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Abstract—This paper is dedicated to mitigating unwanted
ambient wind noise in outdoor multi-channel recordings. Differ-
ent from conventional methodologies such as the multi-channel
Wiener filter (MWF) and its extensions, we propose a wind noise
reduction method from a beamforming perspective based on the
spatial characteristics of wind noise captured by closely spaced
microphones. Specifically, the noisy observation is decomposed
into a parameterization space concerning frequency through
orthogonal polynomial expansion. Subsequently, the estimated
target source signals are reconstructed by selecting coefficients
corresponding to desired components within the polynomial basis.
Moreover, we introduce the Alternating Direction Method of
Multipliers (ADMM) framework to attain a sparse solution for
the coefficients during the decomposition phase. In comparison to
existing multi-channel wind noise reduction methods, simulation
results demonstrate the superior performance of the proposed
method, particularly in low signal-to-noise ratio (SNR) scenarios.

I. INTRODUCTION

Wind noise is a serious impediment to the intelligibility
and quality of speech communication in outdoor scenarios,
presenting a challenging task compared to other ambient noise
[1], [2], [3], [4], [5], [6], [7], [8]. The inherent difficulties
stem from the highly dynamic and nonstationary nature of
wind-induced disturbances, compounded by a low signal-to-
noise ratio (SNR). Traditional approaches for wind noise
reduction can be divided into single-channel methods [2], [6],
[9], [10] and multi-channel methods [7], [11], [12], [13]. In
the multi-channel processings, common methods are based
on the assumption that wind noise is uncorrelated. However,
recent investigations showed that the spatial coherence of wind
noise closely depends on the direction and the speed of free-
field airflow, particularly apparent in the presence of strong
winds [14], [15]. The non-zero spatial coherence of wind noise
captured by closely spaced microphones is elucidated and can
be modeled by a fluid-dynamics model in [16].

Utilizing the spatial coherence feature of wind noise, it is
natural to design a multi-channel Wiener filter to effectively
reduce wind noise. This approach relies on the accurate
estimation of the power spectral densities (PSDs) for both wind
noise and target signal, e.g., speech, as detailed in the works of
[7], [17]. And extensions to this work include the estimation
of a trade-off parameter for the wiener filter, denoted as the
parametric multi-channel Wiener filter (PMWF) [17], [18] and
improved PSD estimation methods [19].

A critical component of multi-channel noise reduction is
beamforming, which exploits the spatio-temporal information
to extract the target source signal from noisy observations [20].
The beamformers possess the ability to form a main beam di-
rected towards the desired signal based on knowledge of the di-
rections of the intended signal and interference signal, instead
of the statistical properties. Among the diverse beamforming
approaches, the differential beamformers provide the potential
in speech communication systems due to their frequency-
invariant beampatterns and small apertures [21], [22]. Inspired
by the design of a differential beamformer with orthogonal
polynomials [22], we present a novel method for wind noise
reduction through orthogonal polynomial expansion.

To deal with the wind noise in microphone arrays, we
first present the signal model and some important definitions.
Then we investigate the spatial coherence between the speech
signal and wind noise, clarifying their distinctions. An or-
thogonal polynomial expansion is performed to redefine the
noisy observations in a frequency dependent parameterization
space. Specifically, by analyzing the characteristics of speech
source signals and wind noise on each order of orthogonal
polynomials, we identify the orders in which speech source
signals are dominant. Thus, the corresponding orders are se-
lected to reconstruct an enhanced version of the desired source
signal. An additional contribution is the introduction of the
Alternating Direction Method of Multipliers (ADMM) scheme
to optimize the decomposition coefficients. Simulations are
conducted to illustrate the performance of the proposed method
in terms of SNR, speech quality and speech intelligibility.

II. SIGNAL MODEL

Consider an M -element uniform linear microphone array in
the outdoor environment where the wind noise dominates the
ambient noise. The distance between two successive sensors
is δ0 and the source signal is from the direction of θ. The
reverberant effect can be omitted. We formulate the problem
and devise the approach in the short-time Fourier transform
(STFT) domain [23]. Hence, the observation of the mth sensor
can be modeled as

Ym(f, t) = Xm(f, t) + Vm(f, t),m ∈ {0, · · · ,M − 1}, (1)

where f is the frequency bin index, t is the time frame
index, Xm(f, t) is the clean speech signal captured by the



mth sensor, and Vm(f, t) is the additive ambient noise. In this
work, Vm(f, t) mainly consists of wind noise.

For convenience, the signal model in (1) is concatenated
into the vector form

y(f, t) ≜
[
Y0(f, t) Y1(f, t) · · · YM−1(f, t)

]T
= x(f, t) + v(f, t)

= d(f, θ)X0(f, t) + v(f, t), (2)

where x(f, t) and v(f, t) are defined in the same way as
y(f, t), and

d(f, θ) ≜


1

e−j 2πf
c δ0 cos(θ)

...
e−j 2πf

c (M−1)δ0 cos(θ)

 (3)

is the array manifold vector, where j =
√
−1 is the imaginary

unit and c is the speed of sound in air. It should be pointed out
that, for general array geometries, the array manifold vector is
a function of source direction and sensor positions, which is
not as simple as expressed in (3). Then, the correlation matrix
of y(f, t) is

Φy(f, t) = Φx(f, t) +Φv(f, t)

= ϕX0
(f, t)d(f, θ)dH(f, θ) +Φv(f, t), (4)

where Φx(f, t) and Φv(f, t) are the correlation matri-
ces of x(f, t) and v(f, t), respectively, and ϕX0

(f, t) ≜

E
[
|X0(f, t)|2

]
is the variance of X0(f, t).

By applying a filter h(f, t) to the array observation y(f, t),
the array output can be expressed as

Z(f, t) = hH(f, t)y(f, t)

= Xfd(f, t) + Vrn(f, t), (5)

where

Xfd(f, t) = hH(f, t)x(f, t), (6)

Vrn(f, t) = hH(f, t)v(f, t) (7)

are the filtered desired source signal and the residual noise,
respectively. The variance of the array output Z(f, t) can be
expressed as

ϕZ(f, t) = hH(f, t)Φy(f, t)h(f, t)

= ϕXfd
(f, t) + ϕVrn(f, t). (8)

Similarly, the variance/power of the desired source sig-
nal ϕXfd

(f, t) and the variance/power of the residual noise
ϕVrn

(f, t) are

ϕXfd
(f, t) = ϕX0

(f, t)|hH(f, t)d(f, θ)|2, (9)

ϕVrn
(f, t) = hH(f, t)Φv(f, t)h(f, t). (10)

The output SNR can be expressed as

oSNR(f, t) ≜
ϕX0

(f, t)|hH(f, t)d(f, θ)|2

hH(f, t)Φv(f, t)h(f, t)
. (11)

Various optimal beamformers are built for different design
targets and optimization criteria, where adaptive beamformers
like the minimum variance distortionless response (MVDR)
beamformer require the good estimations of the covariance
matrices of both desired source signal and additive noise. In
this work, we introduce considerations of the spatial coherence
of wind noise in a samll aperture array and design a beam-
former that fully exploits the difference between the correlation
matrices Φx(f, t) and Φv(f, t).

III. COVARIANCE MATRIX AND ORTHOGONAL EXPANSION

A. Covariance Matrix of Wind Noise

The covariance matrix of wind noise is dependent on the
far-field wind velocity Uc and the wind stream direction ϑ, as
stated in [14] and [16], with ϑ being defined identically to θ.
Covariance matrix of the noise can be expressed as

Φv(f, t) = ϕV (f, t)Υ(f, ϑ)⊙
[
a(f, ϑ)aH(f, ϑ)

]
, (12)

where ⊙ stands for Hadamard product, ϕV (f, t) is the variance
of the noise, the (i, j)th element of the spatial coherence matrix
Υ(f, ϑ) modeled by the Corcos model can be expressed as

[Υ(f, ϑ)]i,j = e−
2πf
Uc

δ0|i−j|g(ϑ) (13)

with
g(ϑ) = α1 |cos(ϑ)|+ α2 |sin(ϑ)| (14)

denotes a coherence decay parameter, α1, α2 are the lon-
gitudinal and the lateral coherence decay rates respectively,
experimentally provided in [15]. For a wind stream with
constant direction and speed, (13) is assumed to be time-
invariant. And the vector a(f, ϑ) is defined as

a(f, ϑ) ≜


1

ej
2πf
Uc

δ0 cos(ϑ)

...

ej
2πf
Uc

(M−1)δ0 cos(ϑ)

 (15)

By comparing (3) and (15), the vector a(f, ϑ) shares a
similar form with the array manifold vector. Since Uc is often
far smaller than the speed of sound in air, it is very likely that
d(f, θ) and a(f, ϑ) belong to different subspaces, even if the
intended source signal and wind noise are coming from the
same direction, as do the Φx(f, t) and Φv(f, t).

B. The Orthogonal Expansion and the Decomposition

Following the work presented in [22], we express the array
manifold vector as

d(f, θ) =
[
1 e−ȷϖ1 cos θ · · · e−ȷϖm cos θ

]T
=

N−1∑
n=0

cn(f)Pn(cos θ), (16)

where ϖm = 2π(m− 1)fδ0/c, and

cn(f) ≜
[
Cn,0(f) Cn,1(f) · · · Cn,M−1(f)

]T
(17)



is a coefficient vector of length M , n = 0, 1, 2, ..., N−1 is the
polynomial order, Pn(cos θ) is the orthogonal polynomial to
approximate the exponential function of the array manifold
vector. Several alternatives are available for expanding the
array manifold, such as the MacLaurin’s series, Jacobi polyno-
mials [22], [24] and so on. Therefore, cn(f) is determined by
the geometric structure of the microphone array, the frequency
band, the type of polynomial expansion and other factors.

We normalize the vector cn(f)’s according to

cn(f)←
1

∥cn(f)∥
cn(f), (18)

and then construct a matrix C(f) as

C(f) ≜
[
c0(f) c1(f) · · · cN−1(f)

]
, (19)

which is clearly a matrix of size M × N . Without loss of
generality, we assume that N ≥M .

Given an array observation y(f, t), which is a function of the
array manifold vector, we can get the optimal approximation
according to (16) and divide it into

y(f, t) =
N−1∑
n=0

βy,n(f, t)cn(f)

= C(f)βy(f, t),

(20)

where

βy(f, t) ≜
[
βy,0(f, t) βy,1(f, t) · · · βy,N−1(f, t)

]T
.

(21)
Considering the speech signal in the STFT domain presents a
large dynamic range, the normalization of the array observation
y(f, t) is applied in practice

y(f, t)← 1

∥y(f, t)∥ 2
y(f, t). (22)

Similarly, we can define x(f, t) = C(f)βx(f, t) and
v(f, t) = C(f)βv(f, t). It is evidently observed that a direct
matrix inversion for solving the coefficient βy(f, t) is prone to
an ill-posed problem. Then we reformulate the matrix inversion
as an optimization problem, introducing a regularization term
into the cost function [25]. From a mathematical standpoint,
the introduction of the ℓ1 norm of β(f, t) is beneficial to the
robustness of the solution. Furthermore, by the sparsity of the
speech signal distribution exhibited in the frequency band, it
is reasonable to assume that the β(f, t) is sparse in the STFT
domain. The unconstrained optimization problem is shown in
the following equation

min
1

2
∥C(f)βy(f, t)− y(f, t)∥22 + λ∥βy(f, t)∥1. (23)

Equation (23) is then solved by the ADMM framework [26].
Note that the variables in (23) are complex ones instead of
real ones, so the optimization problem should be extended to
the complex domain. A detailed discussion on the initialization
and selection of parameters in the ADMM will be provided in
the next section.
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Fig. 1. β(f) coefficient distributions of (a) speech signal and (b)wind noise.
(c) A percentage of distribution for the β(f) over each order.

Fig.1a and Fig.1b illustrate the values of βx(f, t) and
βv(f, t), which correspond to the speech signal and wind
noise respectively. It can be clearly seen that βx(f, t) pre-
dominantly concentrates on the first and second orders at the
lower frequencies, while βv(f, t) is more evenly distributed
across multiple orders. Fig.1c shows a bar chart depicting the
magnitude of βx(f, t), βv(f, t) at each order as a percentage
of the total. This above discussion implies that the low order
components of βy(f, t) contain the majority of speech signal
components. As a consequence, the filter is constrained to these
analytical findings in the reconstruction phase.

C. Reconstruction and Beamforming

According to (20), we have an estimation of the speech
source signal x(f, t) as

x̂(f, t) = C(f)β̂x(f, t)

= C(f)WLβy(f, t), (24)

where WL is a constant matrix, which is defined as

WL ≜

[
IL×L 0L×(N−L)

0(N−L)×L 0(N−L)×(N−L)

]
, (25)

and L is the order index at which the speech signal dominates,
with L ≤ N . Finally, the x̂(f, t) is inverse normalized by

z(f, t)← ∥y(f, t)∥2x̂(f, t). (26)

In the case that we have an estimation of the array manifold
vector toward the desired source, i.e., d̂(f, t), we can calculate
the array output according to



Z(f, t) =
1

∥d̂(f, t)∥2
d̂H(f, t)z(f, t)

=
1

∥d̂(f, t)∥2
∥y(f, t)∥2d̂

H(f, t)C(f)WLβy(f, t)

(27)

In this paper, the direction of the source θ is known as a
priori, and the d(f, θ) is taken as the estimate of the array
manifold vector, i.e., d̂(f, t).

IV. EXPERIMENTS AND ANALYSES

A. Experimental Setup

Several experiments were conducted to validate and analyze
the proposed method, with wind noise reduction methods de-
veloped in [17] serving as baselines. Sentences were randomly
selected from the LibriSpeech dataset [22] and sampled at
16kHz. Wind noise was generated using an artificial wind noise
generator [16] with temporal, spectral, and spatial characteris-
tics matching measured multi-channel wind noise observations.
The slow air stream velocity was set to Uc = 1.8 m/s and
the fast velocity to 5 m/s in this work. Target speech signals
were corrupted at three SNR values: -10dB, -5dB and 0dB.
We utilized a closely spaced uniform linear array with eight
microphones, each having an interelement spacing of 4 mm.
The speech was kept in the endfire position, as well as wind
noise in the direction ϑ = [0, 45◦, 90◦]. We apply the STFT
domain where the frame length is 32ms with half of the overlap
between consecutive frames.

B. Results and Discussion

The parameter initialization and selection of the ADMM
in the decomposition phase influence the performance of the
proposed method. At each time-frequency frame, the dual
variable λ in (23) is set to λ = 0.1C(f)Hy(f, t). Fig.2 plots
the spectrograms of the clean speech signal, wind noise, noisy
signal at iSNR = 0dB, and the enhanced speech signal. Note
that wind noise is predominantly focused in the low frequency
band, which is the difference with other ambient noise charac-
teristics. Fig.2d illustrates that the proposed method effectively
addresses wind noise in the low frequency domain.

Considering the high fluctuation possessed by wind-induced
disturbances, we mainly measure the fwSNR metrics of the
proposed algorithm under various scenarios such as three
wind directions and two wind speeds, with iSNR = -10dB.
Averaged over all wind directions, the results in Table I show
the effectiveness of the proposed method in complex wind
turbulence situations.

In addition, a comparative analysis was conducted with
the PMWF from [17] where the spatial complex coherence
matrix of wind noise is also modeled as the classic Corcos
model, and the baseline method MWF [7] and MVDR with
the spatial coherence being an identity matrix. The results
in Table II showcase the outstanding fwSNR, PESQ, and
STOI improvements achieved by the proposed method at every
iSNR level. Highlighted values correspond to the best results.
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Fig. 2. The spectrograms of (a) clean signal, (b) wind noise, (c) noisy signal,
(d) enhanced signal.

TABLE I
FWSNR IMPROVEMENTS USING THE PROPOSED METHOD WITH THE THREE WIND

DIRECTIONS AND TWO WIND SPEEDS (ISNR = -10DB)

Speeds

Directions
0 45◦ 90◦ Average

1.8 m/s 14.61 18.14 17.02 16.59
5 m/s 15.10 17.93 15.84 16.29

TABLE II
FWSNR, PESQ AND STOI RESULTS WITH THE PROPOSED METHOD AND BASELINE

METHODS

iSNR

Algorithm Metrics
∆fwSNR ∆PESQ ∆STOI

-10 dB

MVDR 4.16 0.45 0.0067
MWF 12.12 0.93 0.0261

PMWF 13.44 1.03 0.1061
Proposed 16.45 1.07 0.1061

-5 dB

MVDR 4.03 0.44 0.0083
MWF 7.44 1.04 0.0826

PMWF 9.59 1.07 0.0827
Proposed 13.37 1.21 0.0926

0 dB

MVDR 3.01 0.39 0.0156
MWF 7.53 1.08 0.0383

PMWF 7.71 1.27 0.0418
Proposed 10.21 1.48 0.0683

Furthermore, the proposed method is more efficient and robust
in the case of lower iSNR.

V. CONCLUSIONS

This paper proposes a multi-channel wind noise reduction
method for outdoor recordings. Through analyzing the spatial
characteristics of wind noise captured by closely spaced mi-



crophones and modeled by the Corcos model, a comprehensive
analysis of the covariance matrix of target speech signals and
ambient wind noise is conducted. Leveraging this analysis, we
decompose the corrupted signals using the orthogonal poly-
nomial expansion, highlighting the different coefficient distri-
butions on the polynomial basis for speech source signals and
wind noise. Then the estimated source signals are reconstructed
by choosing low order coefficients corresponding to speech
components. An additional contribution is the application of
the ADMM framework, offering a more sparse and robust
solution in the decomposition phase. The experiment results
demonstrated that the proposed method outperforms baseline
solutions in terms of fwSNR, PESQ, and STOI.
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