
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

A Coarse-to-Fine Change Detection Framework for
Remote Sensing Sparse Cultivated Land

Yuan Hu, Yifan Zhang, Mingyang Ma and Shaohui Mei
Northwestern Polytechnical University, Xi’an 710072, P.R. China

E-mail: huyuan1999hy@mail.nwpu.edu.cn, yifanzhang@nwpu.edu.cn, mamingyang@mail.nwpu.edu.cn, meish@nwpu.edu.cn

Abstract—Remote sensing (RS) images contain rich geographic
information. For specific application scenarios like cultivated
land, it is necessary to select areas of interest to reduce data
scale and focus on detailed features. In this article, an innovative
coarse-to-fine change detection framework (CFCD) for sparse
cultivated land is proposed to address these problems. Coarse
screening module (CSM) first removes irrelevant low-difference
image pairs, and then fine detection module (FDM) accurately
locate change areas in remaining images. Experimental results
show that two coarse screening methods can take out many
disturbed images, and provide strong support for subsequent fine
detection methods to achieve performance improvement.

I. INTRODUCTION

In recent years, the rapid development of RS technology has
driven the accumulation of relevant data, which provides strong
support for the diversified application of Remote Sensing (RS)
images. Taking change detection (CD) for example, its core
idea is to accurately identify and analyze changes in the surface
cover by jointly comparing two (or more) images acquired on
the same geographical area at different times [1]. At present,
it is widely utilized in various fields such as deforestation
investigation [2], urban planning [3], disaster assessment [4]
and other fields, demonstrating extremely high practical value
and application prospects.

As the scarce land resource in the world, cultivated land
not only serves as the lifeblood and main carrier for agri-
cultural production activities, but also functions as the core
factor in promoting food production and regional sustainable
development [5]. The amount of adequate cultivated land is
crucial for maintaining food security and fostering harmonious
coexistence between humanity and nature. However, the eco-
logical degradation caused by the change of cultivated land
has become a prominent global issue [6]–[8]. On one hand,
the distribution of cultivated land is deeply affected by natural
conditions. On the other hand, the expansion of industrial-
ization and urbanization has led to continuous compression
and cutting of limited cultivated land, deepening the degree of
sparsity and fragmentation. Therefore, it is urgent to implement
protection policies for cultivated land.

How to quickly detect changes in cultivated land is a key
step in effectively protecting the cultivated land. Under the
background that the RS data acquired by a single satellite data
center is dramatically increasing at a speed of several terabytes
per day, traditional manual field investigation methods, as well
as certain automated approaches, cannot meet the demands

for direct real-time monitoring of large-scale images [9]. As
the convolutional neural network (CNN) is introduced to
CD, deep learning methods for cultivated land have attracted
more attention from researchers. Liu et al. [10] designed a
CNN-transformer network with multiscale context aggregation
(MSCANet), which exploits context aggregate connections to
fuse and aggregate features across different levels, fulfilling
efficient and effective cultivated land CD. To address the
problem of inadequate utilization of feature information, Miao
et al. [11] proposed a Siamese network based on full-scale
connected UNet (SNUNet3+), which combines the spatial and
channel squeeze and excitation (scSE) attention mechanism
and deep supervision modules to detect changes in cultivated
land. In [12], A transformer-based multiscale feature fusion
change detection network (M-Swin), which can capture the
change information in small building through hierarchical
windows and integrate the multiscale feature obtained from
different windows to cope with the “scale gap” challenge.

Even though the existing mainstream methods have made
better detection performance, they heavily rely on high-quality
and well-produced standardized datasets, failing to fully con-
sider the common problem of “non-focused change areas” in
original large-sized RS images, which are far from practical
application. In addition, the sparse characteristics of cultivated
land also need to be further excavated.

In order to deal with the above-mentioned problems, a
coarse-to-fine change detection (CFCD) framework is pro-
posed in this paper for sparse cultivated land. The overall idea
of this method is “coarse screening-fine detection”. Firstly,
differences between the two original bitemporal image pairs
are analyzed and quantified through the method of coarse
feature representation, and the image pairs with relatively small
differences are discarded. Then the retained image pairs are
finely detected by employing deep learning methods based on
Siamese network. Finally, the patches of cultivated land change
areas are located. The major contributions of this article are
listed as follows.

• Two coarse feature representation methods are proposed
for cultivated land CD, which aim to quickly identify
areas with obvious changes and reduce the amount of
data on subsequent processing.

• An efficient coarse screening-fine detection method is
designed for cultivated land CD task based on large
scale images. The proposed method can directly process
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Fig. 1. Framework of the proposed CFCD

original images and significantly improve detection accu-
racy before being used in existing state-of-the-art (SOTA)
methods.

• Extensive comparison and experiments with four SOTA
CD models on ShangYu CLCD Datasets are conducted,
which have proved the effectiveness of the proposed
method.

II. METHODOLOGY

Except for the necessary preprocessing such as radiometric
correction and geometric registration, which can truly reflect
changes in land surface conditions, the original large-sized
bitemporal images are directly cropped into unified small-sized
subimages without any additional steps to form an image pair.

The proposed CFCD framework in this paper can rapidly
remove low difference image pairs through coarse screening
module (CSM), and extract the specific change areas from the
remaining image pairs using fine detection module (FDM), so
as to generate the final detection results. Framework of the
proposed CFCD is shown in Fig 1.

A. Coarse Screening Module (CSM)

In large-scale RS images, the area of cultivated land changes
usually occupies only a small part of them, and is sparsely
distributed. The large presence of non-research areas not
only consumes computing resources but also introduces noise,
which greatly affects the accuracy of CD. To settle these
problems, two coarse screening methods are designed in CSM
modules of the proposed CFCD.

1) CSM based on reconstruction error representation
(CSM-RER): Compressive Sensing (CS) theory manifests that
even if only a small number of measured values are obtained,
the original image can be effectively restored and reconstructed
from sparse or sparsely represented images through specific
measurement matrices and optimization algorithms [13], [14].
The proposed CSM based on reconstruction error representa-
tion adopts feature extraction algorithm to extract the same N -
dimensional features from all image pairs. The features of the
i-th post temporal subimage yi is selected as the object to be
reconstructed, and the corresponding features of pre-temporal
subimage and neighboring subimages are selected to construct
a dictionary Di for sparse reconstruction, as shown in Fig 2.

The reconstruction error ei is calculated using

Fig. 2. CSM based on reconstruction error representation

ei =
∥yi −Di · xi∥2

∥yi∥2
< ε (1)

where ∥·∥2 represents the ℓ2-norm, yi ∈ RN×1, Di ∈ RN×M ,
ε is the error threshold. The number of words in the dictionary
M = k2 ≤ K, with K the number of subimages cropped
from each original image. Greater error indicates more likely
changes, that is, the image pairs with smaller values can be
discarded by sorting according to the reconstruction error.

2) CSM based on difference representation of key features
(CSM-DRKF): Principal component analysis (PCA) is a tech-
nique that reduces the dimensionality of original data while
maximizing the preservation of its intrinsic information [15].
As shown in Fig 3, grayscale processing is first performed on
all subimages and two matrices (i.e. A, B) are composed of
pre-temporal and post-temporal images. Then, to highlight the
key information and eliminate the disturbing information, PCA
is used to reduce the dimensionality of the two image matrices
to N -dimension. Finally, the differences are calculated and
sorted based on (2)-(4), and the image pairs with small
differences are removed.

C =
N∑
i=1

K∑
j=1

cij = A−B (2)

D =

(
N∑
i=1

|ci1| ,
N∑
i=1

|ci2| , · · · ,
N∑
i=1

|cij |

)
(3)
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Fig. 3. CSM based on difference representation of key features

dk =
N∑
i=1

|cij | < δ (4)

where A,B,C ∈ RN×K , D = (d1, d2, · · · , dk) ∈ R1×K , δ is
the difference threshold.

B. Fine Detection Module (FDM)

Siamese network is a deep learning architecture used to
solve the task based on similarity comparison, consisting of
two or more identical subnetworks that share weights and
parameters [16], as shown in Fig 4.

Each sub network receives an input sample and extracts
features through a series of convolutional layers (or other
types of layers). At present, many mainstream CD methods
are proposed based on Siamese network structure, which
have exhibited powerful feature extraction and comparison
capabilities. In FDM of the proposed CFCD framework, the
following four typical methods can be incorporated.

FC-Siam-conc [20] is a feature-concatenation method,
which extracts multi-level features of bi-temporal images
from shared Siam structures, and concatenate them to detect
changes. The skipping feature connection can capture subtle
changes with richer feature expressions, which is particularly
important for CD in cultivated land.

Unlike FC-Siam-conc, FC-Siam-diff [20] is a feature-
difference method, which extracts features by using the
Siamese connection and continuously superimposes residu-
als during deconvolution to achieve favorable CD. This ap-
proach focuses on capturing different information between
images, which can reduce the pseudo-changes caused by non-
substantive factors such as light and seasonal changes to a
certain extent, and is more sensitive to identification in change
areas.

BIT [21] is a feature fusion method, which integrates
Siamese tokenizer and transformer encoder-decoder structure
to achieve more meaningful context-information to obtain
the change map. By introducing transformer structure, it is
possible to globally obtain the dependency relationships in RS

Fig. 4. Siamese network structure

images, which is helpful to identify the complex patterns of
cultivated land changes.

DTCDSCN [22] is an attention-based method, which utilizes
change information in spatial and channel information to ex-
tract more contextual features. It combines two tasks: CD and
semantic segmentation. Through the shared feature extraction
layer, the network can extract the features of cultivated land
changes and the semantic information of cultivated land at
the same time, which is obviously helpful for subtle change
detection in cultivated land.

III. EXPERIMENTS AND ANALYSIS

A. ShangYu CLCD Datasets

Many publicly datasets have been used for CD, typically
including various typical scenarios such as urban areas, plains,
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TABLE I
EXPERIMENTAL RESULTS ON CSM BASED ON RECONSTRUCTION ERROR REPRESENTATION (CSM-RER)

Dataset Number of Images (K) Number of Changes Number of Words (k2) Error Threshold (ε) Images Removal Rate

ShangYu-GF1b 5520 142

3×3 7.5264×10−2 36.11%

5×5 6.4046×10−2 36.59%

7×7 5.6378×10−2 37.07%

9×9 5.0041×10−2 36.01%

ShangYu-BJ2 1596 168

3×3 5.5320×10−2 15.60%

5×5 5.2397×10−2 15.66%

7×7 4.8918×10−2 15.73%

9×9 4.6291×10−2 15.79%

TABLE II
EXPERIMENTAL RESULTS ON CSM BASED ON DIFFERENCE REPRESENTATION OF KEY FEATURES (CSM-DRKF)

Dataset Number of Images (K) Number of Changes Dimension (N) Difference Threshold (δ) Images Removal Rate

ShangYu-GF1b 5520 142

256 79.7307 45.65%

512 123.2878 46.59%

1024 187.5146 46.20%

ShangYu-BJ2 1596 168

256 74.2009 18.98%

512 112.6452 19.49%

1024 187.1340 19.80%

TABLE III
EXPERIMENTAL RESULTS ON FDM AND CFCD

Method
FDM CFCD (FDM + CSM-DRKF)

Precision Recall F1 IoU OA Precision Recall F1 IoU OA

FC-Siam-conc 40.71 46.00 58.58 37.39 63.69 76.88 63.98 71.92 56.14 82.10

FC-Siam-diff 52.07 50.24 42.80 44.21 63.77 69.51 44.99 56.32 49.20 75.28

BIT 52.62 52.98 53.66 46.24 64.02 72.93 43.33 54.36 47.33 77.13

DTCDSCN 32.15 43.29 41.78 38.27 52.03 64.06 49.05 55.34 43.03 76.73

cultivated land, and mountainous areas. However, the availabil-
ity of datasets for cultivated land remains extremely restricted,
greatly limiting the innovative application of CD methods.
To address this issue, two large-scale optical remote sensing
images of GF-1b and BJ-2 taken by Zhejiang Institute of
Surveying and Mapping Science and Technology are obtained
as the new dataset for detecting changes in cultivated land,
with the sizes of 40598×35178 and 21243×19041 pixels,
respectively, and spatial resolution ranged from 0.8 to 2 m.
These images were uniformly cropped to 512×512 pixels,
resulting in a total of 7116 image pairs (i.e. ShangYu-GF1b
obtains 5520 pairs, ShangYu-BJ2 obtains 1596 pairs), forming
ShangYu CLCD Datasets. The types of change targets mainly
include buildings and structures. These samples are randomly

separated for training, test and validation in the ratio of 6:2:2.

B. Implementation Details and Evaluation Metrics

Obvious stylistic differences exist between pre-temporal and
post-temporal images of datasets, caused by different lighting
and atmospheric conditions during images shooting. To reduce
its impact on the accuracy of subsequent CD, histogram
specification is used to unify the style [17]–[19].

The purpose of coarse screening is to exclude as many
images as possible there are no changes, without affecting
the precision of fine detection. Therefore, the effectiveness of
two methods is measured with zero missed detection. This
shows that error threshold (ε) and difference threshold (δ) are
based on the image with the first missed detection, meaning
it is less than this value and the change is negligible. As
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for CSM based on reconstruction error representation (CSM-
RER), feature extraction algorithm is applied to each subimage
to extract 360 features (i.e. N = 360). And k is set to be 3,
5, 7, 9 respectively.

As for CSM based on difference representation of key
features (CSM-DRKF), PCA is applied to each subimage and
N is set to be 256, 512, 1024 respectively.

Five evaluation metrics are employed for quantitative assess-
ment of the proposed CD method, including precision (Pre),
recall (Rec), F1-score (F1), intersection over union (IoU), and
overall accuracy (OA). They range from 0 to 1, and higher
values indicate better performance.

Pre =
TP

TP + FP
(5)

Rec =
TP

TP + FN
(6)

F1 =
2Pre× Rec

Pre + Rec
(7)

IoU =
TP

TP + FP + FN
(8)

OA =
TP+ TN

TP+ TN+ FP + FN
(9)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.

C. Comparative Experiments

1) Comparison Experiments on Different CSMs: Table I
and II lists evaluated metrics for different values of k and
N on different CSMs. With the increasing of k or N , images
removal rate shows an upward trend indicating that the better
the quality of the processed dataset, the more obvious the
removal effect of non-relevant changing images. In ShangYu-
GF1b dataset, images removal rate reaches its maximum as
37.07% and 46.59% when k=7 or N=512, respectively. In
ShangYu-BJ2 dataset, when k=9 or N=1024, images removal
rate is 15.79% and 19.80%. Generally, both CSM-DRKF and
CSM-RER can achieve better screening effects. In ShangYu
CLCD Dataset, CSM-DRKF outperform CSM-RER as it can
remove more invalid images.

2) Comparison Experiments on FDM and CFCD: Based
on the results of CSM-DRKF, all images retained in ShangYu-
GF1b and ShangYu-BJ2 datasets are combined to form new
ShangYu CLCD Dataset, and comparative experiments of
FDM are conducted. Most of the existing FDM methods
directly detect images in the dataset, but the proposed CFCD
architecture first coarsely screens images and then performs
fine detection through any CD method, which reduces compu-
tational complexity and significantly improves accuracy. Table
III illustrates quantitative evaluations of the proposed CFCD
architecture employing four different SOTA CD methods. It
can be observed that, compared to the results of ShangYu
CLCD Datasets, the proposed CFCD framework can achieve
better evaluation metrics in CD performance, with significant
improvements in all five metrics. For example, the F1/IoU/OA

of the proposed CFCD framework exceeds previous SOTA by
41.9/33.4/36.6% for ShangYu CLCD Datasets, respectively. It
can also be observed from the Table III, the Precision, Recall,
IoU, and OA values of traditional FC-Siam-conc method are
lower than BIT. While the evaluation metrics of the proposed
CFCD framework have been significantly improved because of
the preprocessing procedure, exceeding those of BIT, which is
31.56/17.19/17.63/22.02%, respectively. In addition, although
the ability of DTCDSCN to detect changes performed the
worst on ShangYu CLCD Dataset, Precision, F1 and OA
indicators have significantly improved after integration into the
CFCD framework. These quantitative and qualitative compar-
isons indicate the superiority of the proposed CFCD framework
in improving the detection performance of existing SOTA
methods.

IV. CONCLUSIONS

In this paper, a CFCD framework based on dual modules
(CSM and FDM) is proposed, which makes it possible to
utilize the original RS images directly for detection. In CSM,
a variety of non-cultivated land changes are quickly identified
and screened, which greatly reduces the amount of data. In
FDM, deep learning methods based on Siamese network are
adopted which can specifically extract and locate the attention
areas, to achieving the final CD results. Experimental results
illustrate the effectiveness and competitiveness of the proposed
CFCD framework. In future work, sparse feature extraction is
also a direction worth further exploring.
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