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Abstract—L2 pronunciation is shaped by the interaction of two 
sound systems, which makes their identity more complex than a 
single phoneme category. The non-categorical nature demands 
assessment at a level finer than phonemes. As the granular 
requirement is highly labor-intensive, unsupervised methods 
emerged. Nevertheless, they either reverted to categorical 
diagnosis or used the supervised and phoneme-prescribed feature 
phonetic posterior-gram (PPG). Alternatively, this study adopts 
the unprescribed and unsupervised feature, the Wav2Vec2.0 code 
vector, to locate sub-phonemic variations. We first verify the 
features’ L2 discernability by comparing their frequency across 
single-speaker data of L1 (CMU ARCTIC) and L2 (L2 ARCTIC). 
Clustering is performed on frequency vectors to test their sep- 
arability on account of nativeness. Subsequently, sub-segmental 
patterns are analyzed among segmentally identical error samples 
in L2 Korean English NIA 037 data. After cataloging segmental 
errors detected by the model finetuned with L1 TIMIT, their 
corresponding code vector sequences are extracted by referencing 
the forced alignment result. We then derived dominant patterns of 
the sequences and compared them against L1 reference materials 
likewise constructed from TIMIT. Phoneme-code vector co-
occurrence probability and code vector clustering were each used 
to check their attributes and uniqueness. The result confirmed the 
discernability, followed by linguistically interpretable common 
traits across patterns. (1) They formed a gradient error continuum 
along the changed articulatory value, reflecting the non-
categorical nuanced understanding. (2) This trait is highlighted by 
intermediary typology, which assumed opposite values in two 
codebooks and was also rare in L1 for being L2 specific. Lastly, (3) 
distribution skewed towards the most approximate sound in the 
learner’s L1, from which the patterns’ complexity stems. 

I. INTRODUCTION 

Articulation in L2 speech involves the mutual participation 

of the learner’s native (L1) and target (L2) sound systems. Their 

complex interplay often spans the boundaries of two or more 

canonical phoneme categories. Cantonese English speakers, for 

instance, may utter a variation of [n] resembling both [l] and 

[n], mirroring their recent sound merger at the syllable initial 

position [1][2][3]. This between-categorical characteristic 

exists in a continuum, demanding gradient evaluation. 

Nevertheless, identifying subtleties of acoustic mismatch is an 

extremely laborious task. Unsupervised mispronunciation 

detection literature emerged under this setting, using the frame- 

work of acoustic pattern discovery[2][3][4][5][6][7][8][9][10]. 

If pattern discovery aims to extract recurring signals to sub- 

stitute manual labeling [11], L2 errors could be set as one 

such target as they are recursive under systematic interaction.   

Nevertheless, the initial research focus reverted to categorical 

scope, as the obtained nuanced granular details were reduced to 

phonemic decoding [7][8] and binary decision-making [9][10].  

The following [2][3][4][5][6] went beyond to describe the 

non-categorical attributes of error using the common analysis 

feature, phonetic posterior-gram (PPG). These posterior 

vectors were generated from MFCC-phoneme-label-trained 

neural networks, which contradicts two aspects. First, it is 

prescriptive of predefined phoneme thresholds, making the 

discovered pattern still tied to categorical circumscription. 

Requiring labels to map probability further notes its reliance 

on supervised learning. PPG is susceptible to the quality of 

labeled data used to train the instrumental model [2], which 

partially runs against the goal of sparing labor costs. 

Concerning these drawbacks, this work adopts an alternative 

analysis feature, Wav2Vec2.0 code vectors. The choice is 

grounded on three factors. First, their generation process is fully 

unsupervised and unaffected by phonemic stipulation. 

Representation learning in self-supervised learning (SSL) does 

not accompany label training but rather self-discovers the 

operating units from the data’s structural property. Second, this 

learning procedure conceptually resembles acoustic pattern 

discovery, which shares the goal of discovering lexically 

meaningful units to express speech content. As code vectors are 

already a rendition of discovered patterns, using them reinforces 

the research agenda. Third, linguistic probings in model 

documentation verify their phonetic relevancy. Ref. [12] proved 

that each feature specializes in representing different phonemes, 

while [13] showed that the usage pattern of multilingual pre-

trained latent overlaps for close languages. The probing of [12] 

also implies that code vectors are more granular units than 

phonemes as the same phoneme is represented by multiple 

varieties. 

With this understanding, we aim to survey the scope of 

variation capturable by code vectors to propose them as an 



 

alternative means to discover non-categorical patterns. 

Accordingly, we first test the differentiability among L1 and L2 

and subsequently use the feature to describe variations within 

each segmentally defined L2 error. This pattern discovery 

pipeline combines the aforementioned probing methods with 

frameworks of previous literature. To answer the question (1) 

Does the feature encode L2 acoustics differently from L1? 

codeword frequency probing in [13] is adopted. Featural usage 

of L1 and L2 speakers are compared through a frequency vector 

that maps occurrences of different code vector inventories. For 

question (2) How are non-categorical characteristics in L2 

encoded in them? sequence analysis in [6] is applied to derive 

dominant patterns among segmentally identical error samples. 

The samples were pre-selected from the auxiliary segmental 

detection task. To interpret these patterns, two L1 reference 

materials are created. Co-occurrence-based phonetic probing in 

[12] is used to infer their phonetic attribute. KMeans clustering, 

a common similarity measure in [6][3][4][5], is performed on 

the union of available features to check relationships among 

discovered patterns. 

II. METHODS 

A. Code Vector Inventory Probing 

Code vectors’ L2 discernability can be proved through the 

difference in the used inventory between L1 and L2 speech. 

Since product quantization in Wav2Vec2.0 concatenates two 

codebook entries, usage can be analyzed at the level of 1) 

individual entry and 2) entry pair. The former approach was 

taken in [13] to prove the feature’s inter-language 

discernability. Among data of languages the model was pre-

trained on, the degree of overlap in codeword distribution was 

in line with language similarity. 

The same strategy is applied with the target of frequency 

calculation now set as individual L1 and L2 speakers. After 

segmenting speech by phoneme through forced alignment, 

the most representative codeword or codeword pair of the 

divided field was recorded as an index. At the entry-level 

illustrated in Fig. 1, codeword frequency vectors of size 1*320 

are constructed per codebook whose values are normalized into 

probability. 320 is a size of codebook representation pre-

defined by the model. These vectors are ultimately concate- 

nated to a size of 1*640 for comparison. At the pair-level, the 

number of used pairs is not fixed, with a theoretical maximum 

reaching 102.4k i.e. 320*320 [12]. To plot the frequency in 

mutual space, we took the union of all available paired indices 

across the dataset and set them as counting bins to map 

occurrences. This amounted to 1*5712-sized vectors that were 

likewise normalized from the raw count. 

KMeans clustering was eventually performed on each set of 

frequency vectors with the cluster number k set as 2. The 

expected result was to have L1 and L2 speaker data develop 

separate clusters, reflecting the usage pattern differences. 

B. L2 Error Pattern Discovery 

We next expand our survey to sub-segmental variations 

within L2. A list of error segments is first gathered through the 

 

 

 
Fig. 1. Construction of Codeword Frequency Vectors. a and b are the 
hypothetical number of occurrences before adding count 

 

 

standard practice of comparing recognized results with ground 

truth labels. The same pre-trained model used for code vector 

extraction was fine-tuned to create the recognition tool. 

Then, code vector sequences of the error samples were 

retrieved as indices. The process first entails forced-aligning the 

L2 analysis data and spotting the time frames of falsely 

recognized phonemes. This was viable by employing the same 

phoneme set during forced alignment and grapheme-to-

phoneme (G2P) conversion of fine-tuning labels. Subsequently, 

the sequence analysis method in [6] is applied to spot recurring 

patterns. The study [6] shared the goal of finding patterns within 

a canonically designated segment represented by summarizing 

indices. The analysis first involved filtering the sequence by 

removing minor presences and summing adjacent overlaps into 

one. Then, dominant patterns were selected based on frequency 

as their representation was once again refined by merging 

subsequences with their subsuming counterparts. In all 

analyzed cases, applying this procedure resulted in the 3 most 

dominant patterns, each represented by a single paired index. 

To interpret these patterns, two reference materials were 

created from the same L1 data used for fine-tuning. We 

recorded 1) what phonemes each codeword (pair) statistically 

represents and 2) the raw numerical values of code vectors as 

opposed to indices. The former is a revisit to the phonetic 

probing in [12] that plotted the conditional probability of 

phoneme distribution into a graph. The same method of 

counting the feature’s co-occurrence with human-annotated 

phoneme boundaries was executed, representing a cross-section 

of this graph along the vertical axis. Raw vectors were used to 

evaluate the distance among patterns. As our L1 data utilized 

2202 pairs in total, the recorded 2202 concatenated vectors 

were clustered into 39 groups. The number 39 reflects the 

quantity of the mutual phoneme set as it serves as a minimum 

division criterion. Cluster IDs of the three dominant indices 

were compared to check if each discovered pattern formed a 

separate identity. If two or more indices belong to the same 

cluster, the patterns are merged into one. Fig. 2 illustrates the 

overall framework. While segmental detection is supervised, it 

is an optional step to limit the scope of sub-segmental analysis. 

In practice, the unsupervised discovery is applicable to any 

segment of interest. 



 

 
 

 

Fig. 2.  Overview of L2 Error Pattern Discovery 

 

 

A. Data 

III. EXPERIMENTS Clustering of paired vectors and Visualization of individual 

codewords used FAISS library. 

Two different L1-L2 datasets were used for each task. For in-

ventory comparison, an identical speech prompt across L1 and 

L2 was important to provide content-wise regulation. Speaker-

level recordings were also needed to spot trends concerning 

a particular demographic. Accordingly, CMU ARCTIC (L1) 

and L2-ARCTIC (L2) v5.0 were chosen. For CMU ARTIC, 

only 5 speakers (bdl, rms, jmk, rms, clb) of North American 

accents were used as this research concerns pronunciations 

of US English. For pattern analysis, encompassing multiple 

speakers of diverse backgrounds was desirable to create robust 

speech recognition and references (L1), and make generalizable 

discoveries (L2). Manually confirmed phoneme duration was 

also preferred to extract code vector sequences accurately. 

Accordingly, TIMIT (L1) and NIA037, Korean Learners’ L2 

Speech corpus (English) developed by the National Information 

Society Agency (NIA), Korea, were used. 

B. Implementation Detail 

All SSL-related works and the model finetuning used fairseq 

Framework, a sequence modeling toolkit developed by the 

Facebook research group. The Pretrained Model used to 

extract code vectors was LARGE architecture trained on 

LibriVox (LV-60k) data. This is also the version phonetic 

probing in [12] was performed on. Using the TIMIT train split, 

Finetuning was conducted under the parameter of 40000 max 

update, 3e-4 learning rate, mask probability 0.65, mask channel 

probability 0.5. The final validation phoneme error rate was 

1.63%. The mutual phoneme set used for finetuning label and 

forced alignment was the 39 ARPAbet symbols. For G2P, the 

set was derived by excluding the sentence stress numeric from 

the g2p tool kit 1. For Forced Alignment, excluding the stress 

marker in English (US) ARPA dictionary v3.0.0 of Montreal 

Forced Aligner resulted in the same union of notation. The 

corresponding version of the acoustic model was also used. 

 

1https://github.com/Kyubyong/g2pGitHub - Kyubyong/g2p: g2p: English 
Grapheme To Phoneme Conversion 

IV. RESULTS 

A. L1 to L2 Code Vector Usage Comparison 

Fig. 3 displays the clustering results after performing the 

principal component analysis. Speakers of the frequency 

vectors are annotated next to the plotted location, and each 

element is color-coordinated according to its cluster 

membership. As can be noted from the color scheme, the cluster 

grouping coincides with the division between native and non-

native speech. The concatenated format offers a clearer 

separation, allowing for a more nuanced examination of subtle 

pronunciation deviations. This motivates us to conduct detailed 

cross-speaker comparisons in a paired setting. 

 

 
Fig. 3.  Frequency Vector Clustering Results 

 

The heatmap in Fig. 4 counts mutual codeword pair inventory 

between two speakers. Reflecting the former clustering result, 

the shared amount between native and non-native speakers is far 

below the rate within each speaker group. This sharing rate 

asymmetry is further marked by higher numbers of utilized pairs 

in L1. The left L2-ARCTIC grids have darker shades associated 

with fewer tokens compared to the rightmost five grids of CMU 

ARCTIC speakers. Interestingly, the inventory size increases as 

a function of the speaker’s language proficiency. From the 

demographic information provided in [14], we have selected 

two speaker groups of opposing proficiency levels. The lower-

level group had TOEFL iBT scores ranging under 90, whereas 

the higher-level group had scores over 110.  The total usage- 



 

-counting on the right shows that higher-level speakers overall 

use more paired tokens than lower-level counterparts. One 

possible explanation is that to fully utilize representations 

encoding English, one has to be phonetically aware of the 

sounds in the language. This awareness is marked by the 

utilization ratio of the code vector inventory acquired in the L1 

standard. If the amount used by the native speakers is the full 

range of available acoustics, the less adept one is at articulating 

these sound units, the less amount of inventory in use there will 

be.  

 

 
Fig. 4.  Code Vector Inventory Counting 

 

 

B. L2 Error Pattern Discovery Result 

Subject of Gradience Our analyzed segmental errors con- 

cerned 5 different substitution routes. Patterns of each trajectory 

could be scaled by the assumed degree of changed articulatory 

value, forming a gradient error continuum. Substitution of 

voicing identity: in Z to S, the second highest probability in 

native phoneme distribution moved from sh[-voicing] to 

z[+voicing]. Substitution of manner of articulation: in DH to 

D, V to B, and F to P, native phoneme distribution moved from 

plosives and silence[-continuity] to fricatives, vowels, and 

approximants[+continuity]. This was a recurring dynamic 

across all three examples. Substitution of laterality: in L to R 

 

 

 
Fig. 5.  Fricative to Plosive Dominant Pattern Dynamics 

and R to L, native phoneme distribution moved from having 

more lateral[+laterality] to rhotic[-laterality] association (or 

vice versa). Substitution of vowel height: in AH to AA, the 

association ratio moved from allotting higher probability to 

AA[-high] to AO[+high]. Substitution of tenseness: in IH to IY, 

IY to IH, AE to EH, and EH to AE, tenseness calculation 

reflected Euclidean distance among raw code vectors. Fig. 6 

charts these gradient movements. The intermediary patterns 

were decomposed into two codewords for the reason that will 

be explained below. 

Intermediary Typology Patterns at the intermediate position 

were non-categorical by assuming opposite identities in two 

codebooks. If one displayed a positive value of the changed 

articulatory trait, the other displayed a negative value. Such 

contradictory pairing was rare in L1 data, attesting to the 

L2 particular nature of non-categoricity. In Z to S, intermediary 

[18, 51] had codebook1 bearing [-voicing], while codebook2 

bearing [+voicing] identity. The paired index had no native 

speech presence. In DH to D, intermediary [204, 120] had 

codebook1 bearing [+continuity], while codebook2 bearing [-

continuity] identity. It records a single co-occurrence with nasal 

[n], a sound that exemplifies duality with airflow obstructed in 

the oral cavity yet unhindered in the nasal cavity. In R to L, 

intermediary [191, 235] had codebook1 bearing [-laterality], 

while codebook2 bearing [+laterality] attribute. The pair had 

only three L1 occurrences. In AH to AA, codebook1 and 2 each 

assumed [-high] and [+high] identity. The middling pink figures 

in Fig. 6 showcase this ambivalence. Note that the ranking is 

comparative. 

Distributional asymmetry Patterns were skewed toward the 

most approximate sound available in the learner’s L1. This 

finding could be viewed at two levels: 1) dispersion rate across 

different substitution types and 2) within-substitution pattern 

distribution. The case of fricative to plosive substitution 

demonstrates the first view. Fig. 5 plots the distance among sub-

segmental patterns through their associated cluster IDs. 

Accordingly, F to P involves smaller between-pattern distances 

than the other two. The convergence gears towards the 

[+continuity] end as [197, 155] that once formed the 

[+continuity] end of the spectrum in DH to D in Fig. 6 is 

now the pattern bearing the least characteristic of continuity. 

The other two indices, [166, 196] and [197, 284], show an 

even higher association with the ground truth canonical value. 

The asymmetry is related to Korean fricative inventory 

consisting of voiceless but not voice fricatives, leading to fewer 

difficulties articulating a familiar phonation type. Namely, the 

more difficult target DH and V incurs greater dispersion. 

Meanwhile, the skewed distribution within substitution can 

be found in the case of liquid. Fig. 7 likewise visualizes the 

pattern dynamics with cluster IDs. The laterality spectrum is 

additionally superimposed by referencing Fig. 6. In R to L, the 

intermediary [191, 235] is closer to the [+laterality] pattern 

[204, 162] than [22, 101]. In L to R, two dominant patterns 

[191, 212] and [191, 162] merge into a single cluster that gears 

towards the same direction. The concentration on the 



 

 

 
Fig. 6.  Gradience of Error Continuum. Indices with numerous phoneme associations have been cropped for illustration purposes 

 
 

 
 

Fig. 7.  Pattern Distribution in Liquid Substitution 
 

 

[+laterality] end reflects greater difficulties in producing the 

rhotic variety, bunched r, unobserved in Korean compared to 

the existing lateral inventory. 

V. DISCUSSION 

The three overarching findings are linguistically 

interpretable. First, it is expected for the variation spectrum to 

develop along the articulatory trait responsible for changes. 

Second, since the non-categorical nature is L2-specific, the 

conflicting pairings were associated with non-mutual inventory 

between L1 and L2 speakers. As frequency probing confirmed 

the used inventory difference and its expanding range alongside 

articulation adeptness, one can expect that the more pronunci-

ation deviation there is, the higher the chance for the speech to 

utilize these L1-unobserved non-mutuals. Accordingly, English 

front vowels reported to be particularly difficult for Korean 

TABLE I 
DOMINANT INDEX PAIRS OF FRONT VOWEL SUBSTITUTIONS 

 
IH to IY [22,268] (1) [191, 234] [22, 268] 
IY to IH [191, 234] (4) [22, 234] [42, 234] (1) 

AE to EH [22, 268] [42, 234] [191, 234] 

EY to EH [42, 234] [22, 234] (unobserved) [22, 319] 

 

learners in [15] commonly used code vector varieties rare 

in native speech. Their total count in TIMIT is written in 

parenthesis in Table I. Ref. [15] also notes how the difficulty is 

manifested as reduced frontal vowel space, when the 

articulatory confusion transfers to indistinguishability. In line 

with this understanding, patterns in Table. I experience overlap. 

Third, relationships among sub-segmental patterns reflect the 

acoustic distance expected from L2 variations. The skewed 

distribution first implies that non-categorical traits are 

ultimately attributed to the learners’ L1 influence. This 

between-categorical position of phonetic understanding further 

concurs with the numerical calculation between vectors. As our 

detected tenseness substitutions solely concerned front vowel 

pairs, they lacked enough representative samples for pair-level 

analysis. Hence, we have resorted to examining attributes of 

individual codewords, which revealed that the rarity stems from 

conflicting tenseness identity. That is, codebook1 displayed the 

identity of laxness while codebook2 displayed tenseness. This 

identity could be instantiated by calculating the tense-to-lax 

ratio of associated phoneme probabilities. Patterns can then be 

ranked on a tenseness spectrum with values multiplied from 

two codebooks. Inferred pattern-wise distance, hereafter, aligned 

with Euclidean distance. We have demonstrated this process with 



 

a case of IH to IY substitution in Fig. 8. 

 

 
Fig. 8. Pattern Positioning in IH to IY. Although [22, 234] is unobserved, the 
distance between [22, 234] and [22, 268] is calculable through the second 
codeword vectors. 

 

VI. CONCLUSIONS 

1 This work recreated the unsupervised L2 error pattern 

discovery experiments using an SSL representation, the 

Wav2Vec2.0 code vector. Leveraging its unprescribed yet 

phonetically relevant status, we have identified the range of 

variations within a single segmental error. While the inventory 

probing confirmed that encoding units of L2 differed from L1, 

the pattern discovery revealed that this difference results from 

an unlikely codebook combination in L2. Namely, the two 

codeword vectors assumed conflicting identities that formed 

opposite ends of the error pattern spectrum. As this conflict 

instantiates L2-specific non-categorical traits, increased usage 

of relevant index pairs coincided with a higher degree of pho-

netic divergence. Moreover, sub-segmental pattern distribution 

reflected the acoustic proximity of corresponding L1 phonemes 

to two segments participating in substitutions. Thus, the way 

Wav2Vec2.0 code vectors encode L2 variation is phonetically 

relevant, making it a valid tool to uncover sub-segmental 

gradience with the ability to quantify its details. Ultimately, the 

uncovered details can be employed for finer judgment and 

feedback that reflects the true nature of mispronunciations.  
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