incorporate data priors 
into the deconvolution process, thereby addressing this persistent 
challenge. Specifically, we formulate the dereverberation process 
via an optimization problem with the additional regularizer and 
the Half Quadratic Splitting (HQS) strategy is then utilized to 
solve the optimization problem. Experimental validation con-
ducted on both the RIR simulation platform pyroomacoustics and 
the realistic acoustics platform SoundSpaces demonstrates the 
efficacy of our framework, even in the presence of environmental 
noise and RIR errors.

Index Terms—Speech dereverberation, ill-conditioned decon-
volution, deep priors, Regularization by Denoising, SoundSpaces

I. INTRODUCTION
In enclosed spaces, speech signals propagate with inevitable 

energy attenuation and are subject to reflections o ff surfaces 
and objects, resulting in an acoustic phenomenon known
as reverberation. This phenomenon can significantly degrade 
speech quality and intelligibility. Moreover, reverberation may 
adversely impact the performance of Automatic Speech Recog-
nition (ASR) systems, particularly in scenarios compounded by 
additive noise. As a result, speech dereverberation technology 
has garnered considerable interest within the speech signal
processing community.

Reverberation is physically modeled by convolving an ane-
choic speech utterance with an acoustic path, naturally lead-
ing to the use of deconvolution strategies. However, speech 
dereverberation has historically faced two primary challenges. 
Firstly, in real-world settings, the accurate acquisition and
estimation of room impulse responses (RIRs), which is crucial 
for analyzing acoustic environments, present significant chal-
lenges [1], [2]. Secondly, even with available RIR data, the
deconvolution operation for speech dereverberation remains 
an ill-conditioned inverse problem [3], [4], rendering inverse
processing difficult, if not impossible. This difficulty is particu-
larly pronounced in the presence of unavoidable environmental
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noise and minor RIR perturbations, which can significantly
contribute to erroneous results. Recent advancements in the
utilization of data-driven and statistical methods for RIR mea-
surement and estimation [5]–[7] have contributed to progress in
addressing the first challenge. However, there has been limited,
if any, effort directed towards effectively tackling the second
challenge—the ill-conditioned problem associated with speech
deconvolution.

In fact, the ill-conditioned deconvolution problem encoun-
tered in speech dereverberation bears similarities to those en-
countered in image deconvolution/deblurring [8], which have
been successfully addressed through the significant utilization
of image priors. Among candidate strategies, the plug-and play
method [9]–[15] shows its superior effectiveness in image and
speech processing. This approach aims to incorporate data
priors into the optimization iterations via a deep denoising
algorithm, thereby facilitating the solution process of ill-
conditioned deconvolution problems.

Inspired by this advance, our work aims to introduce a
prior-driven deconvolution-based dereverberation framework
to more effectively address the ill-conditioned problem under
reverberant-noisy scenarios. Specifically, we formulate the
speech dereverberation process through deconvolution using
an optimization problem integrating an additional regularizer.
This regularizer is not explicitly handcrafted; instead, we
employ the Plug-and-Play (PnP) strategy, specifically the Reg-
ularization by Denoising (RED) strategy [16], to incorporate
deep priors extracted from data. Additionally, we introduce the
Half Quadratic Splitting (HQS) method to further solve the
optimization problem. Extensive experiments on the widely
employed RIR simulation platform, pyroomacoustics[17], and
the highly realistic acoustics platform, SoundSpaces [18], [19],
to evaluate the performance of the proposed framework.
Notation. Normal font letters x and X denote scalars, and
boldface small letters x denote column vectors. Boldface
capital letters X represent matrices. The operator (·)⊤ denote
matrix transpose and (·)∗ denote conjugate, and ⟨·⟩ represents
the inner product.

II. PROBLEM FORMULATION

We consider the scenario where a single-channel micro-
phone receives the reverberant speech interfered by the ad-
ditive noise. The captured signal y(t) can be modeled by the



following equation:

y(t) = h(t) ∗ s(t) + n(t) (1)

where t indexes discrete time and s(t) represents the clean
speech signal. h(t) represents the time-invariant RIR, charac-
terizing all reflections and attenuations along the propagation
path from the source to the microphone. n(t) represents the
additive noise, and ∗ denotes the convolution operation. To
facilitate the method presentation, (1) is often written in the
following form as

y = Hs+ n, (2)

where s and y denotes the vector forms for clean speech
and observed signals, and H is the convolutive matrix formed
according to h(t). Then the fidelity term of dereverberation
process can be formulated by an inverse problem such that

min
s

∥y −Hs∥2. (3)

Given (3) is inherently ill-conditioned, it is essential to incor-
porate the regularization term to stabilize the solution process
and enhance the quality of the solution of this inverse problem,
which can be written as

min
s

∥y −Hs∥2 +R(s) (4)

where R(s) represents the regularization term. Recently, con-
siderable effort has been invested in meticulously designing the
appropriate regularization term so as to integrate priors into the
optimization problem, such as the sparsity prior [20] and the
Complex Generalized Gaussian Prior [21]. Nevertheless, it is
non-trivial to handcraft such effective regularizer for (4) with
the efficient solution methodology.

III. THE PROPOSED FRAMEWORK
In this work, rather than elaborately handcrafting the regu-

larizer, we propose to directly derive priors from speech data
to facilitate the problem in (4). Specifically, we consider the
regularization in the form as

R(s) =
1

2

〈
s, s− f(s)

〉
, (5)

where f(·) denotes an off-the-shelf denoiser. This form,
called RED, measures the inner product between the desired
speech and its denoised residual [16]. Different from the
prototype PnP strategy, RED leverages a specific formulation
and demonstrates advantageous derivative characteristics under
mild assumptions. Integrating RED into (4), we can obtain the
problem formulated as

min
s

∥y −Hs∥2 + ρ

2
s⊤(s− f(s)) (6)

with ρ being the regularization parameter.
To solve the problem in (6), we initially employ the vari-

able splitting technique to introduce an auxiliary variable z,
leading to the following equivalent constrained optimization
formulation

min
s

∥y −Hs∥2 + ρ

2
z⊤(z− f(z))

s.t. z = s.
(7)
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Fig. 1. Block diagram of the proposed framework.

Subsequently, we tackle (7) via the HQS algorithm [22],
involving an additional quadratic penalty term

L(s, z) = ∥y −Hs∥2 + λ

2
∥s− z∥2 + ρ

2
z⊤(z− f(z)), (8)

where λ denotes the penalty parameter. The variables in
(8) can then be optimized through the following alternating
minimization problems with respect to x and z respectively,
with (·)(n) in the following content denoting the nth iteration.

1) Optimization with respect to s: The optimization of (8)
becomes:

s(n+1) = argmin
s

∥y −Hs∥2 + λ

2
∥s− z(n)∥2. (9)

Given the assumption that H is available, the closed-form
solution to (9) regarding s can be derived by

s(n+1) =
(
H⊤H+

λ

2
I
)−1(

H⊤y +
λ

2
z(n)

)
. (10)

2) Optimization with respect to z: The optimization prob-
lem (8) reduces to:

z(n+1) = argmin
z

λ

2

∥∥∥s(n+1) − z
∥∥∥2 + ρ

2
z⊤(z− f(z)) (11)

Setting the derivative of the above optimization w.r.t. z to zero,
it becomes feasible to directly minimize it through an iterative
scheme, leading to the following equation:

λ(z(n+1) − s(n+1)) + ρ(z(n+1) − f(z(n+1))) = 0. (12)

The solution to this problem can be achieved via the fixed-
point iteration:

λ(z(n+1,i) − s(n+1)) + ρ(z(n+1,i) − f(z(n+1,i))) = 0, (13)



leading to

z(n+1,i) =
λ

λ+ ρ
s(n+1,i) +

ρ

λ+ ρ
f(z(n+1,i)). (14)

For simplification, this can be rewritten as:

z(n+1,i) = µs(n+1,i) + (1− µ)f(z(n+1,i)), (15)

with µ = λ
λ+ρ and the inner iteration i = 1, · · · , I , where µ

serves as a balance parameter between the estimate provided
by s(n+1) and the denoiser f(z).

The overall algorithm is illustrated in Fig. 1, where variables
s and z are updated iteratively until convergence.
Remark 1: Though mathematically easy to follow, H⊤H
in matrix form results in inefficient computational processes.
Computing in frequency domain presents to be more effective.
In the frequency domain, the signal model in (1) writes

Y (f) = H(f)S(f) +N(f) (16)

with f indicating the frequency bin, where Y (f), H(f), S(f)
and N(f) are the counterparts of y(t), h(t), s(t) and n(t) in
the frequency domain respectively. This way, the solution w.r.t.
S(f) in the frequency domain is given by:

S(n+1)(f)=
(
|H(f)|2 + λ

2

)−1(
H∗(f)Y (f) +

λ

2
Z(n)(f)

)
,

(17)
which effectively reduces the computational burden.
Remark 2: Within the proposed framework, empirical evi-
dence suggests that the adjustment of dynamic parameters can
enhance the overall performance. Specifically, we implement
dynamical values λ and µ, which are progressively increased
from an initial value with the predefined step size.

IV. EXPERIMENTS

In this section, we first introduce the simulation environ-
ments, followed by the details on the experimental settings,
and finally discuss the results in several respects.

A. Experimental environments

Simulated scenarios based on pyroomacoustics: In the
experiment, we simulated a scenario within a room configured
to the dimension of 5 meters (m) × 4 m × 6 m, where a
single microphone is placed at a randomly chosen position.
Clean utterances, randomly selected from the Voice Bank
corpus [23], were convolved with the RIRs generated via
pyroomacoustics [17] to synthesize reverberant speech, where
the reverberation times (T60) were set to 190 millisecond (ms),
430 ms and 890 ms respectively. To test the method under
varying levels of the additive noise, we considered white
Gaussian noise (WGN) and added it to the reverberant speech
with the signal-to-ratios (SNRs) setting to 0 dB, 10 dB, and
20 dB respectively.

Moreover, it is inevitable that various types of errors will
manifest in the estimation of RIR, it is thus necessary to assess
the efficacy of the proposed method under such conditions
of uncertainty. Specifically, to simulate the scenario of RIR
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Source.

Fig. 2. An example of the experimental scenes simulated on SoundSpaces,
showing positions of source and microphone. The red dot indicates the
reference position of the sound source, and the source moves in the directions
of the bidirectional arrow.

estimation errors, the accurate RIR (h(t)) generated by py-
roomacoustics was replaced with an approximate representa-
tion, denoted as h̃(t), given by

h̃(t) = h(t) + (α|h(t)|) z(t). (18)

The term (α|h(t)|)z(t) introduces a magnitude related per-
turbation to h(t), with α a scaling constant z(t) a random
error [24].
Simulated scenarios based on SoundSpaces: To assess the
method in real-world scenarios with more realistic RIR error,
we applied SoundSpaces [18], [19], a platform developed by
Meta, to simulate another experimental environment. Due to
the capability of SoundSpaces to closely mimic real world
acoustic environments, it could precisely simulate the sound
propagation and reflection across diverse environments, in-
cluding reverberation and attenuation within rooms, thereby
providing a practical and highly realistic testing ground. In
addition, SoundSpaces enables the insertion of arbitrary sound
sources across various publicly available 3D environments.
Therefore, we could simulate the close-to-real-world sce-
nario within closed rooms selected from the Matterport3D
dataset [25], where the initial 3-dimensional coordinates of
the microphone and source were randomly generated to set
the reference position, thereby measuring the exact RIRs.

For this scenario, we also considered to establish the condi-
tion of RIR estimation error: First, we set a reference point of
source (as mentioned before), serving as the focal point for all
source movements. Then, we move the source along a random
direction aligned with a straight line extending in both direc-
tions of the bidirectional arrow (as indicated by bidirectional
arrow in Fig. 2). At each new position reached with a step size
of 0.1 m, an RIR measurement was conducted. Afterwards,
considering the scenario of reverberation with noise, clean
speech signals were convolved with these measured RIRs,
followed by the addition of WGN at SNR of 20 dB. During the
evaluation, We employed the RIR corresponding to the focal
point as H̃, at each relocated position to derive (10) within the
proposed framework.



TABLE I
THE RESULTS OF ALL COMPARISON METHODS IN THE SIMULATED SCENARIO AT DIFFERENT SNRS WITH VARIOUS T60 . THE TERM OF ITERATION

(ITER .) DENOTES THE QUANTITY OF ITERATIONS REQUIRED FOR THE METHOD TO ACHIEVE CONVERGENCE. THE BEST RESULTS ARE IN BOLD.

T60 → 190 ms 430 ms 890 ms

SNR Error(α) Methods↓ STOI PESQ F-SNR Iter. STOI PESQ F-SNR Iter. STOI PESQ F-SNR Iter.
(dB) (%) ↑ ↑ (dB)↑ ↓ ↑ ↑ (dB)↑ ↓ ↑ ↑ (dB)↑ ↓

0 dB 0%

Observed 0.631 1.035 3.772 - 0.548 1.028 3.482 - 0.554 1.048 3.480 -
JE 0.752 1.074 5.965 81 0.634 1.042 3.400 250 0.728 1.099 6.052 222

Proposed-s 0.763 1.099 6.318 84 0.648 1.039 3.996 238 0.755 1.156 7.368 270
Proposed-d 0.821 1.291 9.737 35 0.769 1.190 7.349 38 0.784 1.332 8.782 40

10 dB 0%

Observed 0.718 1.078 5.721 - 0.607 1.034 4.911 - 0.611 1.100 4.496 -
JE 0.862 1.625 10.636 36 0.801 1.154 7.250 105 0.827 1.698 10.796 124

Proposed-s 0.868 1.683 11.065 36 0.811 1.208 8.061 112 0.828 1.721 11.869 103
Proposed-d 0.881 1.868 11.896 36 0.836 1.368 10.116 32 0.848 1.761 11.994 36

20 dB
0%

Observed 0.772 1.313 7.263 - 0.659 1.095 6.205 - 0.635 1.209 5.149 -
JE-0 0.897 2.104 11.392 9 0.879 1.902 12.321 40 0.873 2.109 13.483 5

Proposed-s 0.901 2.206 11.430 10 0.888 2.049 12.932 36 0.881 2.482 14.962 24
Proposed-d 0.900 2.266 11.464 10 0.888 2.118 13.009 36 0.883 2.644 15.489 8

15% JE 0.891 2.033 11.050 7 0.882 1.774 11.050 44 0.862 1.887 12.010 43
Proposed-d 0.896 2.188 11.004 9 0.888 2.068 11.759 36 0.876 2.229 12.455 8

B. Experimental settings

Deep prior construction: Benefiting from the flexibility of the
proposed framework, it permits the integration of any denoiser
to incorporate deep speech priors. Therefore, we directly
utilized a pre-trained denoiser, known as speech enhancement
generative adversarial network (SEGAN) [26], to focus on the
scope of this work. This denoiser, which is developed in an
end-to-end manner within an adversarial framework, has been
trained on an extensive noisy speech dataset, thereby deemed
effective for speech denoising in complex noisy scenarios.
Method comparison and evaluation: For the method com-
parison, here we consider the joint enhancement frame-
work [24] (denoted by JE), which utilizes the PnP strategy to
simultaneously execute dereverberation and denoising within a
unified framework. Furthermore, within the proposed method,
different strategies for parameter selection are evaluated, in-
cluding the static strategy (denoted by Proposed-s) and the
dynamic strategy (denoted by Proposed-d).

To quantify the experimental results, we utilize the ob-
jective metrics including short-time objective intelligibility
measure (STOI)[27], perceptual evaluation of speech qual-
ity (PESQ)[28] and frequency weighted segmental SNR (F-
SNR)[29], to evaluate speech intelligibility and quality. Beside,
the Word Error Rate (WER) is also employed to verify
the influence of the proposed method on the backend ASR
system, which was facilitated through the SpeechRecognition
library[30].
Implementation details: Concerning the parameter settings
within the framework, λ is set to 2.2 and µ is set to 0.28. For
Proposed-s, the parameter settings remain static throughout
the iterations. Conversely, for Proposed-d, these settings
gradually increase from their respective base values with the
step sizes of 0.28 for λ and 0.015 for µ. For all the above
scenarios, the test speech signals are sampled at 16 kHz.
Specifically, to simulate the scenario of RIR estimation er-
rors, the accurate RIR h(t) generated by pyroomacoustics is
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Fig. 3. Spectograms of observed (top left), clean (top right), JE (Bottom
Left) and the proposed method (bottom right) in the simulated scenario.

replaced with an approximate representation h̃(t), perturbated
by (18), where the scaling constant α is set from 0 to 0.5 (0% to
50%), and the random error z(t) is modeled using a Gaussian
distribution with zero mean and unit variance z(t) ∼ N (0, 1).
When performing the calculation of the “Optimization with
respect to s” step in the frequency domain for more efficient
computing, we utilize Fast Fourier Transform (FFT) with
the following parameter settings: To capture the short-time
characteristics of the speech signal, the frame length is set
to 25 ms (400 samples at a sampling rate of 16 kHz) with
a frame shift of 10 ms (160 samples) with Hamming window
applied. The FFT length is chosen to be 512, which is a power
of two and greater than the frame length, ensuring efficient
computation. To ensure smooth transitions between frames, a
50% overlap is used, meaning each frame overlaps with the
previous frame by 200 samples.

C. Results discussion

From Table I, we find that the proposed method surpasses
JE across all the scenarios, particularly under the condition



TABLE II
THE WER RESULTS OF PROPOSED-D AND JE IN THE SIMULATED

SCENARIO AT SNR=20 DB.

T60→ 190 ms 430 ms 890 ms

Error (%) Methods↓ WER (%) ↓

0% JE 27 25 41
25% JE 30 29 48
0% Proposed-d 24 20 32
25% Proposed-d 24 25 32

STOI PESQ fwSNRseg

Distance difference Distance difference Distance difference

Observed
Enhanced

Observed
Enhanced

Observed
Enhanced

Fig. 4. Trend of F-SNR (left), PESQ (middle) and STOI (right) considering
the RIR measurement errors on the SoundSpaces Platform.

characterized by high T60 and intense WGN. Additionally,
the efficacy of the dynamic parameter adjustment strategy is
validated, as Proposed-d yields almost all the best results.
Meanwhile, it is evident from the values of Iter. that under
a consistent convergence criterion, the proposed framework
converges more rapidly than the comparison methods. More-
over, for visual comparison, we take the scenario of SNR
= 20 dB and T60 = 430 ms as an example, and illustrate
the spectrograms in Fig. 3. From the spectrograms, we can
conclude that the inclusion of the RED strategy provides
valuable priors for the deconvolution task, which helps to better
preserve the naturalness and clarity of the speech signal during
the dereverberation process.

In order to explore the impact of dereverberation methods on
the performance of back-end ASR, we in addition present the
WER results of JE and Proposed-d in Table II. From the
findings, it is apparent that the integration of Proposed-d
exhibits a notable enhancement in the efficacy of the ASR
system, regardless of the presence or absence of errors in RIR
estimation.

Fig. 4 presents the results under the scenarios simulated
based on SoundSpaces. From these results, we can see that
if the RIR measured at alternative locations is considered as
the RIR estimation at the current location, which corresponds
to the scenarios of RIR estimation with errors, our proposed
framework still exhibits a capacity for dereverberation to a
certain extent.

V. CONCLUSION

In this paper, we proposed a prior-driven dereverbera-
tion framework, providing an effective solution to the ill-
conditioned deconvolution problem. Experiments were con-
ducted on two respective platforms, including SoundSpaces,
a realistic acoustic simulation platform. The results demon-
strate that our framework is capable of solving ill-conditioned
problem and boosting the speech dereverberation performance,

even in the presence of environmental noise and RIR errors.
Future work will focus on updating RIR estimates during
iterations to further improve the performance.
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