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Abstract—One of the vulnerabilities in discriminators for AI-
generated images is that the classification accuracy degrades when
dealing with images generated using methods other than those
they were trained on. As a countermeasure, in this study, we
propose an image generation method estimator. The process of
discrimination involves the input of an image to the estimator,
which estimates the method used for its generation. Subsequently,
a specialized fake image discriminator tailored to the estimated
image generation method is used to identify the authenticity of
the image. The activation functions are also considered according
to the estimation results and analyzed for those discriminators.
Discrimination scores are weighted and aggregated according to
the estimation results, and the final decision is output. Our experi-
mental results showed that the estimator achieved a classification
accuracy of approximately 90% for 18 types of AI-generated
images. Furthermore, by selecting the top two estimations in
order of confidence, the accuracy increased to around 98%.

I. INTRODUCTION

Since the introduction of Generative Adversarial Networks
(GANs) in 2014 [1], numerous image generators have been
developed [2]–[6], generating images so sophisticated that they
are indistinguishable from those created by humans. Unlike the
GAN-based models, diffusion models such as Stable Diffusion
and Midjourney use forward and reverse processes to generate
a composite image [7].

As a forensic technique, it has been studied to assess
whether a given content is naturally captured by a camera or
artificially produced. At the early stage of image generators,
some artifacts are observed by human eyes if we carefully
observe the synthesized images. With the development of
machine learning techniques, such obvious artifacts no longer
appear. CNN-based detectors have been studied as alternatives
to the human eye, and quantitative and qualitative evaluations
have been conducted on various types of datasets.

However, it raises a new challenge for the practical appli-
cation of forensic techniques for analyzing artifacts, such that
discrepancies between training and test data lead to poor de-
tector performance. In the case of a deepfake detector, several
detection methods achieve high test accuracy on one dataset,
but show low detection accuracy on datasets that differ from
the training phase. If the detector recognizes artifacts outside
the training data set, the performance in terms of classification

accuracy significantly degrades. It is thus necessary to evaluate
the generalization of the classifiers.

A weakness of the currently available fake image detectors is
that their classification accuracy drops significantly for the im-
ages generated using methods different from those encountered
during their training. Mismatches in the training and testing
phases are considerably difficult problems when discriminating
against fake images. On the other hand, if a CNN-based
detector is trained with various images generated by several
generation methods, the classification accuracy becomes lower.

This study proposes a new universal fake image detection
framework that achieves high classification accuracy, even
with input generated by a method different from the training
datasets. One of the advantages is the low computational cost
of retraining new image generation methods that may emerge
in the future. We introduce the idea of an “Estimator” that
classifies an input image into groups according to how they
were generated. The proposed framework consists of two main
steps. First, an estimate is made of the input image on how the
image was generated. Then, the image is classified as fake or
real using each discriminator specialized for the corresponding
generation method.

The discriminator dedicated to identifying specific still
image generators is not limited to only the method with the
highest confidence output by the Estimator but utilizes multi-
ple discriminators based on activation output. This approach
compensates for any misestimations made by the Estimator
at the discrimination step. For such activation, three different
algorithms are considered in this study. The first method is
“Static,” which focuses on each value of the confidence vector
output by the Estimator. The second method, ”Top-β,” focuses
on the number of special discriminators used for each input
image. The third method is “Dynamic,” which focuses on
the sum of the values in the confidence vector output by the
Estimator for the image generation method used for activation.

In the experiments, we design the estimator using a fine-
tuned model of XceptionNet [8] pre-trained on ImageNet
[9]. We validate the proposed estimator’s ability to infer the
generation method from a given image by employing 18
image generation methods, including GAN [1] models such as



StyleGAN [6] and GigaGAN [10], as well as diffusion models
[11] such as Stable Diffusion [12] and DALL-E [13].

II. RELATED WORKS

In this section, we provide an overview of image generation
techniques relevant to this study and review the difficulty of
the forensics study.

A. Generative Adversarial Networks
Generative Adversarial Networks (GANs) [1] involve two

networks: the Generator, which generates images from random
noise, and the Discriminator, which distinguishes between
generated images and original images. The Generator aims
to generate images that can deceive the Discriminator into
classifying them as genuine images rather than fake ones.
On the other hand, the Discriminator strives to minimize a
loss function that enables it to accurately classify the images
generated by the Generator as fake images.

1) StyleGAN: In StyleGAN [6], the structure of the Gener-
ator is modified. In traditional GANs, the Generator produces
images from random noise. In StyleGAN, the input layer
is omitted, and generation starts from pre-trained constants.
Noise images are supplied to each synthesis network’s layer.
After each convolution in the Generator, normalization is
performed using Adaptive Instance Normalization (AdaIN)
[14]. Similar to PGGAN, StyleGAN also utilizes Progressive
Growing for training.

StyleGAN has undergone various improvements over time.
To eliminate the droplet-like noise observed in generated
images, StyleGAN2 [15] was introduced, which utilizes weight
demodulation with standard deviation-based normalization in-
stead of AdaIN [14]. Lastly, there is StyleGAN3 [16], which
ensures that all layers of the Generator are equivariant with
respect to continuous signals, intending to generate images
even more natural than those produced by StyleGAN2.

B. Latent Diffusion Models
A diffusion model [11] defines a diffusion process by simply

adding easily manageable noise to input data and learning
the data distribution by reversing the diffusion process over
a finite time. Diffusion models using denoising autoencoders
can generate highly sophisticated images. However, optimizing
such a powerful diffusion model requires an enormous amount
of time and resources. Therefore, a method called Latent Dif-
fusion Models (LDM) was proposed in [17] to achieve learning
of diffusion models under limited computational resources.
Numerous improved models of LDMs [18]–[21] have been
published, including Stable Diffusion [12], which reduces com-
putational time and resources by separating the compression
learning and generative learning phases. Other models include
DALL-E 2 [13], which combines the multimodal model CLIP
[22] with the diffusion model GLIDE [23].

C. Mismatch at Training and Testing
The study in [24] examined the effectiveness of various

feature extraction algorithms in four automated facial manip-
ulation techniques (Deepfakes, Face2Face, FaceSwap, Natu-
ralTextures) [25]. High recognition accuracy is demonstrated

Fig. 1. Overview of proposed detector composed of the estimator of
generation method and classifier.

when the training and testing methods are identical. However,
when different methods are used for training and testing, the
recognition accuracy decreases significantly.

Furthermore, the approach in [26] involves using a classifier
trained using an enhanced spectrum and an RGB image-trained
detector for assessment. When trained using images generated
by the Progressive Growing of GANs (PGGAN), this method
exhibits high recognition accuracy across multiple models with
network structures similar to PGGAN. Data augmentation is
introduced in [27], [28] to overcome dataset bias. However,
the empirically designed augmentation strategies have certain
limitations due to the poor generalizations.

III. PROPOSED METHOD

In this section, we propose an architecture for assessing im-
ages generated by image-generating AI systems. It comprises
an Estimator and a Classifier. In the proposed method, we
employ an estimation model Est(·) and a set of discriminator
models (D1(·), D2(·) . . . , Dn(·)), and the overall process is
illustrated in Fig.1.

The Estimator assesses the method used to generate the
input image. The estimated generation method corresponds to
a fake image discriminator that evaluates whether the image is
real or fake. In the classifier process, the estimated generation
methods are not limited to the one with the highest output
probability; instead, multiple top-ranked methods are selected
and provided to the discriminator for assessment.

A. Estimator of Generation Method

An input image I is assessed using an estimation model
Est(·) to determine which generation method was applied to
produce it. The model is trained using images generated by n
different generation methods and outputs a confidence vector
p of length n, where the i-th element is the probability that
the input image was generated by the i-th generation method:

p = (p1, . . . , pn) = Est(I), (1)

where
∑

pi = 1.
In this study, we employ fine-tuning on XceptionNet, which

has been pre-trained on ImageNet, to generate the estimation
model Est(·). In fine-tuning, the fully connected layer is
removed and a newly designed fully connected layer is added
along with a dropout layer and dense connections to output
the confidence vector p. As the default input image size for
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TABLE I
HYPER-PARAMETERS IN THE PROPOSED ACTIVATION FUNCTIONS.

Method Hyper-parameter
Static T
Top-β β ∈ Zn

Dynamic 0 < γ ≤ 1

XceptionNet is 299 × 299, respectively, an input image I is
resized to adjust these dimensions before being processed. It is
worth mentioning that the fine-tuning models employed in this
study can be replaced with a sophisticated model to improve
performance.

When the input image is not produced by a generation
method but is actually a captured photograph, the expected
outcome for the confidence outputs is random. However, it
does not affect the final decision due to the use of the classifier
mentioned in the following section.

B. Classifier with Some Discriminators

First, we apply an activation function Act(·) to the confi-
dence vector p. It selects the discriminator Di(·) corresponding
to each image generation method based on p. According to a
threshold T , (0 < T ≤ 1) determined in Act(·), we calculate
the binary vector α:

α = (α1, . . . , αn) = Act(p) (2)

where

αi =

{
1 if pi ≥ T
0 otherwise (3)

Hence, the selection is not limited to one specific discriminator,
but a group of discriminators. The details of the activation
function are explained in the following section.

Next, for 1 ≤ i ≤ n, the binary classification result bi ∈
{0, 1} is calculated by using the i-th discriminator Di(·):

bi = αiDi(I) (4)

Note that bi = 1 implies that I is judged as fake by the
discriminator Di(·). If the input image is actually a real
photograph, the result is expected to be bi = 0 for all
discriminators, hence, the “error” at the Estimator does not
matter during the final decision.

At the final decision, the final probability P is calculated
by aggregating the binary results b with the confidence vector
p as follows:

P =

∑n
i=1 bipi∑n
i=1 αipi

. (5)

If P > 0.5, the input image I is judged fake; otherwise real.
It is worth mentioning that each discriminator Di(·) can

be selected from conventional works, considering both the
classification accuracy and computational complexity.

C. Activation

In this study, the following three methods for setting the
threshold T are devised and compared. Table I enumerates the
hyper-parameters utilized in these methods.

TABLE II
ACCURACY OF ESTIMATOR’S TOP-RANKED CONFIDENCE LEVELS.

Estimator
Top1 Accuracy 0.900
Top2 Accuracy 0.982
Top3 Accuracy 0.994

1) Static Method: It is a simple method that employs a
pre-determined threshold T without considering the confidence
vector p.

2) Top-β Method: In this method, the elements with the
top β confidence values pi are activated. Here β is a pre-
determined parameter. At first, the confidence vector p is
sorted in descending order:

p̄ = (p̄1, . . . , p̄n) = sort(p), (6)

where sort(·) denotes sorting the elements in descending order.
Then, the threshold is selected as the β-th elements from p̄.

T = p̄β (7)

3) Dynamic Method: Different from the Top-β technique,
the dynamic method determines β according to the sum of
their confidence values.

First, we calculate the sorted confidence vector p̄. Then, the
sum of top confidence values is calculated, and β is determined
for a pre-determined parameter γ:

β = arg min
i

(∑
i

p̄i ≥ γ

)
(8)

Finally, the threshold T is selected using Eq.(7).

IV. EXPERIMENTS

In our experimental evaluation, we measure the classification
accuracy of the estimator designed by fine-tuning Xception-
Net. We used datasets consisting of images generated by 18
different image generation methods and real-world images.

We conducted two experiments. First, we investigated the
accuracy of the Estimator. Second, we examined the overall
accuracy of the proposed method in the presence of unknown
image generators.

A. Estimation of Image Generation Method
In this experiment, we used 24-bit RGB color images

generated by n = 18 different image generation methods. The
resolution of generated images can be 512× 512, 768× 768,
or 1024× 1024 pixels, which are larger than the input size of
XceptionNet (299 × 299 pixels). Therefore, each image was
cut into 9 blocks of 299×299 pixels chosen from the top left,
top center, top right, middle left, middle center, middle right,
bottom left, bottom center, and bottom right of the image. We
use 63,000 cropped blocks from 7,000 images for training,
while 18,000 blocks from 2,000 images are used for testing.
The estimated generation method was determined by averaging
the confidence scores from the 9 cropped blocks.

Figure 2 describes a confusion matrix for identifying image
generation methods. It arranges actual generation method on
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Fig. 2. Confusion matrix for estimator

the vertical axis and estimated generators on the horizontal
axis, showing the accuracy with which the Estimator cor-
rectly classified image generation method output by each label
(2, 000 images per label). The classification accuracy was
approximately 90%. In the case of two versions of stable
diffusion method, it occurs misclassification due to the similar
characteristics appeared in the generated images. In the second
step of the proposed method, such misclassification is not a
problem because the corresponding discriminator Di(·) can
output binary classification results with high accuracy. Addi-
tionally, as shown in Table II, the “Top2 Accuracy” was around
98%, indicating that the estimator accurately classified the
image generation method within the Top2 class. Based on the
above results, the Estimator demonstrates high classification
accuracy, allowing the proposed method to achieve high ac-
curacy comparable to using all classifiers specialized for each
image generation method, while incurring lower computational
costs.

B. Comparison of Activation Methods

If an image generated by an unknown image generation
method, the confidence vector p calculated by Estimator is
expected to vary across n classes and each discriminator Di(·)
may not accurately classify whether it is generated. To simulate
such a situation, we train the Estimator excluding one specified
image generation method and measure the performance of the
proposed method for the images generated by the excluded
image generation method.

In this experiment, we compared three activation methods

Fig. 3. Comparison of confidence value as outputs of two discriminators
“Dreamlike” and “Glide”.

Fig. 4. Comparison of three activation methods in terms of true positive
probability by using images generated by “Glide”.

for images generated by 18 different image generation methods
and real photographs. We train each discriminator Di(·),
which is a fine-tuned version of the XceptionNet, using the
images generated by each image generation method. These
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Fig. 5. Comparison of three activation methods in terms of classification
accuracy in the case of “Glide”.

discriminators were designed to perform binary classification
between images generated by each image generation method
and real photographs from the FFHQ dataset [29]. For training,
we used 63,000 cropped images of size 299 × 299 pixels for
each label, using the same method as the Estimator. Note that,
when activation was not used, the accuracy was approximately
99%.

First, as a preliminary experiment, we investigated how
confident each discriminator, specialized in a particular image
generation method, was when classifying images generated
by other methods. The investigation was conducted using
2000 images for each method. Due to the page limitation,
we only show the results of two image generation methods
“Dreamlike1” and “Glide2” in Fig. 3. It is observed that the
classification accuracy is not necessarily low for images gener-
ated by unknown image generation methods. A discriminator
specialized for one image generation method can be said to
be compatible to a certain extent with other image generation
methods in terms of classification accuracy.

In both cases, the Estimator is trained by excluding a specific
image generation method and outputs p with n = 17. In the
case of ”Dreamlike,” some mismatched discriminators show
similar classification accuracy to the matched discriminators.
Therefore, the overall accuracy is close to the matched (Dream-
like) case, and there was no difference in accuracy due to the
activation methods.

On the other hand, in the case of ”Glide,” the classification
accuracy of some top discriminators tends to be lower than
that of the matched discriminator. Therefore, the selection of
a good Di(·) plays an important role, which is controlled
by Act(p). The true positive probability using 1000 images
generated by ”Glide” is shown in Fig. 4, and the classification
accuracy using 1000 real images and 1000 images generated by
”Glide” is shown in Fig. 5. For images generated by ”Glide,”
the Top-β method specifies a fixed number of Di(·), thus
ignoring the information extracted by the Estimator. While
the Static method does not consider the choice of threshold
T , the Dynamic method provides flexibility in selecting the
threshold. This improves the stability of predictions and the

1https://huggingface.co/dreamlike-art/dreamlike-diffusion-1.0
2https://github.com/openai/glide-text2im

appropriateness of the number of activated discriminators in
the proposed method. On the other hand, for real photographs,
it is found that the Dynamic method needs to activate relatively
more classifiers compared to the other two methods.

Experimental results show that when a particular discrimina-
tor, such as “Dreamlike”, exhibits high classification accuracy,
there is little need for Activation. This is because the mis-
classification correction capability provided by Activation is
well complemented by other discriminators and only results
in additional computational costs. On the other hand, when
the classification accuracy of some of the top discriminators
is lower than that of the matched discriminators, as seen in
“Glide”, Activation has been confirmed to be effective in
improving classification accuracy and can be used in such a
situation.

Based on the results, the Static method is considered the
most suitable among the three proposed methods for both
real photographs and generated images. However, as the Dy-
namic method shows better accuracy for generated images,
developing more flexible algorithms is necessary. In particular,
it is important to optimize the balance between computa-
tional efficiency and accuracy by more effectively utilizing
the confidence information obtained from the Estimator to
improve adaptability to unknown image generation methods.
Additionally, the real photograph data used may be biased, so
further experiments with more diverse, raw data are required
to improve the reproducibility of the results.

V. CONCLUSIONS

In this paper, we proposed a two-stage classification archi-
tecture for detecting synthesized images created by a gener-
ative AI model. An estimator was introduced to improve the
classification accuracy of a detector for synthesized images.
We envision a workflow that estimates several possible image
generation methods from a suspicious image and aggregates
the binary classification results obtained from each discrimi-
nator to determine whether the image is a fake image or not.

In the experiment, we designed an estimator using a model
that is a fine-tuned version of the XceptionNet. The use of
other models and tuning the parameters to further improve
accuracy is a future task. In this experiment, the estimator was
also classified by image generation method. However, in the
future, by integrating image generation methods with similar
features, the estimator aims to reduce the number of classes
to classify and at the same time improve the accuracy.
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