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Abstract—Investigating how brain connectivity and cognitive
resilience evolve throughout life in healthy individuals is crucial
to understanding the underpinnings of cognitive aging. This study
uses the Leipzig Mind-Brain-Body (LEMON) dataset to explore
the evolution of brain connectivity and cognitive resilience,
focusing on differences in connectivity metrics among young
(20–30 years) and old adults (70–80 years) and their corre-
lation with cognitive performance measured by the California
Verbal Learning Test (CVLT). Despite observable declines in
connectivity with age, the data suggest a maintained network
stability, potentially aiding in cognitive preservation. However,
the weak correlations between connectivity metrics and cognitive
performance suggest that cognitive resilience in aging could
involve mechanisms beyond traditional connectivity measures,
underscoring the importance of further exploring the complex
interactions between brain networks and cognitive functions in
healthy aging.

I. INTRODUCTION

Aging is associated with numerous physiological, cognitive,
and neural changes, often leading to declines in memory,
attention, and executive function, along with structural and
functional alterations in neural circuits and connectivity [1]
Understanding these changes is crucial for developing effective
strategies to promote healthy aging and mitigate cognitive
decline. One promising avenue of research involves cognitive
resilience, which refers to the ability of an individual to
maintain cognitive function despite age-related neural changes.
Cognitive resilience plays a key role in supporting healthy
aging, allowing individuals to maintain independence and
quality of life.

Research has shown that brain connectivity-the interactions
and communication between brain regions is fundamental to
understanding the processes that support cognitive function and
resilience [2]. Connectivity within specific frequency bands,
such as alpha, beta, and gamma, provides insight into how
efficiently different regions of the brain communicate, which is
crucial for maintaining cognitive abilities. Declines in connec-
tivity efficiency, especially in higher-frequency bands like beta
and gamma, are often associated with impairments in cognitive
functions. On the other hand, alpha band connectivity is sug-
gested to be more stable with age, which makes it a particularly
interesting target for understanding resilience[3][4].

Existing studies on age-related changes in brain connectivity
have often reported decreased connectivity and efficiency in
older adults[5]. This reduction suggests a diminished capacity
of the aging brain to integrate information across widespread
networks, impacting overall cognitive performance. However,
much remains unknown about the specific changes in connec-
tivity measures and how they relate to cognitive resilience,
especially when comparing young and old adults[6].

This research effort is crucial because early identification
of connectivity patterns associated with cognitive decline can
enable targeted interventions to maintain cognitive health
[7][8]. By understanding how connectivity changes across the
lifespan, we can better determine who might be at risk for cog-
nitive impairments and intervene early to slow or even prevent
further decline [9]. Research indicates that interventions such
as cognitive training, physical exercise, and lifestyle modifi-
cations can positively impact brain connectivity and cognitive
function, particularly if implemented during early or middle
stages of aging [10][11]. Additionally, findings from this study
can contribute to enhancing current practices in healthcare
settings by providing objective markers for cognitive resilience,
helping clinicians design personalized treatment plans aimed
at improving quality of life in older adults [12].

This study aims to address these gaps by analyzing brain
connectivity and cognitive resilience across the lifespan using
the LEMON dataset. Specifically, we examine changes in brain
connectivity metrics, such as connection counts, connection
strengths, and global efficiency, to determine their association
with cognitive resilience, measured by the California Verbal
Learning Test (CVLT)[13]. In this study, we focus on two dis-
tinct age groups: younger adults (20–30 years) and older adults
(70-80 years), comprising 124 and 22 subjects, respectively.
By using Phase Locking Value (PLV) and Coherence (COH)
matrices to quantify connectivity, we explore how differences
in connectivity are linked to cognitive resilience across age
groups.

Our study distinguishes itself from existing research by
combining multiple connectivity measures (PLV, COH, global
efficiency) with a cognitive performance assessment (CVLT),
providing a more comprehensive understanding of cognitive



resilience and aging[14]. Additionally, we focus on specific
frequency bands (alpha, beta, and gamma) to discern how
different aspects of connectivity may change with age and
impact cognitive function[15].

Identifying differences in brain connectivity and cognitive
resilience between age groups is essential for understanding the
underlying mechanisms of aging and for designing strategies
that promote healthy aging[16][17]. Our study aims to enhance
the understanding of how aging affects cognitive resilience,
providing insights that may inform clinical practices and public
health initiatives aimed at improving brain health across the
lifespan.

II. DATASET

We used data from the publicly available Leipzig Study
for Mind-Body-Emotion Interactions (LEMON) dataset[13],
which consists of comprehensive neuroimaging and be-
havioural data from 228 healthy participants. A 16-min rs-
EEG was recorded with a BrainAmp MR plus amplifier in an
electrically shielded and sound-attenuated EEG booth using
62-channel (61 scalp electrodes plus 1 electrode recording the
VEOG below the right eye) active ActiCAP electrodes (both
Brain Products GmbH, Gilching, Germany) attached accord-
ing to the international standard 10–20 extended localization
system, also known as 10-10 system, and referenced to FCz.
The dataset includes a young group (N=154, 25.1±3.1 years,
range 20–35 years, 45 female) and an elderly group (N=74,
67.6±4.7 years, range 59–77 years, 37 female) acquired cross-
sectionally in Leipzig, Germany, between 2013 and 2015.

During two-days assessment, participants completed a series
of MRI scans at 3 Tesla and a 62-channel EEG experiment at
rest. The resting-state EEG data was collected in two condi-
tions: Eyes Open and Eyes Closed. Additionally, participants
completed various cognitive tests, including the CVLT.

We did not use all the data from all the subjects in
the LEMON dataset for this study. We selected only young
participants aged between 20-30 years, totaling 124 subjects,
and old participants aged between 70-80 years, totaling 22
subjects.

III. METHODS

To analyze EEG signals, we employed PLV and COH
matrices as alternatives to raw EEG data. These methodologies
are favored due to their robustness against noise and their ca-
pability to reveal meaningful functional connectivity between
brain regions. PLV quantifies phase synchrony, which assesses
the consistency of phase relationships across trials, thereby
illuminating synchronous neural activities. On the other hand,
coherence measures the linear relationships between signals in
the frequency domain, providing insights into the strength and
stability of frequency specific interactions. Both methods are
well-established in the study of brain network interactions and
offer a biologically relevant, simplified representation of com-
plex neural dynamics[1][18]. This representation facilitates
the use of network analysis techniques, including connection
count, connection strength, global efficiency, and resilience

measures[19], which are crucial for understanding the effi-
ciency and adaptability of the brain’s functional network. By
utilizing PLV and coherence, our analysis robustly focuses
on dynamic interactions between brain regions, yielding more
robust and interpretable results[20][21].

A. Preprocessing

The data were band-pass filtered to isolate alpha (8-13
Hz), beta (13-30 Hz), and gamma (30-100 Hz) frequency
bands for both the Eyes Closed, Eyes Open datasets. Phase
Locking Value (PLV) and Coherence (COH) matrices were
computed for each frequency band to quantify connectivity
between brain regions. Cognitive resilience was assessed using
the CVLT. Factor analysis was performed on CVLT scores to
identify underlying cognitive factors, with the optimal number
of factors determined using a scree plot, which resulted in 4
factors.

EEG data were recorded using a 62-channel system with
participants at rest. The data were band-pass filtered to isolate
alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz)
frequency bands for both the Eyes Closed, Eyes Open datasets.
Phase Locking Value (PLV) and Coherence matrices were
computed for each frequency band to quantify connectivity
between brain regions. Cognitive resilience was assessed using
the CVLT. Factor analysis was performed on CVLT scores to
identify underlying cognitive factors, with the optimal number
of factors determined using a scree plot, which resulted in 4
factors.

Connectivity patterns are essential for understanding brain
activity, as they significantly affect regional activation during
tasks. Connectivity is vital for shaping dynamic brain activ-
ity[20]. To explore these dynamic connectivity patterns, we
employed PLV and COH methods, enabling a detailed analysis
of temporal dynamics of brain function.

B. PLV Computation

The PLV is a measure of the phase synchrony between pairs
of EEG signals, indicating the consistency of phase differences
across trials [21]. Previous studies on age-related changes
studied changes in phase synchrony using PLV [22]. The PLV
for each electrode pair was computed as Eq 1:

PLV =

∣∣∣∣∣ 1N
N∑
t=1

ei∆ϕ(t)

∣∣∣∣∣ (Eq 1)

where N is the number of time points, j the imaginary unit,
and ∆ϕij(t) is the phase between pairs of electrodes i and j
calculated for each time point t. The PLV ranges from 0 to 1,
with 1 indicating perfect phase synchrony and 0 indicating no
synchrony.

C. COH Computation

COH is a measure of the linear relationship between the
frequencies of two EEG signals, reflecting both amplitude
and phase consistency. Similarly, previous studies have shown
the utility of COH matrix in analysing age-related changes
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Data Name Optimal Threshold AUC Score t-test p-val Avg. Retain Stat. Relevance
EC alpha 0.4 0.71 3.32 0.00114 93% True
EC beta 0.9 0.63 1.49 0.13788 37% False
EC gamma 0.9 0.77 4.08 0.00007 29% True
EO alpha 0.4 0.73 3.70 0.00030 90% True
EO beta 0.9 0.74 2.83 0.00537 38% True
EO gamma 0.8 0.82 4.50 0.00001 41% True

Table I: Optimal threshold values for each dataset, along with associated AUC scores, t-test, p-val, and average
connection retention percentages. The table also indicates whether the results are statistically significant. The
term ’EC’ refers to the Eyes Closed condition, while ’EO’ denotes the Eyes Open condition.

[23]. COH Cxy(f) for each electrode pair and frequency was
computed as Eq 2:

Cxy(f) =
|Sxy(f)|2

Sxx(f)Syy(f)
(Eq 2)

Where Sxy(f), Sxx(f) and Syy(f) are cross and power
spectral densities respectively. COH values range from 0 to
1, with higher values indicating stronger linear relationships
between the signals at a particular frequency.

For each frequency band, COH matrices were constructed.
Each n× n matrix represents the COH between all pairs of n
electrodes, where each element Cij(f) denotes the COH value
between electrode i and j at a specific frequency.

For both PLV and COH Matrix, matrices were constructed
for both Resting State Eyes Open and Resting State Eyes
Closed conditions across all frequency bands.

D. Connection Counts and Connection Strengths

To quantify the connectivity patterns within brain networks,
we computed two primary metrics: connection counts and
connection strengths[24].

Connection counts indicate the number of connections be-
tween electrodes (nodes) and were obtained by summing the
binary adjacency matrix for each electrode, reflecting the total
number of significant connections[25].

Connection strengths represent the cumulative value of
connections between electrodes, calculated by summing the
original (non-binarized) connectivity matrix for each electrode,
providing an overall measure of connection strength[26].

E. Global Efficiency

Global efficiency measures how efficiently information is
exchanged across the entire network. Higher global efficiency
indicates better integration of information across distant brain
regions. The global efficiency Eglob for each subject’s brain
network was calculated using the following Eq 3:

Eglob =
1

N(N − 1)

∑
i ̸=j∈V

1

dij
(Eq 3)

where N is the number of nodes (electrodes) and dij is the
shortest length between nodes i and j.

F. Network Resilience Analysis

Robustness to Node Removal: Random or targeted removal
of nodes (electrodes) was simulated to evaluate the network’s
ability to maintain connectivity. Metrics such as giant com-
ponent size, network diameter, and clustering coefficient were
monitored to assess changes in network structure[27].

Resilience to Edge Removal: Similarly, edges (connections
between electrodes) were selectively removed to analyze the
impact on network connectivity. Measures like modularity and
assortative were examined to understand network stability.

IV. ANALYSIS RESULTS

We compared data from two groups:
• Young group: 124 participants (aged 20-30 years)
• Old group: 22 participants (aged 70-80 years)
Our goal was to analyze the differences between these age

groups using various methods mentioned above to gain in-
sights into cognitive abilities and brain network characteristics
associated with aging.

A. Connection Counts and Connection Strengths

To calculate connection counts and strengths, determining
the optimal threshold is essential. The Receiver operating
characteristic (ROC) and Area Under the Curve (AUC) method
was chosen for its comprehensive assessment of threshold
performance across all possible thresholds, combining thresh-
old agnosticism with statistical rigor for optimal selection.
The optimal threshold was identified based on the maximum
AUC score, representing the point where connectivity metrics
effectively differentiated between young and old subjects.
An independent t-test was conducted to compare connection
counts between the age groups at the optimal threshold, assess-
ing the statistical significance of the differences. Additionally,
the average retain percent at this threshold was calculated
to provide further insights into brain network connectivity,
as shown in Table I. The analysis revealed that the average
connection count and strength were consistently higher in
young subjects than in old subjects across all frequency bands
and both Eyes Open and Eyes Closed conditions, as shown in
Table II and Table III.

B. Global Efficiency

Global efficiency, which measures how efficiently informa-
tion is exchanged across the brain network, was computed
for each subject. An independent t-test assessed the statistical
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Metric Age Group No. Sub EC alpha
(thres=0.4)

EC beta
(thres=0.9)

EC gamma
(thres=0.9)

EO alpha
(thres=0.4)

EO beta
(thres=0.9)

EO gamma
(thres=0.8)

PLV 20-30 124 1720.51 713.48 563.59 1680.4 734.71 819.04
70-80 22 1649.27 661.04 446.0 1588.82 636.0 632.18

Metric Age Group No. Sub EC alpha
(thres=0.5)

EC beta
(thres=0.5)

EC gamma
(thres=0.6)

EO alpha
(thres=0.1)

EO beta
(thres=0.6)

EO gamma
(thres=0.5)

COH 20-30 124 944.23 937.46 529.99 1826.2 708.85 722.48
70-80 22 878.18 869.68 426.64 1812.5 618.4 557.27

Table II: This table described average connection retention count in PLV and COH matrices for each dataset at their optimal
thresholds, comparing young and old subjects. The term ’EC’ refers to the Eyes Closed condition, while ’EO’ denotes the Eyes
Open condition.

Metric Age Group No. Sub EC alpha
(thres=0.4)

EC beta
(thres=0.9)

EC gamma
(thres=0.9)

EO alpha
(thres=0.4)

EO beta
(thres=0.9)

EO gamma
(thres=0.8)

PLV 20-30 124 1361.5 684.00 540.35 1347.51 705.91 759.65
70-80 22 1296.99 635.75 427.77 1257.43 611.46 585.56

Metric Age Group No. Sub EC alpha
(thres=0.5)

EC beta
(thres=0.5)

EC gamma
(thres=0.6)

EO alpha
(thres=0.1)

EO beta
(thres=0.6)

EO gamma
(thres=0.5)

PLV 20-30 124 688.91 672.41 405.53 960.32 549.52 514.26
70-80 22 637.76 629.45 326.8 883.93 481.43 397.30

Table III: This table presents the average connection strength for Phase Locking Value (PLV) and Coherence (COH) matrices
for each dataset at their optimal thresholds, comparing young and older subjects. The term ’EC’ refers to the Eyes Closed
condition, while ’EO’ denotes the Eyes Open condition.

significance of differences between age groups. Significant
differences in global efficiency were observed between young
and old participants in the beta and gamma frequency bands,
while differences in the alpha band were insignificant, shown
as in Table IV. Correlation analysis between global efficiency
and CVLT scores showed no significant relationship, indicating
that global efficiency does not strongly correlate with cognitive
ability in the participants.

alpha beta gamma

t-test p-val t-test p-val t-test p-val
Global

Efficiency
PLV 1.64 0.10 3.16 0.002 2.53 0.012
COH 1.85 0.07 2.63 0.009 2.37 0.018

Resilience
Measures

PLV -0.85 0.40 -0.91 0.37 -1.024 0.31
COH -0.75 0.45 -0.44 0.66 -1.85 0.065

Table IV: Global Efficiency and Resilience measure comparison scores
between old and young subjects with t-test and p-val.

C. Resilience Measures
Resilience measures were calculated to evaluate the ro-

bustness and stability of brain networks in young and old
subjects. These measures provide insights into the brain’s
ability to maintain functionality despite potential disruptions.
Our findings suggest that overall network resilience, in terms of
cognitive abilities and network integrity, did not significantly
decline with age in our sample as shown in Table IV. Correla-
tion analysis between resilience measures and CVLT scores
revealed no significant relationship, indicating that network
resilience may not strongly correlate with cognitive ability in
the participants.

V. DISCUSSION

The connection count and connection strength analysis re-
vealed that the differences between young and old participants

are not very significant. The constraint of our study, which
involved a notably larger sample size of young participants
(124 subjects) compared to old participants (22 subjects).

There was a significant statistically relevant difference in
global efficiency between young and old participants only in
the beta and gamma bands, whereas no statistically relevant
difference was observed in the resilience measures. Previous
studies have shown that global efficiency tends to decrease with
age, although the extent and specific regions affected can vary.
This decline indicates a reduced ability of the aging brain to
integrate information across widespread networks, impacting
overall cognitive performance[18].

Moreover, the decline in local efficiency is associated with
impairments in cognitive functions, particularly those that rely
on localized processing[28]. Some studies suggest that alpha
band connectivity and power might not exhibit as pronounced
age-related declines as beta and gamma bands. This empirical
evidence supports the idea that alpha rhythms are more stable
with age.

VI. CONCLUSION

This research systematically explored changes in brain con-
nectivity and cognitive resilience with aging using the LEMON
dataset. Our findings indicate minor declines in connectivity
with age. however, the overall structural integrity and func-
tionality of brain networks remain stable, demonstrating an
intrinsic resilience that supports cognitive function in healthy
old adults. Advancing knowledge of the aging brain empowers
individuals to take proactive steps to protect their cognitive
well-being, including adopting lifestyle changes and partici-
pating in targeted training programs[29][30].

Despite reductions in connectivity metrics, correlations be-
tween these metrics and cognitive performance, as assessed by
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the CVLT, were weak. This suggests that cognitive resilience
in the elderly may not be directly linked to conventional
connectivity measures, potentially indicating other underlying
factors or compensatory mechanisms that aid cognitive main-
tenance during aging. This highlights the complexity of brain
connectivity and its relationship with cognitive function, which
may not be fully captured by direct neural interconnections.

Our results enhance the understanding of healthy aging by
emphasizing the need for further research into the interactions
between brain networks and cognitive function. Future studies
should integrate diverse metrics of brain function and cognitive
performance to elucidate these relationships. Such efforts are
essential for advancing our understanding of aging and devel-
oping targeted interventions to enhance cognitive resilience in
the elderly.

This study underscores the significance of using EEG data
and cognitive testing to explore brain-behavior relationships,
supporting the development of strategies for healthy cognitive
aging. As we continue to unravel these complex dynamics,
the insights gained will enrich our understanding of the aging
brain and improve the cognitive health and quality of life of
old adults.
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