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Abstract—Bandwidth extension (BWE), also known as audio
super-resolution (SR), aims to predict a high resolution (HR)
speech signal from its low resolution (LR) corresponding part.
Most neural BWE models work at a specific sampling rate but,
producing the final result in a noise-free environment by recov-
ering the spectrogram of high-frequency part of the signal and
concatenating it with the original low-frequency part. Although
these methods achieve high accuracy, they become less effective
when facing the real-world scenario, where unavoidable noise is
present and sampling rates are flexible. To address this problem,
we propose Super Denoise Net (SDNet), a neural network for
a joint task of BWE and noise reduction from a flexible low
sampling rate signal. To that end, we design gated convolution
and lattice convolution blocks to enhance the repair capability
and capture information in the time-frequency axis, respectively.
The experiments show our method outperforms all current state-
of-the-art (SOTA) noise-robust BWE model in Valentini-Botinhao
test set. Our model also outperforms other baselines on DNS 2020
no-reverb test set with higher objective and subjective scores.

I. INTRODUCTION

Bandwidth extension (BWE) is the task to reconstructing
the high resolution (HR) part of the speech signal from its
low-resolution (LR) part, which is also termed as audio super-
resolution (SR). As one of the important tasks in the front-
end of speech processing, BWE is widely applied in wireless
communication, speech recognition [1], text-to-speech [2], to
name a few.

Although BWE has achieved considerable progress in past
years, few studies have focused on the task of BWE in noisy
environments, i.e., bandwidth extension along with the noise
suppression. Most existing frequency domain based work basi-
cally keeps the low-frequency part and predicts only the high-
frequency part, and finally concatenates the two parts in series.
When noise exists in the low-frequency part, this pipeline not
only fails to remove the noise, but also produces the biased
prediction of high-frequency part due to noise interference. To
address this issue, in [3], the authors introduced a multi-stage
model to respectively conduct noise reduction and bandwidth
extension. In [4], authors combine UNet+AFiLM [5] and an
improved DTLN [6] to form a two-stage system. The authors
in [7] simultaneously estimate the missing components and the
noise distribution in degraded speech signal with a DNN. For

§ Part of work was done during internship at vivo AI lab.

the models of MTL-MBE [8] and EP-WUN [9], the authors
claimed that they achieved the SOTA performance of this task.
On the other hand, there are a lot of speech signals with flexible
sampling rates or known sampling rates but small effective
bandwidths (the high-frequency components are missing), and
so far there is no noise-robust BWE model can deal with this
situation.

In this paper, we propose Super Denoise Net (SDNet), a neu-
ral network that removes noise while extending the bandwidth.
To that aim, we design a generator and discriminator network,
where encoder-bottleneck-decoder structure is utilized in gen-
erator and multi-discriminator structure is developed, enabling
the possibility of adversarial training to make the model robust.
It is of interest to note that the proposed model does not require
the prior information of the sampling rate of LR speech. Our
main contributions are provided as follows.

• We develop a single-stage network, where the gated
convolution and lattice convolution blocks are utilized to
jointly perform noise reduction and SR. Our method has
improved the performance of model and outperformed the
baselines in both noisy and noise-free cases.

• Our approach is one of the first noise-robust BWE model
that supports to process all the speeches whose sampling
rates are from 4 kHz to 16 kHz, which means that the
sampling rate of LR speech is flexible in our case.

• The quality of the speeches generated by our model from
8 kHz noisy samples are even better than those of some
popular models only focusing on 16 kHz to 16 kHz noise
reduction.

II. METHODS

A. Problem Settings

In this paper, we address the problem of recovering HR
clean speech from LR noisy speech. Given a HR clear speech
y ∈ RT , where T is the length, after downsampling s times
and adding noise at the same sampling rate with the same
length, the LR noisy speech x ∈ R

T
s is generated. Our goal is

to design a function G that can efficiently predict y from the
observation x, i.e., ŷ = G(x) ≈ y. The same representation as
above will be used in the formulas below.
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Fig. 1. The generator network architecture.

B. Network Architecture

Our model uses a U-shaped structure, containing encoders,
decoders, and lattice convolution blocks (LBs) as bottleneck
layers. The residual connections are set between encoders and
decoders, also between the lattice convolution blocks. Model
architecture is visualized in Figure 1. Due to space limit, we
provide parameter settings, input size, and output size for each
layer at our demo page1.

1) Generator:
Encoder and decoder. As illustrated in Figure 1, there are
4 layers in encoder and decoder each. The input of encoder
is the spectrogram of upsampled waveform and it will be
reshaped at the first encoder layer with a 2D convolution, with
the complex part moved to channel dimension. After that, a
frequency transform block (FTB) [10] is applied to capture
the non-local correlations in spectrogram along the frequency
axis. Unlike previous work [11], we utilize gated convolution
(GConv) instead of ordinary convolution in the later structure,
which has been proved to enhance the model’s generation
ability by learning a dynamic feature selection mechanism for
each channel and each spatial location [12]. Inside the encoder,
there are two residual branches with two 1D gated convolutions
at the beginning and end. In the middle, there are LSTM
and temporal-based attention modules to capture long-distance
relations. Followed by each encoder layer is a decoder layer
that recovers the latent vectors equal to the size of spectrogram
before passing the encoder. It is worth noting that there is
concatenated residual connection between each encoder and
decoder layer, while between two residual branches within the
encoder layer, it is a summation residual connection.

1https://sdnetdemo.github.io/

Bottleneck layers. The bottleneck layers include 4 lattice
convolution blocks (LBs), which were first proposed in image
restoration task [13]. Combined with gated convolution, this
structure can offer a blend of structured interpolation with
adaptive and long-range context modeling. As shown in Figure
1, each LB includes paired butterfly-style structures. The input
passes two branches that contain several convolution layers
and LeakyReLU activation layer is followed for each layer.
The two branches interact with each other through learnable
combination coefficients. Specifically, given an input feature
I , the first combination is

M1(I) = I + a1J(I), (1)

N1(I) = a2I + J(I), (2)

where J(·) denotes to the implicit non-linear function of
several layers shown in Figure 1. Similarly, the second com-
bination is

M2(I) = b1N1 +K(M1(I)), (3)

N2(I) = N1 + b2K(M1(I)). (4)

Afterwards, the output of two branches are merged in channel
dimension and then compressed through a 1×1 convolution
layer. The final output is

O = Conv(Concat(M2(I), N2(I))). (5)

The combination coefficients are mainly determined in the
following way. The mean and standard deviation in channel
dimension are first obtained by global mean pooling in the
upper branch and global standard deviation pooling in the
lower branch. Then, those statistics in the two branches are
passed through two fully connected layers, each followed by
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Fig. 2. The multi-scale discriminators.

ReLU and Sigmoid activation functions, respectively. Finally,
the outputs of the two branches are averaged to obtain the
combined coefficients.

2) Discriminators:
To implement multi-loss training in an adversarial manner, we
employ multi-scale discriminators, whose structure is shown
in Figure 3. The inputs to the discriminator system are
super-resolution (SR) speech and high-resolution reference
signals generated by the generator. It contains 3 discriminators
(D1, D2, D3), each with the same structure as in MelGAN.
Specifically, there are 7 convolutional layers in each discrim-
inator, 4 of which have downsampling capabilities. When the
data pass through each layer, real and fake features at different
scales will be produced, which are used to compute the feature
loss. Also, the data passing through the discriminator will
become an output, and the outputs will be used to compute
the adversarial loss of the generator and discriminator. Further-
more, the inputs of D1, D2, and D3 are original, 2-times down-
sampled, and 4-times down-sampled waveforms, respectively.
For interested readers, see more details of discriminators in
[14].

C. Loss Function

The model is trained with an adversarial approach. We use
a multi-scale STFT loss with FFT bins ∈ {512, 1024, 2048}
and hop length ∈ {50, 120, 240} to form one part of the loss
function. The window lengths are {240, 600, 1200}. On the
other hand, the multi-scale adversarial and feature losses in
time domain is added in. The total loss can be expressed as

L = LMSTFT + Ladv
G + λfLf , (6)

where λf = 100, LMSTFT , Ladv
G and Lf are multi-scale

STFT loss, adversarial loss of generator, and feature loss,
respectively. Let s(x, θm) denote |STFT (x)| with the mth

hyperparameters θm, the multi-scale STFT loss is defined as

LMSTFT = E(x,y)∼pdata[
3∑

m=1

(
||s(y, θm)− s(x, θm)||F

||s(y, θm)||F
+

1

N
||log s(y, θm)

s(x, θm)
||
)]

,

(7)

where || · ||F and || · ||1 are Frobenius and ℓ1-norms, N is the
number of elements in the magnitude.

As shown in Figure 3, the latter two loss functions can be
depicted as

Ladv
G = Ex∼pdata

[
1

K

∑
k

max(0, 1−Dk(G(x)))

]
, (8)

Lf = E(x,y)∼pdata

 1

KL

∑
k,l

||Dl
k(y)−Dl

k(G(x))||1

 , (9)

where k = 1, ...,K is the number of discriminators, l =
1, ..., L is the number of layer in one discriminator.

III. EXPERIMENTS

A. Dataset

We use the dataset provided by Deep Noise Suppression
(DNS) Challenge at ICASSP 2023 [16] and Valentini-Botinhao
[17] to generate training data containing noise. We synthesize
clean and noisy speech pairs with 500 hours by randomly
mixing the speech and noise, and each sample lasts for 5
seconds. The SNR of all samples are at -5 - 20 dB and the
sampling rate is 16 kHz. We then downsample all the noisy
speech by a factor of s = 2, i.e., turning the paired data into
8 kHz noisy speech and 16 kHz clean speech. For validation,
we separate %10 (50 hours) of total data as validation set. For
testing, no-reverb test set of DNS Challenge 2020 [18] and
Valentini-Botinhao test set are used and the noisy samples are
also downsampled if necessary.



TABLE I
TEST RESULTS OF NOISE-ROBUST BWE MODELS ON VALENTINI-BOTINHAO NOISY TEST SET DOWNSAMPLED TO 8 KHZ.

Method PESQ-WB↑ STOI (%)↑ CSIG↑ CBAK↑ COVL↑ LSD↓
UEE [15] 2.23 93 2.27 2.39 2.17 2.72

MTL-MBE [8] 2.55 94 2.64 3.21 2.46 2.29
EP-WUN [9] 2.25 92 3.50 2.94 2.86 1.23

AFiLM + I-DTLN [4] 2.54 90 2.63 2.87 2.18 1.54

Ours 2.67 95 3.29 3.32 2.92 1.16

TABLE II
TEST RESULTS FOR DIFFERENT TASK ON DNS-CHALLENGE NO-REVERB TEST. “B” IS NOISE-FREE BWE, “D” IS DENOISE, AND “RB” IS NOISE-ROBUST

BWE. “SOURCE” AND “NOISE” REPRESENT THE SAMPLING RATE OF INPUTS AND THE CASE WHETHER THE INPUTS CONTAIN NOISES.

Method Task Source Noise PESQ-NB↑ PESQ-WB STOI(%) CSIG CBAK COVL LSD MOS↑
WSRGlow

B 8 kHz #

4.365 2.811 99.4 3.946 4.068 3.433 0.929 4.21
NU-Wave 2 4.353 2.646 99.4 3.663 2.869 3.209 1.328 4.08

AERO 4.369 3.295 98.5 4.287 4.273 3.844 0.802 4.27
Ours 4.377 3.661 98.6 4.103 4.553 3.935 0.783 4.55

DCCRN

D 16 kHz !

3.17 2.64 92.9 — — — — —
FullSubNet 3.28 2.72 95.3 — — — — —
DPT-FSNet 3.28 2.72 95.3 — — — — —

Ours 3.29 2.80 96.0 — — — — —

VoiceFixer
RB 8 kHz !

2.535 1.679 84.0 2.532 1.914 2.043 1.323 3.83
Ours 3.554 2.777 97.1 3.313 3.532 3.063 1.218 4.38

VoiceFixer
RB 4-16 kHz !

2.540 1.822 84.2 2.737 1.984 2.222 1.280 3.89
Ours 3.550 3.013 97.3 3.657 3.726 3.355 1.112 4.43

For the case of uncertain low sampling rate, we adopt same
operation as above, except for downsampling. We use a filter
with random parameters when doing downsampling, the types
include Chebyshev, Elliptic, Butterworth and Boxcar, the order
is a random integer from 2 to 10, the cutoff frequency is an
integer from 2000 to 8000 Hz.

B. Training Details

Unlike the complex training policies such as multi-stage
training, variable learning rate and warmming up used in
previous work, our training method is single-stage and simple.
We use an Adam optimizer (β1 = 0.8, β2 = 0.999) to optimize
both generator and discriminator with a stable learning rate of
1 × 10−4. We train the model on NVIDIA RTX3090 GPUs
for 200 epochs and select the checkpoint which has the best
performance on validation data to test. The FFT bins and hop
length of the STFT operation in our network is 512 and 64
respectively.

C. Baselines

For baselines, we consider both cases of noise-robust and
noise-free BWEs, and they are

1) noise-robust BWE: we compare our model with the
previous SOTA methods of MTL-MBE and EP-WUN
in [8], [9], in the same test set. Since the authors did
not provide the source code, we have re-implemented
the method proposed in [4] to produce the results.
For uncertain input sampling rate case, the baseline is
VoiceFixer [19].

2) noise-free BWE: we compare our model with WSRGlow
[20], NU-Wave 2 [21], and AERO [11].

To further demonstrate the capability of our model, we
also compare our model with 16 kHz to 16 kHz denoise-
only models of DCCRN [22], FullSubNet [23], and DPT-
FSNet [24]. For all the models on denoise task only, we have
referred to the results provided in [25]. This comparison further
showcases our model presents a high capacity of removing the
noise and generating high quality speech.

D. Evaluation Metrics

To evaluate the quality of the generated speech, both
objective and subjective evaluation metrics were used. The
objective evaluation metrics used were PESQ [26] including
narrow-band one (PESQ-NB, 0-8 kHz) and wide-band one
(PESQ-WB, 8-16 kHz), STOI [27], CSIG, CBAK, COVL
scores[28] and log spectral distance (LSD). The subjective
evaluation metrics is overall Mean Opinion Score (MOS) [29].
We randomly selected 50 samples from the test set and asked
15 people to provide overall MOS values of each sample. The
final MOS score is the average of these evaluations. For all
metrics in this paper except LSD, the higher score means a
better performance.

E. Results and Analysis

Table I summarizes the comparison between our model and
noise-robust BWE methods. The results show that our SDNet
performs best in all the metrics except for CSIG. This suggests
that the audio generated with our method has a higher quality,
which meets our expectation to our network and datasets



(a) (b) (c)

Fig. 3. Spectrograms of noise-robust BWE task results. (a) Input; (b) our
method; (c) ground truth.

(a) (b) (c)

Fig. 4. Spectrograms of noise-free BWE task results. (a) Input; (b) our
method; (c) ground truth.

designs. As for the mild drop in CSIG, this may because the
over-suppression of noise hurts the speech component.

In 8 kHz to 16 kHz noise-free BWE task, our SDNet remains
competitive in most metrics (see Table II), especially in PESQ-
WB and CBAK, which shows that our generated wide-band
signals have a better audibility and a more reasonable handling
of background sounds. At the same time, it shows that our
focus on BWE under noise does not sacrifice its performance
in a noise-free environment.

In a comparison with VoiceFixer, our method outperforms
it in all metrics for both 8 kHz to 16 kHz and 4-16 kHz to
16 kHz noise-robust BWE tasks. VoiceFixer aims to repair
many distortions such as clipping, reverberation, and we find
the speeches produced mismatch with the reference signal in
terms of loudness, etc., which causes the degradation of its
performance in objective metrics, but in subjective metrics,
the scores of these speeches are still very high, which shows
its repair is still very effective.

For the flexible sampling rate scenario (the last row in
Table II), on the other hand, with a very limited bandwidth
information, our model still improve the speech quality ef-
fectively, which is rare among the existing noise-robust BWE
models. On 16 kHz to 16 kHz noise reduction task, our method
performance better than the baseline denoise-only models, and
surprisingly, the PESQ and STOI of the speeches generated by
our model from 8 kHz noisy samples are even higher than the
popular baseline models in Table II only focusing on 16 kHz
to 16 kHz noise reduction.

For the same task, our model performs slightly better on

the DNS test set than the Valentini-Botinhao’s data set. This
is because the speech lengths in the latter are generally very
short, which prevents the model from utilizing contextual
information to make more accurate predictions, resulting in
a slight performance degradation.

We also tested our model with real-world data, and the
results showed that the noise in these speeches was largely
suppressed and the human voice was much clearer. Due to
space limit, we provide the audio samples at our demo page.
Figure 3 and 4 are the spectrograms of the results for different
tasks.

TABLE III
ABLATION STUDY OF NETWORK STRUCTURE BASED ON 8 KHZ “RB” TASK

OF DNS-CHALLENGE NO-REVERB TEST SET.

Method PESQ-NB PESQ-WB LSD
SDNet 3.554 2.777 1.218

w/o GConv 3.445 (-0.109) 2.630 (-0.147) 1.256 (+0.038)
w/o LBs 3.442 (-0.112) 2.633 (-0.144) 1.262 (+0.044)
w/o Both 3.372 (-0.182) 2.538 (-0.239) 1.293 (+0.075)

F. Ablation Studies

In order to study the impact of network components on net-
work performance, we conducted ablation studies by gradually
removing some components of the original model. The exper-
iments show that the original model produces the best results.
When gated convolutions are replaced by general convolutions
(“w/o GConv” in Table III), the performance of network
declines due to the missing details at 6-8 kHz. When LBs
only are removed, the performance is also degraded because
of the lack of utilization of the time dimension information in
the spectrogram. When both changes act together, the accuracy
of the model drops dramatically.

IV. CONCLUSION & FUTURE WORK

In this paper, we proposed SDNet, a U-shaped encoder-
decoder neural network to jointly handle BWE and denoise
tasks in low sampling rate noisy environments. Experiments
demonstrated that our model outperforms all baseline models
in both objective and subjective metrics in different cases. The
ablation studies have verified that our use of gated convolutions
and LBs enhances the performance of the model. However, our
model also have some limitations. When we try to train the
model at a higher resolution such as 48 kHz, we find it is
hard to deal with two tasks at one stage, and this is a common
issue encountered by many models. In our future work, we
will continue this task at higher resolutions and we will also
consider adding music and other personalized datasets.
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