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Abstract—To support vastly growing intelligent devices, mas-
sive connectivity with low-latency communications has become
a critical requirement. In this paper, we consider a multiple-
input multiple-output network, where a large amount of devices
are connected to an access point sporadically. We aim to simul-
taneously detect the active devices and recover the transmitted
signals from the received mixed measurements, without a priori
channel information. The problem is mathematically modeled
based on the idea of blind deconvolution and demixing for sparse
signals. We formulate the optimization problem via nonconvex
matrix factorization, and propose an efficient block majorization-
minimization algorithm, where the signals and filters are updated
with analytical solutions in an alternating way. The proposed
algorithm has much lower per-iteration computational complex-
ity compared to state-of-the-art algorithms and hence is more
scalable to large-size problems. Numerical results demonstrate
that our method is able to recover the sparse signals and filters
with higher precision as well as faster convergence in comparison
with existing methods.

I. INTRODUCTION

With the explosion of small and affordable computing
devices, the capability of connecting a vast number of devices,
or massive device connectivity, has become an essential re-
quirement for future wireless communications. However, since
the resources in a cellular network are limited, the devices are
designed to keep inactive most of the time unless triggered by
external event, leading to a bursty and sporadic signal transmis-
sion pattern. For example, in the mobile networks, applications
running in the background of smartphones or tablets can
periodically send or receive data. In the IoT networks, energy-
constrained devices often remain idle to conserve power and
only become active intermittently to send data. Furthermore,
emerging applications in 5G, such as virtual reality, real-time
video conferencing, online gaming, etc., require information
to be delivered with ultra-low latency [1], [2]. It is thus
urgent to support a communications network with both massive
connectivity and low latency.

Massive connectivity in communication mainly has three
key challenges. In scenarios with numerous devices, only a
subset may need to transmit data intermittently. Therefore, it
is necessary to identify active devices at a given time to help
manage network resources to minimize idle communication
overhead. Once active devices are identified, the system must
estimate the channel conditions for each device, which is
crucial for coding strategies and thus reduces signal interfer-
ence. Finally, transmitted data from the active devices need
to be accurately recovered. While the three challenges can be

addressed separately, a more effective approach is to jointly
detect active devices and estimate channel information [3],
[4], followed by data recovery [5]. However, this two-stage
procedure still introduces additional latency, since it requires
channel information estimation for data recovery. To reduce
channel signaling overhead, it could be more desirable to
simultaneously detect active devices and recovery the trans-
mitted data without knowing channel information [6]. This
target can be mathematically modeled based on the idea of
blind deconvolution and demixing for sparse signals (SBD2).

Specifically, the SBD2 for joint active device detection
and transmitting data recovery relies on a bilinear model
with a group-sparse assumption on the transmitting signal,
which is introduced for active device detection. Since the
bilinear structure essentially forms a low-rank matrix [7],
[8], the SBD2 problem can be formulated based on a sparse
penalty [9] and a low-rank penalty [10]. A convex approach
was proposed as a semidefinite programming (SDP) problem.
However, SDP is computationally prohibitive especially for
large-scale problems [11]. In [12], the authors used difference-
of-convex-functions [13] to represent the rank-one property.
An iteratively reweighted SDP (IR-SDP) method was then
proposed for problem solving. In each iteration, an SDP is
solved. Since solving an SDP needs to scale the problem to a
higher-dimensional variable space, both SDP and IR-SDP are
computationally expensive, especially for large-scale problems.

In this paper, we consider an SBD2 problem that arises
in a multiple-input multiple-output network. The problem
is formulated based on nonconvex matrix factorization. We
propose a block majorization-minimization (BMM) algorithm
[14]–[16] to address the nonconvex problem. In each iteration,
the signals and filters are updated with closed-form solutions.
Consequently, BMM exhibits significantly lower per-iteration
computational complexity compared to SDP and IR-SDP, mak-
ing it more suitable for problems of large sizes. We also prove
that the proposed BMM algorithm is equivalent to a proximal
coordinate gradient descent algorithm. Numerical simulations
verify that BMM recovers the unknown sparse signals and
filters with higher precision and faster convergence than the
existing methods.

II. PROBLEM FORMULATION

We consider a multiple-input multiple-output (MIMO) com-
munication system, where S devices with a single antenna are
connected to a base station with R antennas; see Fig. 1. We



Fig. 1: In a MIMO system, multiple devices connect to a
BS with several antennas. Black arrows show active uplink
transmissions, while grey lines indicate inactive connections.

consider a block-fading model where channels are independent
quasi-static flat-fading in each coherence time. In the massive
access scenario, only a small fraction of S devices are active
and access the base station in a coherence block. In the uplink
transmission, let xk ∈ CN be the data sequence of length
N from the device k (k = 1, . . . , S). When device k is
active, xk ̸= 0; otherwise, xk = 0. The signal sequence
transmitted by the device k over M time slots is Akxk, where
Ak ∈ CM×N is a preassigned encoding matrix available to the
base station. The signal Akxk is passing through a channel
hrk ∈ CL to antenna r (r = 1, . . . , R), where L < M
is the maximal delay spread of the finite impulse response.
Denote h̊rk = [hT

rk,0]
T ∈ CM as the zero-padded filter. The

transmission process is represented by a linear convolution of
Akxk and hrk. It can also be approximately represented by a
circular convolution between Akxk and h̊rk.1 Then, the signal
received by the antenna r at the base station is

y⊛,r =

S∑
k=1

(Akxk)⊛ h̊rk + e⊛,r,

where ⊛ denotes the circular convolution and e⊛,r is an
additive noise. Denote F as the M -point unitary discrete
Fourier transform matrix. The received signal in frequency
domain is

yr := Fy⊛,r =

S∑
k=1

√
M (FAkxk)⊙ (Bhrk) + er, (1)

1In OFDM, with cyclic prefixing technique, the two types of convolution
are equivalent.

where ⊙ denotes the Hadamard product, B contains the first
L columns of F, and er = Fe⊛,r.

Remark: In practice, the encoding matrix Ak is often
designed to have a convenient structure which can lead to
fast computations and minimal memory requirements. For
example, it can be chosen as Ak = Diag (qk)P, where
qk ∈ CM is a vector with entries being ±1 and P ∈ CM×N

is a partial matrix containing the N columns of an M × M
Hadamard/Fourier matrix [17].

Our goal is to recover nonzero signals xk’s of active
devices from the observations {yr}Rr=1. To reduce the channel
signaling overhead, we assume that hrk’s are not available
to both receivers and transmitters. Then, the problem is to
simultaneously recover the message signals xk’s and the
channels hrk’s from yr’s. Mathematically, the task of interest
can be modeled as an SBD2 problem.

Define
Y =

[
y1 · · · yR

]
,

and
Hk =

[
h1k · · · hRk

]
,

for k = 1, . . . , S. We propose a nonconvex optimization prob-
lem for SBD2 in (⋆),2 where the objective is the combination of
a fitting-error term and a group sparsity penalty

∑S
k=1 ∥xk∥

with γ a tuning parameter. It can be easily verified that in
model (1), each signal and filter pair {xk,hrk} in model can
be only identified up to a scaling factor; i.e., {x⋆

k,h
⋆
rk} and{

αx⋆
k, α

−1h⋆
rk

}
for any α ̸= 0 lead to the same output. To

alleviate such ambiguity, we restrict the filters hrk to have unit
length in (⋆) without affecting the optimality.

III. THE BLOCK MAJORIZATION-MINIMIZATION METHOD

Block majorization-minimization (BMM) [14], [16] can be
viewed as a judicious combination of the block coordinate
descent (BCD) method [18] and the majorization minimization
(MM) method [15]. The BCD method aims to find a local
optimal solution by optimizing the objective along one variable
block each time and solving for different blocks successively.
One potential limitation of BCD is the requirement that each
subproblem needs to be solved exactly, which could be dif-
ficult for nonconvex subproblems. BMM removes the above
restriction by optimizing in each variable block a subproblem
where the original objective function in BCD is replaced by a
surrogate function which can lead to cheap iterations.

Specifically, given an optimization problem as follows:

minimize
x∈X

f (x) ,

2Throughout the paper, ∥ · ∥ is used to denote the ℓ2-norm for vectors or
the Frobenius norm for matrices.

minimize
{xk,Hk}S

k=1

1

2

∥∥∥∥∥
S∑

k=1

√
M ((FAkxk)⊗ 1)⊙ (BHk)−Y

∥∥∥∥∥
2

+ γ

S∑
k=1

∥xk∥

subject to ∥hrk∥ = 1, k = 1, . . . , S, r = 1, . . . , R.

(⋆)



where X ⊆ RN . Suppose the optimization variable x can be
partitioned into I blocks as x ≜ (x1, . . . ,xI) where xi ∈ Xi

and X =
∏I

i=1 Xi with Xi ⊆ Rni and
∑I

i=1 ni = N . At
each iteration of BMM, one variable block, say, xi, is updated
according to the following update rules:{

x+
i ∈ argminxi∈Xi

f̄i(xi,x),

x+
−i = x−i with x−i ≜ (x1, . . . ,xi−1,xi+1, . . . ,xI) ,

where f̄i is an upper bound function for fi with respect to vari-
able xi, and x+

i and x+
−i are the newly updated variables. The

algorithm is monotonic and iteratively runs until some con-
vergence criterion is met. Choosing the surrogate function f̄i
is the crucial part in BMM algorithm development. Generally
speaking, they could be derived in multiple ways. However, a
properly chosen one by taking the specific problem structure
into account will make the iterative updating steps cheap while
maintaining a fast algorithm convergence over iterations. In
practice, surrogate functions will be much appreciated if they
will lead to analytical solutions for the blockwise subproblems.

IV. PROPOSED ALGORITHM

In this section, we propose a BMM-based algorithm to effec-
tively solve the problem (⋆). The matrix factorization structure
inherent in (⋆) allows the algorithm to iteratively update the
signals and filters in an alternating fashion. Furthermore, by
finding suitable surrogate functions that exploit the blockwise
structure of the problem, the two variables are updated with
analytical solutions.

A. Updating the Signals

With fixed Hk’s,3 we derive the update rule for xk’s. Let
y = vec(Y) and x =

[
xT
1 , . . . ,x

T
S

]T
. Define a block matrix

C ∈ CMR×NS with Crk =
√
MDiag (Bhrk)FAk ∈ CM×N

as the block at the r-th row and the k-th column. Problem (⋆)
with respect to (w.r.t.) variable x can be written as

minimize
x

1

2
∥Cx− y∥2 + γ

S∑
k=1

∥xk∥. (2)

To apply the BMM technique, we first introduce the following
useful lemma.

Lemma 1. [15] Let L, M be n × n Hermitian matrices
satisfying M− L ⪰ 0. Then for any x ∈ Cn, it follows that

xHLx ≤ xHMx− 2Re
{
xH (M− L)x

}
+ xH (M− L)x,

where the equality is attained at x = x.

The first term in the objective of (2) contains the quadratic
term over x, which is 1

2x
HCHCx. Based on Lemma 1, taking

CHC as L, we can construct a surrogate (i.e., upper-bound)
function for the quadratic term by choosing M = CI where
C is a scalar satisfying C ≥

∥∥CHC
∥∥
2
. Here,

∥∥CHC
∥∥
2

is the

3In this paper, underlined variables denote those whose values are given.

spectral norm of CHC. A surrogate function for the fitting-
error term can thus be designed as

1

2
∥Cx− y∥2 ≤

S∑
k=1

(
C

2
xH
kxk − Re

{
mH

kxk

})
+ const.

=

S∑
k=1

C

2

∥∥xk − C−1mk

∥∥2 + const.,

(3)
where m =

(
CI−CHC

)
x + CHy and mk contains the

(N(k − 1) + 1, . . . , Nk)-th elements of m for k = 1, . . . , S.
Since the surrogate function in (3) has a decoupled structure
over S devices, each xk can be solved in a parallel way, leading
to solve the following sub-problem

minimize
xk

1

2

∥∥xk − C−1mk

∥∥2 + C−1γ∥xk∥,

which is a group soft-thresholding step [19] and the solution
is given by

x+
k =

(
1− γ ∥mk∥−1

)+

C−1mk, (4)

where (x)
+ := max {x, 0}.

B. Updating the Filters

In the filter-updating step, we first rewrite the problem in

a more compact way. Let H =

 H1

...
HS

 ∈ CLS×R. The

subproblem with respect to H is a constrained least-squares
problem:

minimize
H

1

2
∥DH−Y∥2

subject to ∥hrk∥ = 1, k = 1, . . . , S, r = 1, . . . , R,
(5)

where D ∈ CM×LS is a block matrix with its k-th block being
Dk =

√
MDiag (FAkxk)B ∈ CM×L.

Similar to the last subsection, we aim to find a surrogate
function for the objective in (5). Expanding the objective, we
obtain a quadratic term 1

2Tr
(
HHDHDH

)
. Based on Lemma

1, by choosing D such that DI ⪰
∥∥DHD

∥∥
2
, we can find a

surrogate function of the quadratic term as follows:

1

2
∥DH−Y∥2 ≤ D

2
hHh− Re

{
nHh

}
+ cst.

=

R∑
r=1

S∑
k=1

D

2

∥∥hrk −D−1nrk

∥∥2 + cst.,
(6)

where N =
(
DI−DHD

)
H + DHY ∈ CLS×R, h =

vec (H) ∈ CLSR, and nrk ∈ CL is a subvector consisting
of the (L (rk − 1) + 1, . . . , Lrk)-th elements of n = vec (N).
Then, H can be found by solving SR subproblems,

minimize
∥hrk∥=1

∥∥hrk −D−1nrk

∥∥2 , (7)



By solving the Karush–Kuhn–Tucker conditions of (7), we
derive its closed-form solution

h+
rk =

nrk

∥nrk∥
. (8)

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 BMM algorithm for Problem (⋆)

1: Input: {yr}Rr=1, γ;

2: Initialize:
{
x
(0)
k

}S

k=1
,
{
h
(0)
rk

}S,R

k,r=1
;

3: repeat
4: update {xk}Sk=1 in parallel by equation (4);
5: update {hrk}S,Rk,r=1 in parallel by equation (8);
6: until some convergence criterion is satisfied
7: Output: {xk}Sk=1, {hrk}S,Rk,r=1.

C. Complexity Analysis

We analyze the per-iteration computational complexity of
Algorithm 1. In each iteration, the computational cost of updat-
ing signals comes from matrix multiplication in m, with a time
complexity of O

(
MNRS2 logM

)
; and the computational

cost of updating filters comes from matrix multiplication in
N, with a time complexity of O

(
MNRS2 logM

)
. The time

complexity of O (MN logM) is due to the use of fast Fourier
transform in some matrix multiplications.

V. INTERPRETING ALGORITHM 1 AS PROXIMAL
COORDINATE GRADIENT DESCENT

In developing the BMM algorithm 1, the surrogates (3) and
(6) are the isotropic quadratic approximations of the objectives
in (2) and (5), respectively. This provides BMM with an
intriguing parallel to the proximal coordinate gradient descent
method. Denote the fitting-error term in the objective (⋆) as f .
The gradients of f with respect to xk and hrk are ∇xk

f and
∇hrk

f , respectively.
In updating the signals, by plugging the expression of mk

into (4), we can verify that the update rule (4) of xk is the
proximal gradient descent with stepsize C−1, i.e.

x+
k = proxC−1γ∥·∥1

(
C−1mk

)
= proxC−1γ∥·∥1

(
xk − C−1∇xk

f
)
,

where proxλg(·) (z) =
1
2∥x− z∥2 +λg(x). Likewise, the filter

update rule (8) can be rewritten as

h+
rk = proxI(∥·∥=1)

(
D−1nrk

)
= proxI(∥·∥=1)

(
hrk −D−1∇hrk

f
)
,

where I(·) denotes the indicator function. Therefore, the two
BMM updates can be viewed as proximal gradient descent
steps for both xk’s and hrk’s.
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Fig. 2: Comparison of CPU time.

VI. NUMERICAL EXPERIMENTS

In this section, we illustrate the recovery performance of
the proposed algorithm and compare it with existing methods,
including SDP [9] and IR-SDP [12], where the first is the
convex method and the second employs a nonconvex low-rank
inducing function. Suppose we have S = 10 devices, of which
only 2 send messages to a base station that has R = 2 antennas.
We draw nonzero elements of the ground truth {x⋆

k}
S
k=1

and {h⋆
rk}

S,R
k,r=1 independently from the standard complex

Gaussian distribution and set h⋆
rk’s to have unit length. The

encoding matrices Ak’s are chosen based on the design in
Section II. 20 Monte Carlo experiments are performed and
the average results are presented. Each trial of the iterative
methods is initialized from randomly selected starting points.
The tuning parameter γ which controls the level of sparsity is
found using grid search.

First we conduct experiments in the noiseless case to
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Fig. 3: Performance under different SNR.
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compare the convergence speed of BMM with the existing
methods. We set M = 128, N = L = 8, and γ = 0.002. The
proposed BMM algorithm stops when the number of iterations
exceeds 300, while IR-SDP stops when the difference of
objective values between two sequential iterations, which is
denoted as ∆, is no larger than 10−8. The relative error (RE)
between the estimate and the ground truth is defined as

RE =

∑R
r=1

∑S
k=1

∥∥∥ĥrkx̂
H
k − h⋆

rkx
⋆H
k

∥∥∥∑R
r=1

∑S
k=1

∥∥h⋆
rkx

⋆H
k

∥∥ .

RE of each method against CPU time is presented in Fig.
2. It shows that both nonconvex algorithms achieve better
estimation than SDP under this setting, and BMM converges
the fastest among the three methods. Then we compare the
recovery performance of the algorithms in a noisy scenario.
We set M = 128, N = L = 16, and choose the noise to
be complex white Gaussian. The stop criterion for IR-SDP
is the same as above. We let BMM stop when ∆ ≤ 10−10 or
the number of iterations exceeds 300. The signal-to-noise ratio
(SNR) is defined as

SNR = 10 log10

∑R
r=1

∑S
k=1

∥∥h⋆
rkx

⋆H
k

∥∥∑R
r=1 ∥er∥

2
.

For different SNR, we set the tuning parameter to be γ ∈
{0.05, 0.02, 0.01, 0.005, 0.001}. RE in dB scale against SNR
of the algorithms are illustrated in Fig. 3. It depicts that RE of
BMM and IR-SDP decrease linearly with SNR, whereas RE
of SDP changes flatly particularly at higher SNR levels. The
underlying reason for the saturation problem of SDP may be
that the convex relaxation is loose. The figure also shows that
BMM achieves lower RE than IR-SDP, yielding better recovery
performance. Moreover, we perform BMM with different sam-
ple sizes to verify its effectiveness. For M ∈ {128, 256, 512},
we set N = L = 16, γ ∈ {0.005, 0.003, 0.001}, SNR = 60,
and run 100 iterations under each setting. It is interesting
to observe that with arbitrary initial points, BMM converges

TABLE I: CPU time (sec.) comparison in the noiseless case.

M N = L IR− SDP SDP BMM (prop.)

256
8 28.05 8.93 2.09
16 261.39 89.57 4.52

512
16 693.55 188.10 3.49
32 11006.13 4370.12 13.72

linearly despite the problem size, as shown in Fig. 4. Finally,
to see the scalability of these methods, we implement them
under different settings and compare their CPU time costs
when they converge. As displayed in Table I, BMM takes far
less time than existing methods and hence is scalable to large-
scale problems.

VII. CONCLUSIONS

In this paper, we have proposed a BMM algorithm to jointly
detect active devices and recover signals in MIMO commu-
nications, without prior knowledge of channel information.
Based on the matrix factorization structure, the signals and the
filters have been updated in an alternating way with low-cost
closed-form solutions. Numerical results have indicated that
BMM not only outperforms both SDP and IR-SDP methods in
terms of recovery accuracy but also reduces the computational
time significantly. Theoretical analyses of the convergence rate
and performance guarantees in MIMO systems have not yet
been provided, which suggests a potential future direction for
our research.
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