
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Ev3DGS: Event Enhanced 3D Gaussian
Splatting from Blurry Images

Junwu Huang, Zhexiong Wan, Zhicheng Lu, Juanjuan Zhu, Mingyi He, Yuchao Dai†
School of Electronics and Information & Shaanxi Key Laboratory of Information Acquisition and Processing

Northwestern Polytechnical University, Xi’an, Shaanxi 710129, China

Abstract—The novel view synthesis task involves inputting a
source image, a source pose and a target pose, and rendering
to generate a corresponding target image. However, obtaining a
clear novel view synthesized image from only a set of blurred
images and corresponding poses is a challenging problem, which
often occurs in reality. To solve this problem, the good perfor-
mance of 3D Gaussian Splatting (3DGS) in the field of 3D scene
reconstruction is taken into account, as well as the remarkable
effectiveness of event cameras in the deblurring problem. Inspired
by the novel Event-Enhanced Neural Radiance Fields (E2NeRF)
model, which is also based on event enhancement, a new 3D
reconstruction framework, Event-Enhanced 3DGS (Ev3DGS),
based on 3DGS is proposed by utilizing the combined data
from event cameras and standard RGB cameras. We effectively
introduce the event stream into the 3D Gaussian iterative process
by constructing the blur rendering loss and event rendering
loss, which guides the optimization of the network structure by
predicting the blurred image and event generation processes.
Compared with E2NeRF, the Ev3DGS proposed in this paper
effectively improves the rendering performance with 4.8% and
2.5% improvement in PSNR and SSIM, and 15% reduction in
LPIPS, while significantly reducing the training time consump-
tion. Extensive experiments on both synthetic and real-world
datasets show that Ev3DGS can effectively learn clear 3DGS from
blurred image inputs, enabling high-quality novel view synthesis
and making 3DGS more robust. Our code is publicly available
at https://github.com/npucvr/Ev3DGS.

I. INTRODUCTION

The novel view synthesis has a wide range of applications
in 3D scene reconstruction, virtual/reality augmentation and
other fields. In recent years, with the development of differ-
entiable rendering technology, the novel view synthesis has
received widespread attention again, and has shown superior
performance and development prospects. Among them, the
appearance of 3D Gaussian Splatting (3DGS) [1] has greatly
accelerated the rendering speed of novel view synthesis. How-
ever, it is difficult for 3DGS to obtain a clear target image
from a blurred source image input, as often occurs in reality,
which poses a challenge to synthesize clear novel views using
3DGS.

Event camera, as a new type of bionic vision sensor, has a
wide range of applications in the fields of feature detection and
tracking, optical flow estimation [2] [3], video frame prediction
[4], 3D reconstruction and pose estimation. It is promising to
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guide the learning process of 3DGS by introducing additional
information carried by event data. Therefore, in order to
solve the problem of 3DGS input source image blurring, this
paper investigates event-enhanced 3DGS for blurred images.By
utilizing event and image data acquired by an event camera and
introducing blur rendering loss and event rendering loss, a new
event-enhanced 3DGS-based model (Ev3DGS) is constructed,
which enables Ev3DGS to efficiently learn from blurred im-
ages to a clear Gaussian scenes, thus realizing clear novel view
synthesis.

Specifically, inspired by the Event-Enhanced Neural Radi-
ance Fields (E2NeRF) [5] model, during the training process,
we superimpose the clear images obtained by rendering multi-
ple predicted poses at equal time intervals under one viewpoint
as the predicted blurred images, and compare them with the
input blurred images as our blur rendering loss. Secondly, the
generation process of predicted event data is simulated based
on the brightness change caused by the change of camera
position and compared with the real event data to get the event
rendering loss. By taking advantage of the high dynamic range,
high temporal resolution, and low latency of the event camera,
the event data can effectively enhance the 3DGS network so
that we can learn a network with a clearer output image, which
makes it possible to not only realize the deblurring of the input
image, but also obtain high-quality synthetic images of the
novel view.

Our proposed Event-Enhanced 3DGS (Ev3DGS) in this
paper is tested and verified with E2NeRF synthetic dataset
and real-world dataset. The comparisons are carried out with
the E2NeRF model to test the effectiveness of the model.
In addition this paper also carries out ablation experiments
to demonstrate the effectiveness of event rendering loss. The
contributions of this paper can be summarized as follows:

(1) An event-enhanced 3DGS model (Ev3DGS) is proposed,
which is the first framework to reconstruct clear 3DGS from
blurred images and corresponding event data using blur ren-
dering loss and event rendering loss. The modeling framework
effectively exploits the intrinsic relationship between events
and images to significantly improve the performance and
robustness of 3DGS;

(2) Both the Blur-rendering loss and event-rendering loss
are introduced into 3DGS, which enhances the object clarity
of reconstruction from 3DGS.
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Fig. 1. Ev3DGS Model Framework. Its inputs are blurry images and corresponding event streams of every views.This Ev3DGS model introduces a blur
rendering loss and an event rendering loss. The blur rendering loss simulates the generation process of blurred images to provide more information about the
scene texture details to the network. The event rendering loss, on the other hand, introduces event data into the 3DGS training process, enabling the network
to better learn the real 3D volume representation and obtain information about the motion characteristics of objects.

II. RELATED WORK

A. 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) [1] is a transformative tech-
nology in computer graphics in recent years. Recent innovative
researches employing 3DGS in SLAM (Simultaneous Local-
ization and Mapping) have demonstrated the great potential
and versatility of 3DGS in SLAM. For example, GS-SLAM
[6] employs an adaptive strategy to add or remove 3D Gaussian
distributions to optimize the scene geometry reconstruction
and improve the mapping of previously observed regions. To
extend the concept of 3DGS to dynamic scenes, Lu et al. [7]
proposes a 3D geometry-aware deformable Gaussian Splatting
method for dynamic view synthesis, while SC-GS [8] utilizes
sparse control points and deformed Multilayer Perceptrons
(MLPs) to capture and represent the dynamics of a 3D scene.
For the problem of blurring of the input image due to camera
shake, Deblur-GS [9] relied on the interpolation method to
estimate the motion trajectory information of the camera to
realize the reconstruction of a clear 3D scene. BAD-Gaussian
[10] performs batch clustering on top of this, which enhances
the interrelationships of the images in the same exposure time
and can better capture the complex motion trajectories during
the exposure period.

B. Event Camera

Event Camera is a new type of biologically inspired vision
sensor, sometimes called Dynamic Vision Sensor (DVS, dy-
namic vision sensor) or DAVIS (Dynamic and Active-Pixel
Vision Sensor) [11]. Unlike standard cameras that capture
images at a fixed frame rate, event cameras generate event

streams by sensing changes in pixel brightness, which is
characterized by low latency, high dynamic range, low power
consumption, and high temporal resolution. It is also widely
used in some traditional vision tasks such as feature detection
and tracking, optical flow estimation, 3D reconstruction and
pose estimation. In the field of optical flow estimation, Zhu et
al. [12] utilized a self-supervised scheme to train the encoder
and decoder of Convolutional Neural Network (CNN) for
dense optical flow estimation, while Ye et al. [13] proposed an
innovative monocular neural network structure that relies only
on event data to estimate dense optical flow, depth and self-
motion. In the field of 3D reconstruction, many active event-
based 3D reconstruction methods have also been proposed.
For example, Brandli et al. [14] successfully combined a DVS
with a pulsed line laser for fast terrain reconstruction. Motion-
contrast 3D scanning [15], on the other hand, uses structured
light technology to synchronize high resolution, high speed and
excellent performance in complex 3D scanning environments.
For the event-enhanced new perspective synthesis task, Qi et
al. [5] proposed the Event-Enhanced Neural Radiance Fields
model E2NeRF, which constructs two losses and well utilizes
the event properties to assist in solving the problem of blurring
of the input image and realizes a clear three-dimensional re-
construction, but its training speed is slow due to the limitation
of the Neural Radiance Fields (NeRF) model.

III. PREREQUISITE

A. 3D Gaussian Splatting

3D Gaussian Splatting [1] is an explicit rasterization tech-
nique for real-time radial field rendering described by 3D



Gaussian distributions, which allows for real-time rendering
of photorealistic scenes learned from small image samples.
The input to 3D Gaussian Splatting is a set of images of
a static scene and a sparse point cloud obtained by the
camera from the alignment. On the sparse points, a set of
3D Gaussian distributions are created, defined by the position
x, opacity α, covariance matrix Σ, and Spherical Harmonic
(SH) coefficients to model the view-dependent color, while
parameter optimization is performed by an adaptive density
control algorithm. The Gaussian distribution is defined as:

G(x) = e−
1
2 (x)

TΣ−1(x). (1)

For regular optimization of the covariance matrix Σ, given
a scaling matrix S and a rotation matrix R, the corresponding
Σ can be found:

Σ = RSSTRT . (2)

To allow independent optimization of these two factors, they
are further represented as a three-dimensional vector s for
scaling and a quaternion r for rotation.

In addition, the key to 3DGS’s improved model rendering
rate is the construction of a fast micronizable rasterizer. The
overall fast rendering and sorting is achieved by chunking the
Gaussian sphere splash and allowing the Gaussian spheres with
approximate a-values to be blended. And the fast rasterizer
utilizes fast inverse passes to track through the accumulated a-
values, allowing it to receive splat balls with gradients without
restriction for scene representation. For each pixel, its color C
is determined by all Gaussian distributions covering the pixel,
which are represented as follows:

C =
∑

i∈Ncov

ciαi

i−1∏
j=1

(1− αj) , (3)

where Ncov represents the splats that cover this pixel, αi

represents the opacity of this Gaussian splat multiplied by
the density of the projected 2D Gaussian distribution at the
location of the pixel, and ci represents the computed color.

B. Event Generation

The event camera is a novel bionic vision sensor that asyn-
chronously and independently measures the brightness change
of each pixel in the scene, and triggers the generation of an
event signal when the brightness change of any pixel exceeds
a threshold set by the event camera. Each event consists of
the spatio-temporal coordinates of the triggering event (pixel
position coordinates (x, y) and the triggering timestamp t with
millisecond accuracy) and its polarity σ = ±1. The event
camera is able to measure the brightness change of each pixel
in the scene asynchronously and independently [16].

However, when the object moves, the event camera asyn-
chronously generates event signals by sensing changes in
image intensity, producing a series of event sequences, denoted
as:

σ = Γ

(
log

(
Lxy(t)

Lxy (tref )

)
, c

)
, (4)

where the potential image Lxy(t) and Lxy(tref ) represents
the intensity at point (x, y) at moment t and tref , c is
the response threshold for intensity change, and Γ(·, ·) is a
truncated function:

Γ(d, c) =

 +1, d ≥ c
0, d ∈ (−c, c)
−1, d ≤ −c

, (5)

where d is the intensity of the corresponding brightness
change.

According to the general principles of event generation,
the most primitive and complete representation of all the
information in each event is to represent the event as an
n × 4 dimensional matrix, where each column contains all
the information of a single event: the 2D coordinates, the
timestamp and the event polarity. Since only the brightness
change of the object due to the motion process is of interest,
in this paper, we consider equating the event data into b
blocks and discretizing the time to superimpose the event data
between any two potentially clear images to obtain the event
change data containing only the 2D coordinates and event
polarity.

C. Blurry Image Generation

The specific process of generating an image by means of a
color camera can be represented as the process by which the
camera sensor collects photons during the exposure and con-
verts them into measurable charges. The degree of motion blur
in the image depends on the motion of the camera during the
exposure time. For example, a slow moving camera produces
minimal relative motion, especially at shorter exposure times,
whereas a fast moving camera produces a motion blurred
image, especially in low light scenes with longer exposure
times. The phenomenon may be expressed as an integral over
a series of virtual potentially sharp images, denoted as follows:

Iblur = ϕ

∫ τ

0

Itdt, (6)

where Iblur denotes the real captured motion blurred image,
ϕ is used as a normalization factor, τ is the camera expo-
sure time, and It is the potentially clear image captured at
timestamp t ∈ [0, τ ] during the exposure time. The blurred
image Iblur due to camera motion during the exposure time is
calculated by averaging the potentially clear image It for each
different timestamp t. The model is based on a discrete approx-
imation. The discrete approximation of the model depends on
the number k of discrete moments, denoted as follows:

Iblur =
1

b+ 1

b∑
k=0

Ik. (7)

Thus, for the blurred input of 3DGS, we can consider it as a
superposition of a series of potentially clear images. So when
acquiring the real world dataset and when making the synthetic
dataset, we consider the blurred image at one viewpoint as an
average of b + 1 potentially clear images. The preprocessing
for the model input data will also be centered around this.



IV. METHOD

Fig. 1 shows the overall framework of Ev3DGS, which
effectively improves the volumetric representation of 3DGS by
introducing two new losses in the framework of 3DGS, and
also designs an event-blurred image-based bit-pose estimation
framework to efficiently deal with real-world data.Ev3DGS
takes the blurred image’s and the corresponding events as
inputs for each viewpoint. Meanwhile Ev3DGS model in-
troduces blur rendering loss and event rendering loss. The
blur rendering loss simulates the process of blurred image
generation and provides more information about the scene
texture details to the network. The event rendering loss, on
the other hand, introduces event data into the 3DGS training
process, enabling the network to better learn the real 3D
volumetric representation and obtain information about the
motion characteristics of objects. After inputting the image
bitmap into 3DGS, 3DGS generates an initial point cloud
via for reconstruction rendering. After each rendering, the
predicted blurred image is obtained by averaging the image
sequences cumulatively, while the predicted event stream is
calculated by converting the image sequences into gray-scale
maps. The input blurred image and event stream are compared
with the predicted values to obtain the blur rendering loss and
event rendering loss for model supervision.

A. Blur Rendering Loss

With b+1 poses {P k}bk=0 of each view, we can get b+1 rays
{rk}bk=0 emitted from each pixel. With the 3DGS network,

each pixel can get b + 1 color values
{
Ĉk = C (rk)

}b

k=0
regarded as the process of blurry pixel generation, and the
average of the results is used as the predicted blurry color:

Ĉblur =
1

b+ 1

b∑
k=0

C (rk) . (8)

The loss function of 3DGS with blurred image as input is
then expressed as:

Lblur =
∑
r∈R

[∥∥∥Ĉc
blur − C(r)

∥∥∥2
2
+
∥∥∥Ĉf

blur − C(r)
∥∥∥2
2

]
, (9)

where 3DGS is designed using joint optimization of coarse
and fine models.

3DGS uses stochastic gradient descent, utilizing standard
GPU acceleration frameworks and adding custom CUDA cores
for some operations. A sigmoid function is used for α to keep
it constrained to [0, 1), and an exponential activation function
is used for the scaling factor of the covariance to ensure a
smooth gradient.

Initialize the covariance to an isotropic Gaussian whose axis
length is the same as the mean of the distances to the 3 nearest
points. Standard exponential decay scheduling techniques were
used for the location of the Gaussian. The loss function is the
loss L2 and D-SSIM terms:

L = (1− λ)L2 + λLD−SSIM , (10)

where λ is a weighting factor.
The loss L2 and D-SSIM terms are standardized metrics.The

loss function for 3DGS is slightly different from that of NeRF.
Due to the high computational cost of NeRF by light sampling
the sample points, NeRF is usually at the pixel level, whereas
3DGS performs the computation of the loss at the image level.

B. Event Rendering Loss

Image blur generation is a continuous process, however blur
rendering loss only uses discrete b+1 frames corresponding to
b+1 poses in the blurred image to model the blurring process,
losing a large amount of information in the blur generation
process. Therefore by introducing event rendering loss, the
high temporal resolution property of event data is utilized to
supervise the continuous blurring process between any two
predicted frames. Given a pixel x = (x, y), two color values
of Ck1 and Ck2 (k1 < k2) are randomly selected from the{
Ĉk

}b

k=0
of that pixel, and they are converted to grayscale

values to obtain Lk1
, Lk2

. According to the principle of event
generation, the difference between the logarithmic values of
the two grayscale values of Lk1

, Lk2
is divided by a threshold

θ to estimate the number of events between any two frames
for a given pixel x:

B̂(k1,k2)(x) =



[
log(Lk2)−log(Lk1)

θneg

]
, Lk2

< Lk1

[
log(Lk2)−log(Lk1)

θpos

]
, Lk2 ≥ Lk1

. (11)

The mean square error between the estimated number of
events B̂(k1,k2)(x) and the actual number of events B(k1,k2)(x)

in {Bk}bk=1 is taken as our event rendering loss. For pixel x
corresponding to Bk(x) in the event block, set the number
of negative events to its additive inverse so that positive and
negative events can cancel each other out when stacking event
blocks. Thus the expression for the event rendering loss is:

Levent =
∑

x∈χ

∥∥∥B̂(k1,k2)(x)−B(k1,k2)(x)
∥∥∥2
2
,

B(k1,k2)(x) =
∑k2

k=k1+1 Bk(x),

(12)

where χ is the set of pixels in each batch. The final loss
function is defined as:

L = Lblur + ωLevent, (13)

where ω is the weight parameter.

V. EXPERIMENT

A. Dataset

Since this experiment improves on the method proposed by
E2NeRF, in order to compare with the original model, the
dataset constructed by E2NeRF is used in this paper. Based
on the original NeRF dataset, camera shakiness was simulated
using the camera shakify plugin in Blender. In each view, 17
clear images of the camera under different degrees of shaking



were rendered and their corresponding poses were recorded.
These 17 images were then input into the simulated event
generation model v2e [17] to simulate the event data generated
during camera shaking. In addition, in order to obtain the
simulated blurred images, the 17 images were processed to the
original domain by inverse ISP operation and superimposed,
and then ISP processing was utilized to obtain the final
blurred images. Each scene contains 100 blurred images and
corresponding event data.

The real-world dataset was captured using a DAVIS 346
color event camera. This camera is capable of capturing spatio-
temporally aligned event data and RGB frames. Where the
resolution of the camera is 346×260 and the exposure events
of the RGB frames are set to 100 ms. 5 sets of challenging
scenes containing rich color and texture details in low-light
environments were acquired with this camera acquisition plat-
form. Each scene contains 30 images with different levels of
blurring on different views and the corresponding event data.

B. Experiment Details

The model in this thesis is constructed using 3DGS as
pipeline and trained on a single NVIDIA RTX2080Ti GPU
for 30,000 iters for each scene. For each hyper-parameter, set
ω = 1/625, b = 4 the rest of the parameters are kept the same
as the default values of 3DGS, and set the positive threshold
θpos = 0.2 and negative threshold θneg = 0.2 to simulate the
generation of events.

For the Blender synthesized data, under each view, 5 poses
are selected at equal intervals and sequentially input to the
network for rendering. In order to reflect the generalization of
the model, experiments were conducted under several synthetic
scene data, including challenging scenes such as metallic
materials.

For real-world data, since there are only blurred images and
corresponding events, one pose estimation model is used to
obtain the corresponding five poses. To characterize the high
dynamic range of the event data, several scenes were captured
under dark light conditions, each containing a total of 30 views.

C. Comparison Study

In order to measure the quality of the Ev3DGS model, we
will compare the measurements from the synthetic dataset and
under the real-world dataset. In addition this model will be
compared with the E2NeRF model which is also based on
blurring rendering loss and event rendering loss. The specific
experiments are as follows:

Synthetic data. The experiments were performed under 6
synthetic scenes for blur rendering, and PSNR, SSIM and
LPIPS were used to evaluate the experimental results, and the
Ev3DGS rendering results are shown in Tab. I. The experi-
mental results show that Ev3DGS achieves a good deblurring
rendering level in all six scenes, with an average PSNR of
29.96. Especially in the hotdog scene, the PNSR reaches a level
of 34.1, which is of very high rendering quality. In addition, in
the challenging scenes such as materials and mic, the rendering
quality is also good in the face of metallic materials and fine

Fig. 2. Comparison of E2NeRF (left) and Our Ev3DGS (right) rendering
results on synthetic data of mic (top) and ficus (bottom) scene.

meshes. However, by observing the rendering results of the
synthesized scenes in the first line of Fig. 2, we can find that
in some scenes, there are some “wrinkles” and “artifacts” on
the edges of the objects, which may be due to the sensitivity
of the event data to the edges of the moving objects.

TABLE I
SYNTHETIC DATA RENDERING RESULTS OF EV3DGS METHOD

Ev3DGS Chair Ficus Hotdog Lego Materials Mic Average
PSNR↑ 31.32 30.82 34.10 28.63 27.88 26.96 29.95
SSIM↑ 0.9646 0.9654 0.9652 0.9238 0.9378 0.9488 0.9509
LPIPS↓ 0.0503 0.0361 0.0610 0.1047 0.0708 0.0545 0.0629

The average training time is about 35min.

TABLE II
SYNTHETIC DATA RENDERING RESULTS OF E2NERF METHOD

E2NeRF Chair Ficus Hotdog Lego Materials Mic Average
PSNR↑ 30.36 25.81 33.43 27.76 27.42 26.61 28.57
SSIM↑ 0.9525 0.9035 0.9541 0.8972 0.9255 0.9359 0.9281
LPIPS↓ 0.0682 0.0890 0.0562 0.0889 0.0571 0.0831 0.0738

The average training time is about 13h.

The E2NeRF rendering results are shown in Tab. II. The
experimental results show that in the same six scenes, the
overall rendering level of the two is relatively close. However,
the E2NeRF model rendering results show more obvious
“patches” and white voids (circle in red), such as those shown
in the second line of Fig. 2. In ficus and mic scenes, E2NeRF
has a low level of differentiation for dense and small objects,
while Ev3DGS has a clearer performance. Under the materials
scene, Ev3DGS better reflects the reflection characteristics of
metal materials, while E2NeRF’s reflection characteristics are
less obvious.

Real-world data. Since the real-world data lacks clear im-
ages of ground truth, the five real scenes were quantitatively
analyzed using the reference-free image quality assessment
metrics BRISQUE [18] and RankIQA [19], as shown in
Tab. III, and the Ev3DGS results are also better. Under the
blur rendering loss and event rendering loss, the event data
effectively enhances the perception of 3DGS on dynamic blur.
The experimental results show that Ev3DGS also exhibits a
better rendering level in low dark real environments thanks to
the high dynamic range characteristics of the event camera.

TABLE III
COMPARATIVE RESULTS ON REAL-WORLD DATA

Real-World Data Ev3DGS E2NeRF
BRISQUE↓ 29.32 29.53
RankIQA↓ 3.579 3.588
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Fig. 3. Real-world data rendering results of Ev3DGS method.

D. Ablation Study

In this experiment, blurry rendering loss and event rendering
loss are introduced to the model, and in order to verify
the effect of introducing event rendering loss on the model,
ablation experiments are carried out based on the synthetic
dataset. Where the Ev3DGS model with event loss EventLoss
removed is denoted by Ev3DGS*. The experimental results are
shown in Tab. IV.

From the results, as shown in Tab. V, the rendered im-
age of Ev3DGS model compared with Ev3DGS* model im-
proves PSNR and SSIM but sacrifices a certain amount of
LPIPS.Specifically for the rendering of each scene, it can be
found that Event Loss has a large improvement in all the
indicators for ficus and hotdog scenes; while for chair, mic
scenes For the chair and mic scenes, there is no significant
change; for the lego and materials scenes, there is a large
improvement in PSNR and SSIM at the expense of certain
LIPIS indicators.

TABLE IV
RESULTS OF THE SYNTHETIC DATA OF EV3DGS* METHOD

Ev3DGS* Chair Ficus Hotdog Lego Materials Mic Average
PSNR↑ 31.23 30.70 33.92 28.74 27.57 26.95 29.85
SSIM↑ 0.9646 0.9651 0.9648 0.9266 0.9351 0.9487 0.9508
LPIPS↓ 0.0496 0.0363 0.0614 0.0998 0.0702 0.0540 0.0618

TABLE V
COMPARATIVE RESULTS OF ABLATION STUDY

Ablation Study Ev3DGS* Ev3DGS ∆
PSNR↑ 29.85 29.95 0.34%↑
SSIM↑ 0.9508 0.9509 0.01%↑
LPIPS↓ 0.0618 0.0629 1.78%↑

VI. CONCLUSIONS

In this paper, a new 3DGS model based on event cam-
era enhancement (Ev3DGS) is proposed, which explores the
possibility of combining event camera with 3DGS and pro-
vides a solution for 3DGS with blurry input. In addition,
the effectiveness of the model is demonstrated experimentally
on both synthetic and real datasets. The results show that
the Ev3DGS framework has a slight advantage in terms of
rendering results over the existing deblurred 3D reconstruction
model, the E2NeRF model. However, in terms of training
and rendering speed, Ev3DGS is much faster than E2NeRF,
which is also due to the ability of fast rendering of 3DGS.In
conclusion, the relevant results and conclusions obtained in this
paper are useful. It is hoped that the related work in this paper
will contribute to the study of high-quality 3D representation
learning using event data in complex and low-light scenes.
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