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Abstract—We propose a novel method for securely training the
vision transformer (ViT) with sensitive data shared from multiple
clients similar to privacy-preserving federated learning. In the
proposed method, training images are independently encrypted by
each client where encryption keys can be prepared by each client,
and ViT is trained by using these encrypted images for the first
time. The method allows clients not only to dispose of the keys but
to also reduce the communication costs between a central server
and the clients. In image classification experiments, we verify the
effectiveness of the proposed method on the CIFAR-10 dataset in
terms of classification accuracy and the use of restricted random
permutation matrices.

I. Introduction
Deep neural networks (DNNs) have been deployed in various

applications. Training a high-quality DNN model requires a
huge amount of training data, but model training raises privacy
concerns, especially when dealing with sensitive or personal
information [1]. To collect a huge amount of training data, in
centralized machine learning, each client prepares information
on local data and sends it to a central server for model training.
Federated learning (FL) [2], [3] is a learning approach that
allows multiple clients to collaboratively train a shared model
while keeping their data decentralized and private. In FL, clients
participate in the training process using their local data, without
sharing their raw data. However, the iterative learning process in
FL generates some issues in terms of learning costs for clients
and communication costs in a distributed environment [4], [5].
To overcome these issues, we propose a novel approach in which
multiple clients efficiently collaborate to train a high-quality
model.

In privacy-preserving collaborative learning, each client
collects data and securely sends the data or an update obtained
from the data to a central server for model training. In FL, in
each round, each client independently computes an update to
the current model based on its local data and communicates
this update to a central server so that the client-side updates
are aggregated to compute a new global model. Accordingly,
conventional collaborative learning including FL requires both
resources for computing the update in each client and commu-
nication efficiency [1]. In this paper, we propose a novel method
for privacy-preserving collaborative learning to reduce these

costs. The method is carried out by using encrypted data, called
learnable encryption [6] where data is independently encrypted
by each client. The encrypted data is sent to a central server for
model training one time only, and a global model is trained by
using the encrypted data from clients, so the method allows us
not only to reduce the communication costs but to also avoid
the cost for computing an update at all clients. We make the
following contributions in this paper.
(a) We propose a novel method using learnable encryption for

privacy-preserving collaborative learning that can reduce
both communication costs and computation sources of
clients.

(b) We propose the use of restricted random permutation
matrices to reduce the influence of data encrypted with
independent keys.

In the proposed method, different random permutation ma-
trices used as encryption keys are applied to each piece of
data by each client, but this causes the performance of models
to degrade. To improve this issue, we also consider the use
of restricted random permutation matrices. In experiments, the
effectiveness of the method is verified in an image classification
task under the use of the vision transformer (ViT) [7].

II. Related Work

The proposed method will be discussed under the use of ViT
and learnable image encryption, which are summarized here.

A. Vision transformer

ViT [7] is commonly used in image classification tasks and is
known to provide a high classification performance. As shown
in Fig. 1, in ViT, an input image 𝑥 ∈ Rℎ×𝑤×𝑐 is divided
into 𝑁 patches with a size of 𝑝 × 𝑝, where ℎ, 𝑤, and 𝑐

are the height, width, and number of channels of the image.
Also, 𝑁 is given as ℎ𝑤/𝑝2. Afterward, each patch is flattened
into 𝑥𝑖𝑝 = [𝑥𝑖𝑝 (1), 𝑥𝑖𝑝 (2), . . . , 𝑥𝑖𝑝 (𝐿)]. Finally, a sequence of
embedded patches is given as

𝑧0 =[𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥1
𝑝E; 𝑥2

𝑝E; . . . 𝑥𝑖𝑝E; . . . 𝑥𝑁𝑝 E] + Epos, (1)



Fig. 1: Overview of ViT

where

Epos =((𝑒0
𝑝𝑜𝑠) (𝑒1

𝑝𝑜𝑠) . . . (𝑒𝑖𝑝𝑜𝑠) . . . (𝑒𝑁𝑝𝑜𝑠)),
𝐿 =𝑝2𝑐, 𝑥𝑐𝑙𝑎𝑠𝑠 ∈ R𝐷 , 𝑥𝑖𝑝 ∈ R𝐿 , 𝑒𝑖𝑝𝑜𝑠 ∈ R𝐷 ,
E ∈R𝐿×𝐷 , Epos ∈ R(𝑁+1)×𝐷 .

𝑥𝑐𝑙𝑎𝑠𝑠 is a class token, E is an embedding (patch embedding) that
linearly maps each patch to dimensions 𝐷, Epos is an embedding
(position embedding) that gives position information to patches
in the image, 𝑒0

𝑝𝑜𝑠 is the position information of a class token,
𝑒𝑖𝑝𝑜𝑠 is the position information of each patch, and 𝑧0 is a
sequence of embedded patches. Afterward, 𝑧0 is input into the
transformer encoder. The encoder outputs only the class token,
which is a vector of condensed information on the entire image,
and it is used for classification.

Previous studies have indicated that when models are trained
with images encrypted by one client, the performance of
the models is degraded compared with models trained with
plain images [8], [9]. If multiple clients collaboratively train
models by using images encrypted with independent keys, the
performance of the models will be more degraded than that
of one client. Accordingly, we propose a novel method that
can improve the performance degradation even when multiple
clients collaboratively train a model by using images encrypted
with independent keys.

B. Learnable image encryption
Various image transformation methods that use a secret key,

often referred to as perceptual image encryption, have been
studied so far for many applications [6]. In this paper, we focus
on learnable images transformed with a secret key, which have
been studied for deep learning. Learnable encryption enables
us to directly apply encrypted data to a model as training and
testing data. Encrypted images have no visual information on
plain images in general, so privacy-preserving learning can be
carried out by using visually protected images. In addition, the

use of a secret key allows us to embed unique features controlled
with the key into images. Adversarial defenses [10]–[12] and
access control [13], [14] are carried out with encrypted data
using these unique features.

A block-wise learnable image encryption method (LE) with
an adaptation layer was introduced [15] as the first learnable
image encryption method, and then another encryption method,
a pixel-wise encryption (PE) method that does not use any
adaptation layer, was proposed [16]. However, both encryption
methods are not robust enough against ciphertext-only attacks,
as reported in [17], [18]. To enhance the security of encryption,
LE was extended to an extended learnable image encryption
method (ELE) by adding a block scrambling (permutation)
step and a pixel encryption operation with multiple keys [19].
However, ELE still has inferior accuracy compared with using
plain images, even when an additional adaptation network
is used to reduce the influence of the encryption. Recently,
block-wise encryption was also pointed out to have a high
similarity to isotropic networks such as ViT and ConvMixer
[9], [20], and the similarity enables us to reduce performance
degradation. However, no conventional learnable encryption
methods have been designed for privacy-preserving model
training with multiple clients.

III. Proposed Method

A. Overview

Fig. 2 shows an overview of the proposed method, where
datasets that M clients have are shared to train a global model.
In the framework, a pretrained model is fine-tuned by using the
shared datasets. Below is the procedure for model training and
testing.

1 Each client prepares keys for image encryption and
carries out image encryption with the keys.

2 Each client sends the encrypted images to a central
server.

3 A global model is fine-tuned by using the encrypted
images on the server.

4 Each client receives the trained model from the
server.

5 Each client encrypts a test image by using a key and
inputs it to the model to obtain an estimation result.

In this framework, the server cannot get both visual information
of images and the keys. In addition, each client can use a key
that is different from other clients’ keys. Clients may also change
keys for each image.

B. Image encryption with random permutation matrices

ViT has a high similarity to block-wise encryption [8], so
the proposed method is carried out using block-wise encryption,
which consists of block scrambling (block permutation) and
pixel permutation. Below is the procedure for block scrambling,
in which Ebs is a random permutation matrix for block
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Fig. 2: Framework of proposed method

permutation, given by

Ebs =

©«

𝐸𝑏𝑠 (1, 1) . . . 𝐸𝑏𝑠 (1, 𝑗) . . . 𝐸𝑏𝑠 (1, 𝑁)
...

...
...

𝐸𝑏𝑠 (𝑖, 1) . . . 𝐸𝑏𝑠 (𝑖, 𝑗) . . . 𝐸𝑏𝑠 (𝑖, 𝑁)
...

...
...

𝐸𝑏𝑠 (𝑁, 1) . . . 𝐸𝑏𝑠 (𝑁, 𝑗) . . . 𝐸𝑏𝑠 (𝑁, 𝑁)

ª®®®®®®®¬
. (2)

(a) Divide an image 𝑥 ∈ Rℎ×𝑤×𝑐 into 𝑁 non-overlapped blocks
with a size of 𝑝 × 𝑝 such that B = {𝐵1, 𝐵2, ..., 𝐵𝑁 }⊤, 𝐵𝑖 ∈
R𝑝2𝑐, where 𝑝 is also equal to the patch size of ViT.

(b) Generate a random integer sequence with a length of 𝑁 by
using a key as

𝑙 = [𝑙 (1), · · · 𝑙 (𝑖), · · · 𝑙 (𝑁)] (3)
where

𝑙 (𝑖) ∈ {1, 2, · · · , 𝑁},
𝑙 (𝑖) ≠ 𝑙 ( 𝑗) if 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ {1, 2, · · · , 𝑁}.

(c) Define Ebs in Eq.(2) as

𝐸𝑏𝑠 (𝑖, 𝑗) =
{

0 (𝑙 ( 𝑗) ≠ 𝑖)
1 (𝑙 ( 𝑗) = 𝑖)

. (4)

(d) Define a vector b as

𝑏 = {1, 2, · · · , 𝑁}, (5)

and transform it with Ebs as

�̂� = 𝑏Ebs (6)
= {�̂�(1), .., �̂�(𝑖).., �̂�(𝑁)}, �̂�(𝑖) ∈ {1, 2, .., 𝑁}.

(e) Give permutated blocks B̂ = {�̂�1, �̂�2, ..., �̂�𝑁 }⊤ as

𝐵𝑖 = 𝐵�̂� (𝑖) . (7)

In the proposed method, each client carries out the above pro-
cedure with their keys. Next, the procedure for pixel permutation
is explained. In the method, R, G, and B values in each block are
randomly permutated. A random permutation matrix for pixel
permutation Eps , which is applied to each block, is expressed
as

Eps =

©«

𝐸𝑝𝑠 (1, 1) . . . 𝐸𝑝𝑠 (1, 𝑗) . . . 𝐸𝑝𝑠 (1, 𝐿)
...

...
...

𝐸𝑝𝑠 (𝑖, 1) . . . 𝐸𝑝𝑠 (𝑖, 𝑗) . . . 𝐸𝑝𝑠 (𝑖, 𝐿)
...

...
...

𝐸𝑝𝑠 (𝐿, 1) . . . 𝐸𝑝𝑠 (𝐿, 𝑗) . . . 𝐸𝑝𝑠 (𝐿, 𝐿)

ª®®®®®®®¬
, (8)

where 𝐿 = 𝑝2𝐶.

Below is the procedure for the permutation.
(a) Generate a random integer sequence with a length of L by

using a key as

𝑢 = [𝑢(1), · · · 𝑢(𝑖), · · · 𝑢(𝐿)] . (9)
where

𝑢(𝑖) ∈ {1, 2, · · · , 𝐿},
𝑢(𝑖) ≠ 𝑢( 𝑗) if 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ {1, 2, · · · , 𝐿}.

(b) Define Eps in Eq.(8) as

𝐸𝑝𝑠 (𝑖, 𝑗) =
{

0 (𝑢(𝑖) ≠ 𝑗)
1 (𝑢(𝑖) = 𝑗)

. (10)

(c) Vectorize the elements of each block 𝐵𝑖 as 𝑥𝑖𝑝 ∈ R𝐿 , and
transform it with Eps with

𝑥′𝑖𝑝 = 𝑥𝑖𝑝Eps. (11)

(d) Concatenate the transformed vectors into an encrypted
image block �̂�𝑖 .

C. Use of restricted random permutation matrices
A permutation matrix is a square binary matrix that has exactly

one entry of 1 in each row and each column with all other entries
0. Every permutation matrix is orthogonal, with its inverse equal
to its transpose. As describe above, two permutation matrices,
Ebs and Eps, are used for image encryption in the proposed
method.

Three types of permutation matrices are considered. The
performance of trained models can be managed by the type
of permutation matrix. For 𝑁 = 5, an example with Ebs is given
below, where ∗ indicates a fixed element.
(A) Identity matrix (𝑁𝑏𝑠 = 𝑁):

Ebs =

©«
1∗ 0 0 0 0
0 1∗ 0 0 0
0 0 1∗ 0 0
0 0 0 1∗ 0
0 0 0 0 1∗

ª®®®®®¬
. (12)

If 𝐸𝑏𝑠 is the identity matrix of 𝑁 × 𝑁 , in which all its
diagonal elements equal 1, and 0 everywhere else, no
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permutation is carried out. In this type, the number of fixed
diagonal elements 𝑁𝑏𝑠 is given as 𝑁𝑏𝑠 = 𝑁 .

(B) Restricted random permutation matrix (0 < 𝑁𝑏𝑠 < 𝑁):
𝑁𝑏𝑠 < 𝑁 diagonal elements are fixed at a value of 1, where
the positions of the fixed elements are randomly selected.
When using 0 < 𝑁𝑏𝑠 < 𝑁 , Ebs is called a restricted random
permutation matrix. For 𝑁𝑏𝑠 = 2,

Ebs =

©«
1∗ 0 0 0 0
0 0 0 0 1
0 0 1∗ 0 0
0 1 0 0 0
0 0 0 1 0

ª®®®®®¬
. (13)

(C) Unrestricted random permutation matrix (𝑁𝑏𝑠 = 0):
The positions of N elements are randomly selected as

Ebs =

©«
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

ª®®®®®¬
. (14)

The above equations correspond to block scrambling (permuta-
tion) operations in each image. For 𝑁𝑏𝑠 = 𝑁 , Eq. (13) is reduced
to Eq. (12), and Eq. (13) is reduced to type (C) for 𝑁𝑏𝑠 = 0.
Similarly, Eps is also classified into three types, so 𝑁𝑝𝑠 < 𝐿

diagonal elements are fixed as in Eq. (13). The transformation
with Eps is called pixel shuffling or pixel permutation. Fig. 3
shows an example of encrypted images, where 𝑁 = 196 and
𝐿 = 768 were used.

D. Properties of proposed method
The properties of the proposed method are summarized below.
• Each client can share their images encrypted with their keys

to train a global model.
• The performance degradation of models caused by en-

crypted images can be reduced by using the embedding
structure of ViT and restricted permutation matrixes.

• Transmission between clients and the central server is
carried out to share encrypted images only one time
during model training, so the communication cost of the
proposed method is lower than conventional methods such
as federated learning.

In addition to the above properties, each client can use different
keys for each image. Accordingly, the keys used for image
encryption are not required to be managed carefully.

TABLE I: Classification accuracy(%)
w/o encryption common key different key

(𝑁𝑏𝑠 = 0, 𝑁𝑝𝑠 = 0)
acc(%) 97.68 88.1 82.71

IV. Experiment Result

The effectiveness of the proposed method was verified in
experiments.

(a) original (b) 𝑁𝑝𝑠 = 0, 𝑁𝑏𝑠 = 196

(c) 𝑁𝑝𝑠 = 768, 𝑁𝑏𝑠 = 0 (d) 𝑁𝑝𝑠 = 0, 𝑁𝑏𝑠 = 0

Fig. 3: Example of encrypted images

Fig. 4: Learning curve of training process

A. Setup

In experiments, a model was prepared that was pre-trained
trained with Image-Net, “vit base patch16 224,” from the
timm library, and the CIFAR10 dataset, which consists of 50, 000
training and 10, 000 test color images with a size of 32 × 32,
was used to fine-tune the pre-trained model. Each client was
given 10, 000 randomly selected images as training data without
duplicates, where images were resized from 32×32×3 to 224×
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TABLE II: Accuracy of using restricted matrix
Image (𝑁𝑏𝑠 , 𝑁𝑝𝑠) Accuracy (%)

Baseline (plain) 97.02
Proposed (0, 768) 91.39

Proposed (147, 576) 90.69
Proposed (49, 576) 90.66
Proposed (98, 384) 89.65
Proposed (147, 192) 88.33
Proposed (49, 192) 88.19
Proposed (196, 0) 82.53

Proposed (0, 0) 82.71

Fig. 5: Example of encrypted images using restricted random
permutation matrix

224 × 3 to fit the size of images to that of ViT. Fine-tuning was
carried out under the use of a batch size of 64, a learning rate of
0.0001, a momentum of 0.9, and a weight decay of 0.0005 using
the stochastic gradient descent (SGD) algorithm for 20 epochs.
A cross-entropy loss function was used as the loss function. We
evaluated the classification accuracy by inputting the 10, 000 test
images to the final global model. In the setting of ViT, the patch
size p in patch embedding was set to 16, the number of split
patches in an input image was 𝑁 = 196, and the dimensionality
of output feature vectors was 𝐷 = 384 and 𝐿 = 768. In addition,
independent keys were assigned to all images every epoch.

B. Classification accuracy
In Table I, the classification accuracy of the global model

using the proposed method is compared with that of the
baseline method without encryption to confirm the influence
of encryption conditions, where common key indicates that
all clients used the same keys, and different key means that
independent keys generated with 𝑁𝑏𝑠 = 𝑁𝑝𝑠 = 0, which were to
use unrestricted random permutation matrices, were applied to
all images. From the table, even when different keys were applied
to images, the proposed method still allowed us to maintain
a high classification accuracy. However, the accuracy of the
models decreased due to the influence of image encryption.

Table II shows the result of using restricted random permutation
matrices. Fig. 4 shows the learning curves during training. From
these results, the use of restricted random permutation matrices
was demonstrated to be effective in improving the accuracy of
the models. Some restricted conditions outperformed the method
using a common key.

C. Visibility of encrypted images
Fig. 5 shows an example of encrypted images under restricted

conditions. From the figure, a less restricted condition gave
encrypted images with higher visual information than the
original ones. In contrast, with a less restricted condition,
a model could be trained with a higher quality in general.
Accordingly, restricted permutation matrices should be selected
carefully on the basis of classification accuracy and visual
protection.

D. Security analysis
In collaborative learning, the privacy of all local data has to be

protected. In this framework, both the server that trains the global
model and other clients are assumed to be untrusted, so they may
try to restore original data from encrypted data. The objective
of an attacker is to restore visual information from encrypted
images. We assume that the attacker has access to encrypted
images and the encryption algorithm but does not possess
the secret keys. Accordingly, the attacker can only carryout
ciphertext-only attacks (COAs) using encrypted images. Block-
wise image encryption methods have been studied in terms
of robustness against various COAs including state-of-the-art
ones [18], [21]. The proposed method allows clients to assign
independent keys to each image. Therefore, when applying
independent keys to images, encrypted images are more robust
against state-of-the-art attacks than images encrypted with a
common key.

V. Conclusion
In this paper, we proposed a novel method for collaborative

learning with ViT. The method, which uses encrypted images,
allows clients not only to assign different keys for encryption
but to also use restricted random matrices to improve the
accuracy of models. Compared with conventional methods such
as FL, the communication costs and computation resources of
clients can be reduced by using our method. In experiments,
the effectiveness of the method was demonstrated in terms of
accuracy and visual protection.
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