2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Ev3DGS: Event Enhanced 3D Gaussian
Splatting from Blurry Images

Junwu Huang, Zhexiong Wan, Zhicheng Lu, Juanjuan Zhu, Mingyi He, Yuchao Dai
Northwestern Polytechnical University, Xi’an, China
E-mail: {huuuangjw, wanzhexiong, zhichenglu, juanjuanzhu2022}@mail.nwpu.edu.cn,
{myhe, daiyuchao}@nwpu.edu.cn

Abstract—The novel view synthesis task involves inputting a
source image, a source pose and a target pose, and rendering
to generate a corresponding target image. However, obtaining a
clear novel view synthesized image from only a set of blurred
images and corresponding poses is a challenging problem. To
solve this problem, the good performance of 3D Gaussian Splat-
ting (3DGS) in the field of 3D scene reconstruction is taken into
account, as well as the remarkable effectiveness of event cameras
in the deblurring problem. Inspired by the novel Event-Enhanced
Neural Radiance Fields (E2NeRF) model, which is also based
on event enhancement, a new 3D reconstruction framework,
Event-Enhanced 3DGS (Ev3DGS), based on 3DGS is proposed
by utilizing the combined data from event cameras and standard
RGB cameras. We effectively introduce the event stream into the
3D Gaussian iterative process by constructing the blur rendering
loss and event rendering loss, which guides the optimization of
the network structure by predicting the blurred image and event
generation processes. Compared with the E2NeRF model, the pro-
posed Ev3DGS framework in this paper effectively improves the
rendering performance and reduces the training time consumed.
Ev3DGS not only achieves image deblurring, but also realizes
high-quality of novel view synthesis. Extensive experiments on
both synthetic and real-world datasets show that Ev3DGS can
effectively learn clear 3DGS from blurred image inputs, making
3DGS more robust. Our code and the datasets used are publicly
available at https://github.com/HuuuangJ W/Ev3DGS.

I. INTRODUCTION

The novel view synthesis has a wide range of applications
in 3D scene reconstruction, virtual/reality augmentation and
other fields. In recent years, with the development of differ-
entiable rendering technology, the novel view synthesis has
received widespread attention again, and has shown superior
performance and development prospects. Among them, the
appearance of 3D Gaussian Splatting (3DGS) [1] has greatly
accelerated the rendering speed of novel view synthesis. How-
ever, it is difficult for 3DGS to obtain a clear target image
from a blurred source image input, as often occurs in reality,
which poses a challenge to synthesize clear novel views using
3DGS.

Event camera, as a new type of bionic vision sensor, has a
wide range of applications in the fields of feature detection and
tracking, optical flow estimation, 3D reconstruction and pose
estimation. It is promising to guide the learning process of
3DGS by introducing additional information carried by event
data. Therefore, in order to solve the problem of 3DGS input
source image blurring, this paper investigates event-enhanced
3DGS for blurred images.By utilizing event and image data

acquired by an event camera and introducing blur rendering
loss and event rendering loss, a new event-enhanced 3DGS-
based model (Ev3DGS) is constructed, which enables Ev3DGS
to efficiently learn from blurred images to a clear Gaussian
scenes, thus realizing clear novel view synthesis.

Specifically, inspired by the Event-Enhanced Neural Radi-
ance Fields (E2NeRF) [2] model, during the training process,
we superimpose the clear images obtained by rendering multi-
ple predicted poses at equal time intervals under one viewpoint
as the predicted blurred images, and compare them with the
input blurred images as our blur rendering loss. Secondly, the
generation process of predicted event data is simulated based
on the brightness change caused by the change of camera
position and compared with the real event data to get the event
rendering loss. By taking advantage of the high dynamic range,
high temporal resolution, and low latency of the event camera,
the event data can effectively enhance the 3DGS network so
that we can learn a network with a clearer output image, which
makes it possible to not only realize the deblurring of the input
image, but also obtain high-quality synthetic images of the
novel view.

Our proposed Event-Enhanced 3DGS (Ev3DGS) in this
paper is tested and verified with E2NeRF synthetic dataset
and real-world dataset. The comparisons are carried out with
the E2NeRF model to test the effectiveness of the model.
In addition this paper also carries out ablation experiments
to demonstrate the effectiveness of event rendering loss. The
contributions of this paper can be summarized as follows:

(1) An event-enhanced 3DGS model (Ev3DGS) is proposed,
which is the first framework to reconstruct clear 3DGS from
blurred images and corresponding event data using blur ren-
dering loss and event rendering loss. The modeling framework
effectively exploits the intrinsic relationship between events
and images to significantly improve the performance and
robustness of 3DGS;

(2) Both the Blur-rendering loss and event-rendering loss
are introduced into 3DGS, which enhances the object clarity
of reconstruction from 3DGS.

II. RELATED WORK

A. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [1] is a transformative tech-
nology in computer graphics in recent years. Recent innovative
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researches employing 3DGS in SLAM (Simultaneous Local-
ization and Mapping) have demonstrated the great potential
and versatility of 3DGS in SLAM. For example, GS-SLAM
[3] employs an adaptive strategy to add or remove 3D Gaussian
distributions to optimize the scene geometry reconstruction
and improve the mapping of previously observed regions. To
extend the concept of 3DGS to dynamic scenes, Lu et al. [4]
proposes a 3D geometry-aware deformable Gaussian Splatting
method for dynamic view synthesis, while SC-GS [5] utilizes
sparse control points and deformed MLPs to capture and rep-
resent the dynamics of a 3D scene. For the problem of blurring
of the input image due to camera shake, Deblur-GS [6] relied
on the interpolation method to estimate the motion trajectory
information of the camera to realize the reconstruction of a
clear 3D scene. BAD-Gaussian [7] performs batch clustering
on top of this, which enhances the interrelationships of the
images in the same exposure time and can better capture the
complex motion trajectories during the exposure period.

B. Event Camera

Event Camera is a new type of biologically inspired vision
sensor, sometimes called Dynamic Vision Sensor (DVS, dy-
namic vision sensor) or DAVIS (Dynamic and Active-Pixel
Vision Sensor). Unlike standard cameras that capture images
at a fixed frame rate, event cameras generate event streams
by sensing changes in pixel brightness, which is characterized
by low latency, high dynamic range, low power consumption,
and high temporal resolution. It is also widely used in some
traditional vision tasks such as feature detection and tracking,
optical flow estimation, 3D reconstruction and pose estimation.
In the field of optical flow estimation, Zhu et al. [8] utilized a
self-supervised scheme to train CNN'’s encoder and decoder for
dense optical flow estimation, while Ye et al. [9] proposed an
innovative monocular neural network structure that relies only
on event data to estimate dense optical flow, depth and self-
motion. In the field of 3D reconstruction, many active event-
based 3D reconstruction methods have also been proposed.
For example, Brandli ef al. [10] successfully combined a DVS
with a pulsed line laser for fast terrain reconstruction. Motion-
contrast 3D scanning [1 1], on the other hand, uses structured
light technology to synchronize high resolution, high speed and
excellent performance in complex 3D scanning environments.
For the event-enhanced new perspective synthesis task, Qi et
al. [2] proposed the Event-Enhanced Neural Radiance Fields
model E2NeRF, which constructs two losses and well utilizes
the event properties to assist in solving the problem of blurring
of the input image and realizes a clear three-dimensional re-
construction, but its training speed is slow due to the limitation
of the Neural Radiance Fields (NeRF) model.

III. PREREQUISITE
A. 3D Gaussian Splatting

3D Gaussian Splatting [1] is an explicit rasterization tech-
nique for real-time radial field rendering described by 3D
Gaussian distributions, which allows for real-time rendering of
photorealistic scenes learned from small image samples. The

input to 3D Gaussian Splatting is a set of images of a static
scene and a sparse point cloud obtained by the camera from
the alignment. On the sparse points, a set of 3D Gaussian
distributions are created, defined by the position (mean) X,
opacity , covariance matrix , and spherical harmonic (SH)
coefficients to model the view-dependent color, while param-
eter optimization is performed by an adaptive density control
algorithm. The Gaussian distribution is defined as:

G(x) =e :COT=T00. )

For regular optimization of the covariance matrix , given

a scaling matrix S and a rotation matrix R, the corresponding
can be found:

=RSS'RT: )

To allow independent optimization of these two factors, they
are further represented as a three-dimensional vector S for
scaling and a quaternion r for rotation.

In addition, the key to 3DGS’s improved model rendering
rate is the construction of a fast micronizable rasterizer. The
overall fast rendering and sorting is achieved by chunking the
Gaussian sphere splash and allowing the Gaussian spheres with
approximate a-values to be blended. And the fast rasterizer
utilizes fast inverse passes to track through the accumulated a-
values, allowing it to receive splat balls with gradients without
restriction for scene representation. For each pixel, its color C
is determined by all Gaussian distributions covering the pixel,
which are represented as follows:

> N
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where N¢oy represents the splats that cover this pixel,
represents the opacity of this Gaussian splat multiplied by
the density of the projected 2D Gaussian distribution at the
location of the pixel, and c; represents the computed color.

B. Event Generation

The event camera is a novel bionic vision sensor that asyn-
chronously and independently measures the brightness change
of each pixel in the scene, and triggers the generation of an
event signal when the brightness change of any pixel exceeds
a threshold set by the event camera. Each event consists of
the spatio-temporal coordinates of the triggering event (pixel
position coordinates (X;y) and the triggering timestamp t with
millisecond accuracy) and its polarity = = =1. The event
camera is able to measure the brightness change of each pixel
in the scene asynchronously and independently [12].

However, when the object moves, the event camera asyn-
chronously generates event signals by sensing changes in
image intensity, producing a series of event sequences, denoted

as:
Lxy(t)
ny (tref)

where the potential image Lyy(t) and Lyy(trer) represents
the intensity at point (X;y) at moment t and tref, C is

= log iC o 4



the response threshold for intensity change, and (-;-) is a
truncated function:
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where d is the intensity of the corresponding brightness
change.

According to the general principles of event generation,
the most primitive and complete representation of all the
information in each event is to represent the event as an
n x 4 dimensional matrix, where each column contains all
the information of a single event: the 2D coordinates, the
timestamp and the event polarity. Since only the brightness
change of the object due to the motion process is of interest,
in this paper, we consider equating the event data into b
blocks and discretizing the time to superimpose the event data
between any two potentially clear images to obtain the event
change data containing only the 2D coordinates and event
polarity.

C. Blurry Image Generation

The specific process of generating an image by means of a
color camera can be represented as the process by which the
camera sensor collects photons during the exposure and con-
verts them into measurable charges. The degree of motion blur
in the image depends on the motion of the camera during the
exposure time. For example, a fast moving camera produces
minimal relative motion, especially at shorter exposure times,
whereas a slow moving camera produces a motion blurred
image, especially in low light scenes with longer exposure
times. The phenomenon may be expressed as an integral over
a series of virtual potentially sharp images, denoted as follows:

z

lbiur = ldt; (6)
where lpyr denotes the real captured motion blurred image,

is used as a normalization factor, is the camera expo-
sure time, and l¢ is the potentially clear image captured at
timestamp t € [0; ] during the exposure time. The blurred
image lpjyr due to camera motion during the exposure time is
calculated by averaging the potentially clear image | for each
different timestamp t. The model is based on a discrete approx-
imation. The discrete approximation of the model depends on
the number k of discrete moments, denoted as follows:

1 X
1 = — l: 7
blur = 7 k (M

k=0
Thus, for the blurred input of 3DGS, we can consider it as a
superposition of a series of potentially clear images. So when
acquiring the real world dataset and when making the synthetic
dataset, we consider the blurred image at one viewpoint as an
average of b + 1 potentially clear images. The preprocessing

for the model input data will also be centered around this.

IV. METHOD

Fig. 1 shows the overall framework of Ev3DGS, which
effectively improves the volumetric representation of 3DGS by
introducing two new losses in the framework of 3DGS, and
also designs an event-blurred image-based bit-pose estimation
framework to efficiently deal with real-world data.Ev3DGS
takes the blurred image’s and the corresponding events as
inputs for each viewpoint. Meanwhile Ev3DGS model in-
troduces blur rendering loss and event rendering loss. The
blur rendering loss simulates the process of blurred image
generation and provides more information about the scene
texture details to the network. The event rendering loss, on
the other hand, introduces event data into the 3DGS training
process, enabling the network to better learn the real 3D
volumetric representation and obtain information about the
motion characteristics of objects. After inputting the image
bitmap into 3DGS, 3DGS generates an initial point cloud
via for reconstruction rendering. After each rendering, the
predicted blurred image is obtained by averaging the image
sequences cumulatively, while the predicted event stream is
calculated by converting the image sequences into gray-scale
maps. The input blurred image and event stream are compared
with the predicted values to obtain the blur rendering loss and
event rendering loss for model supervision.

A. Blur Rendering Loss

With b+1 poses {P k}i:o of each view, we can get b+1 rays
{r}o_, emitted from each pixel. With the 3DGS network,
k=0 p A Po)

b
each pixel can get b + 1 color values b=cC (ry) o

regarded as the process of blurry pixel generation, and the
average of the results is used as the predicted blurry color:

1 X
Colur = —— ;
our = 37 C (N (®)
k=0
The loss function of 3DGS with blurred image as input is
then expressed as:
. 2 . 2
Lorur = Chiur — C(r) , Cour — C(D) , @
r2R

where 3DGS is designed using joint optimization of coarse
and fine models.

3DGS uses stochastic gradient descent, utilizing standard
GPU acceleration frameworks and adding custom CUDA cores
for some operations. A sigmoid function is used for to keep
it constrained to [0; 1), and an exponential activation function
is used for the scaling factor of the covariance to ensure a
smooth gradient.

Initialize the covariance to an isotropic Gaussian whose axis
length is the same as the mean of the distances to the 3 nearest
points. Standard exponential decay scheduling techniques were
used for the location of the Gaussian. The loss function is the
loss £, and D-SSIM terms:

L=0- )2+ Lp ssim; (10)
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rendering loss and an event rendering loss. The blur rendering loss simulates the generation process of blurred images to provide more information about the
scene texture details to the network. The event rendering loss, on the other hand, introduces event data into the 3DGS training process, enabling the network
to better learn the real 3D volume representation and obtain information about the motion characteristics of objects.

where is a weighting factor.

The loss £, and D-SSIM terms are standardized metrics.The
loss function for 3DGS is slightly different from that of NeRF.
Due to the high computational cost of NeRF by light sampling
the sample points, NeRF is usually at the pixel level, whereas
3DGS performs the computation of the loss at the image level.

B. Event Rendering Loss

Image blur generation is a continuous process, however blur
rendering loss only uses discrete b+1 frames corresponding to
b+ 1 poses in the blurred image to model the blurring process,
losing a large amount of information in the blur generation
process. Therefore by introducing event rendering loss, the
high temporal resolution property of event data is utilized to
supervise the continuous blurring process between any two
predicted frames. Given a pixel X = (X;y), two color values
?‘f Cb%, and Cy, (ki <Kkz) are randomly selected from the

@k of that pixel, and they are converted to grayscale
valueskt?)oobtain Lk, , Lk,. According to the principle of event
generation, the difference between the logarithmic values of
the two grayscale values of Ly,, L, is divided by a threshold

to estimate the number of events between any two frames
for a given pixel X:

Lk, <Lk,

8
% log(Lk,) log(Li,)
@(kl;kz)(x) = C3an

log(Lk,) log(Lk,) L > Ly
- ———— Lk, 2 Ly

pos

The mean square error between the estimated number of
events @(kl;kz)(x) and the actual number of events B, .k,)(X)
in {Bk}ﬁzl is taken as our event rendering loss. For pixel X
corresponding to Byg(X) in the event block, set the number
of negative events to its additive inverse so that positive and
negative events can cancel each other out when stacking event
blocks. Thus the expression for the event rendering loss is:

P 2
Levent = x2 @(kl;kz)(x) - B(kl;kz) )
2
(12)
— sz .
Bkiko)(X) = k2,41 B(X);
where  is the set of pixels in each batch. The final loss

function is defined as:
L = Lour + Y Levent; (13)
where ! is the weight parameter.

V. EXPERIMENT
A. Dataset

Since this experiment improves on the method proposed by
E2NeRF, in order to compare with the original model, the
dataset constructed by E2NeRF is used in this paper. Based
on the original NeRF dataset, camera shakiness was simulated
using the camera shakify plugin in Blender. In each view, 17
clear images of the camera under different degrees of shaking
were rendered and their corresponding poses were recorded.
These 17 images were then input into the simulated event
generation model v2e [13] to simulate the event data generated
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