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Abstract—Previous speech separation systems commonly em-
ploy the Dual-Path (DP) mechanism. The DP mechanism ad-
dresses optimization challenges posed by considerable sequential
input lengths, yet its compulsory interleaving pattern for local and
global feature extraction raises concerns regarding optimal uti-
lization of features across different layers. This study emphasizes
the need for parallel processing of global and local information
in speech separation, proposing the Global and Local context-
Aware Speech Separation method (GLASS). GLASS integrates
self-attention and convolutional layers into a parallel design,
demonstrating state-of-the-art performance in both anechoic and
noisy settings. The findings reveal patterns in the relevance of
local and global information across layers, underscoring the
significance of proper architecture in improving speech separation
systems.

Index Terms—Speech Separation, Global and Local Dependen-
cies

I. INTRODUCTION

In real-world environments, audio often contains parts
where multiple speakers talk over each other. Therefore, ac-
curately separating multiple speakers from a single-channel
mixture would significantly facilitate many applications. Due
to the outstanding modeling capability, deep-learning algo-
rithms have been used as core models in state-of-the-art speech
separation systems [1]–[9]. Moreover, most successful systems
follow the encoder-decoder masking-based strategy [2], [3] and
the Dual-Path (DP) mechanism [4].

The DP mechanism, proven effective in various speech-
processing tasks such as separation [4], [7], [8] and enhance-
ment [10], encompasses three stages: segmentation, block
processing, and overlap-add. The segmentation stage splits
a sequential input into overlapped chunks and concatenates
all the chunks into a 3-D block. Afterward, the block is
passed to local and global extractors in an interleaving fashion.
Finally, the output from the last layer is transformed back
to a sequential output with the overlap-add method. One
of the objectives of the DP mechanism is to decrease the
optimization difficulty that arises when the sequential input
length is considerable.

However, the interleaving pattern of local and global feature
extraction in the DP mechanism is compulsory. The fixed
single-branch architecture translates a vague interpretation of
how global and local relationships are utilized across different

layers. Moreover, it hypothesizes that global and local infor-
mation hold identical levels of importance since the numbers
of global and local extractors are set the same. Without further
exploration, one may naturally wonder if the arrangement is
optimal, as questions like: Are global and local information
equally crucial in every layer? If not, is it possible to identify
a pattern?

Therefore, our intuition is to seek a scheme that retrieves
global and local information in parallel and investigates the
best possible way to utilize them while performing speech
separation. Such an investigation is crucial yet not emphasized
and discussed in previous works. Furthermore, the respective
outcome can help researchers design better speech separation
architectures. In light of this, we propose a novel Global
and Local context-Aware Speech Separation method entitled
GLASS. GLASS adapts Branchformer [11], which combines
self-attention and convolutional layers into a parallel design,
to the speech separation task. Self-attention is valuable for
capturing long temporal relationships, while convolutional
layers are competent to extract regional features within its
receptive field.

Through extensive evaluation under anechoic and noisy set-
tings, GLASS achieves state-of-the-art performance. Interest-
ingly, we found a regular pattern of when local and global in-
formation matters and can even reform the model accordingly
to gain improved results. This contribution underscores the
significance of parallel processing and utilizing proper depen-
dency for enhanced speech separation architectures, providing
valuable insights for future research and design considerations.

II. GLASS

A. Overall Structure

The overall description of the proposed GLASS framework
follows the encoder-decoder masking-based strategy, as de-
picted in Fig. 1. This strategy works as follows: Initially, the
encoder transforms the mixture x =

∑C
i=1 si + n ∈ RT ,

which contains audio from C active speakers and additive
noise n, into an STFT-like representation w that characterizes
the signal:

w = ReLU(fenc ∗ x) ∈ RN×L, (1)



Fig. 1. The overall architecture of proposed method. This figure demonstrates
an example of a mixture including two sources, and the bold arrows indicate
that there are two vectors.

where fenc, ∗, and ReLU denote the encoding matrix, the
convolution operation, and a rectified linear unit, respectively,
and N and L are the feature size and the number of frames.

Then, by feeding w, the mask estimator produces C masks
{mi} for each active speaker in the mixture. Finally, the
decoder reconstructs each estimated source ŝi by deconvolving
the masked representation:

ŝi = fdec ∗ (w ⊙mi) ∈ RT , (2)

where fdec and ⊙ denote the decoding matrix and element-
wise multiplication. The analytic filters in fenc and fdec are
learned from uni-dimensional convolution (Conv1d) and its
transposition, respectively, both having N bases with a length
of k. The objective is to minimize the distance between si and
ŝi.

A more profound illustration of the mask estimator is also
visualized in the lower part of Fig. 1. The mask estimator con-
tains one pair of bottleneck projections, multiple Branchformer
blocks, a linear layer, and feed-forward networks (FFWs). The
representation w is first layer-normalized, and feature-wise
downsized to a bottleneck dimension. Prior to the Branch-
former blocks, positional encoding (PE) [25] is applied to
inject information on the order of frame sequence. Afterward,
the downsized representation feeds R Branchformer blocks
to realize an enhanced vector space that alleviates the task
difficulty for the subsequent linear layer. This linear layer is
where the separation is carried out, transforming each of size
N into a matrix of size C × N . Ultimately, each of the C
representations is transferred to FFWs, an upsizing projection,
and a ReLU to generate a non-negative mask.

Branchformer was initially designed to tackle automatic
speech recognition (ASR) and spoken language understanding
(SLU) tasks. However, their objectives are quite different from
ours. For example, the output dimension to which each task

Fig. 2. A Branchformer block consists a global and a local context extractor.

wishes to map differs. Speech separation or enhancement, in
particular, remains the same dimension as the input audio,
whereas ASR or SLU maps to tokens with fewer quantities.
Therefore, we carefully modified Branchformer to meet our
objectives.

B. Branchformer Blocks

Two parallel branches mainly constitute a Branchformer
block, as depicted in Fig. 2. Both branches share the same input
but focus on different relation ranges that complement each
other. For an input w, the global branch outputs a globally-
viewed tensor u ∈ RN×L produced by the global context
extractor, whereas the local branch outputs a locally-tuned
tensor v ∈ RN×L produced by the local context extractor.
The outputs of two branches are then merged, with the
original input added as a residual connection to smooth the
output when sources are absent. At the beginning and end
of each branch, layer normalization [12] and dropout [13]
are employed, respectively. For brevity, we omit them in the
following formulation.

Global Context Extractor. The global extractor exploits
Multi-Head Self-Attention (MHSA) [25], which can be ex-
pressed as follows:

Qi = (WQ
i w)

T ,Ki = (WK
i )T , Vi = (WV

i )
T ;

headi = SA(Qi,Ki, Vi) = S(QiK
T
i√

N
)Vi;

u = MHSA(w) = Whead[head0, ..., headh−1]
T
1 ,

(3)

where W
{Q,K,V }
i ∈ RN/h×N and Whead ∈ RN×N are

learnable linear layers, S(·) denotes a softmax activation
function, and h denotes the number of attention heads. The
concatenation along the (i+ 1)’th dimension is denoted by
[· · · ]i.

Local Context Extractor. The local extractor exploits a
convolutional-gated Multi-Layer Perceptron (cgMLP) [14],
which contains one pair of feature-wise projections, a Gaussian



Error Linear Unit (GELU) [15], and a Convolutional Spatial
Gating Unit (CSGU). The sequential procedure can be formu-
lated as follows:

w̃ = GELU(Wup
mlpw), w̃ ∈ RF×L;

[w̃1, w̃2]0 = w̃, w̃i ∈ RF/2×L;

w̃′
2 = CSGU(w̃2) = DWConv(LayerNorm(w̃2));

w̃′
1 = w̃1 ⊙ w̃′

2;

v = Wdown
mlp w̃′

1,

(4)

where F denotes the hidden dimension that is usually larger
than that of input, DWConv denotes depth-wise convolution,
and Wup

mlp ∈ RF×N and Wdown
mlp ∈ RN×F/2 are learnable linear

layers as well.
Merging Branches. After obtaining u and v as in Eqs.

(3) and (4), two merging methods are designed to gain an
intermediate representation w′ that captures global and local
dependencies. The first is simply concatenating them and
performing projection back to the original dimension by a
linear layer Wcat ∈ RN×2N :

w′ = Wcat[u, v]0 ∈ RN×L. (5)

Concatenation-based merging is straightforward. However, due
to its lack of flexibility, the alternative may be a weighted sum
of two branches:

w′ = αuu+ αvv (6)

The weights, αu and αv , indicate how global and local
relationships are incorporated. This can be particularly useful
in cases where the relative importance of the global and local
information may vary depending on different layers. While
there are multiple ways to learn αu and αv , attention-based
pooling [16] is employed here as follows:

α′
u = S(

Wu,1
poolu√
N

)(Wu,2
poolu)

T ∈ R;

α′
v = S(

Wv,1
poolv√
N

)(Wv,2
poolv)

T ∈ R;

[αu, αv]0 = S([αu, αv]0) ∈ R2,

(7)

where W
{u,v},{1,2}
pool ∈ R1×N are learnable linear layers.

C. Comprehending Branches

If we regard every linear layer W as interpolation or
subsampling, then the understanding of Branchformer’s archi-
tecture can be comprehensible. For the global branch, each
attention map, S(QiK

T
i /

√
N) ∈ RL×L, explains how the

network adjusts its focus based on long-temporal information.
In contrast, the local branch modifies features within a single
frame. Specifically, CSGU processes the neighboring values
via convolution kernels, resembling sub-band processing. At
the same time, the gating design and up- and down-sizing
projection layers can be interpreted as full-band processing.

III. EXPERIMENTS

A. Datasets

We validate GLASS on the popular WSJ0-2mix dataset [3]
under the anechoic setting and use the improvement of SI-
SDR [17] and SDR as the evaluation metrics. WSJ0-2mix is
generated from the Wall Street Journal (WSJ) dataset [18]
and consists of mixed speech utterances from two distinct
speakers with random SDR between 0 dB and 5 dB. The
training, validation, and test sets contain 30, 10, and 5 hours
of speech data. Furthermore, we perform experiments in noisy
settings. We rely on WHAM! [19], where each two-speaker
utterance from the WSJ0-2mix dataset is mixed with a unique
noise sample recorded in ambient environments such as coffee
shops, restaurants, and bars. The models are supposed to
simultaneously perform speech separation and denoising to
extract clean signals from such mixed data. Finally, all speech
data are sampled at 8 kHz.

B. Model Configurations

GLASS is implemented using PyTorch [20], and the exper-
iments are conducted using the Speechbrain toolkit [21]. For
the encoder and decoder, we set the number of bases N = 256
and the kernel size k = 16 with a stride factor of 8. Regarding
the mask estimator, the repetition of the Branchformer block R
is 8, 12, and 16. We use h = 8 parallel attention heads inside
each global branch and the hidden dimension F = 2048 for
each local branch. The kernel size used in CSGU is 17. All the
dropout layers are applied with a probability of 0.1. For model
training, we optimize the model using the Adam optimizer [22]
with a learning rate of 1.5e−4, which is halved after 5 epochs
without improvement. Finally, the models are trained over 150
epochs with Permutation Invariant Training [23] and SI-SDR
losses [3].

IV. RESULTS

A. Difference in Context Extractor

To demonstrate its effectiveness in modeling long- and
short-term dependencies, we first compare GLASS with two
context extractors: Transformer [25] and Conformer [24].
While Transformer is good at modeling long-range global
context, it is less capable of extracting fine-grained local
feature patterns. Conformer, on the other hand, employs a
single-branch architecture, making it challenging to analyze
how local and global interactions are utilized in different
layers. Furthermore, similar to the DP mechanism, the fixed
interleaving pattern between self-attention and convolution in
Conformer might not be optimal.

The result is shown in Tab. I. We can observe that if the
extractor readily possesses both local and global views, it
is less favored by incorporating the DP mechanism. Positive
examples are Conformer without DP mechanism and GLASS,
while the negative example is Transformer without DP mech-
anism. Furthermore, while the DP mechanism is beneficial



TABLE I
THE SI-SDR AND SDR IMPROVEMENT SCORES OBTAINED BY GLASS

AND DIFFERENT EXTRACTOR IN WSJ0-2MIX. GLASS USING
CONCATENATION-BASED MERGING WITH 8 LAYERS IS ABBREVIATED AS

”GLASS-C8”, AND THE WEIGHTED-SUM ONE AS ”GLASS-S8.”

Extractor Total layers DP SI-SDRi ↑ SDRi ↑

Transformer 8 × 17.6 18.0
✓ 18.8 19.1

Conformer 8 × 18.6 18.8
✓ 18.3 18.5

GLASS-c8 8 × 18.6 18.9
GLASS-s8 8 × 19.0 19.1

when integrated with Transformer (equivalent to a smaller-
sized SepFormer [8]), probably due to the division of labor,
GLASS using weighted-sum merging attains better outcomes.

B. Comparison with Previous Works

Here, we increase the number of the Branchformer blocks
R in GLASS from 8 to 12 and 16 to gain a higher result.
Tab. II compares the performance achieved by GLASS with
the best results obtained by well-known methods tested on
the WSJ0-2mix and WHAM!. As seen, GLASS families stand
competitively; notably, ”GLASS-s16” achieves state of the
art. Although our method is slightly inferior to Wavesplit
[9] for anechoic data, it still manages to discern noises and
separate the clean sources better than Wavesplit on WHAM!,
where source separation and speech enhancement are practiced
simultaneously and thus closer to the real environment. The
same explanation can also be given to DPTNet [7], which
seems to be more parameter-wise efficient but fails for realistic
data. It is noteworthy that Wavesplit and VSUNOS [6] leverage
additional speaker information, either trained from scratch or
with pre-trained embeddings.

Furthermore, the results from Tabs. I and II suggest that
GLASS performs better with weighted-sum merging than with
concatenation, which contradicts our initial expectations. We
reckon the underlying cause is that concatenating the embed-
dings and projecting them back to the original dimension may
lead to a certain loss of information. When performing one-to-
more mapping as speech separation, as opposed to classifica-
tion tasks like ASR and SLU, the loss of information is treated
more severely and has to be addressed more carefully. The
weighted-sum merging can mitigate this issue by providing a
more controlled interpolation between the two embeddings.

C. Receptive Field in Local Branch

The choice of the sub-band range is crucial yet hard to
determine in practice. As metaphorized in Sec II-C, the range
of the sub-band translates to the receptive field in the context
of Conv1d. We are curious about the impact of varying kernel
sizes in Conv1d, and the findings are presented in Tab III.
It shows diminishing rewards when the kernel size increases
from 17 to 33, while performance is marginally worse when

decreasing the kernel size from 17 to 9. A similar outcome
can be found in [27].

D. Visualizing Branch Weights

As formulated in Eq. (7), the branch weights are determined
by the given context and thus may be dynamic accordingly.
This raises an interesting question of whether weights in
the same layer are consistent or divergent regarding different
inputs. To address such concern, we visualize each branch
weights gained from 3000 testing trials via box plots, as plotted
in Fig. 3.

We can observe four phenomena:
1) The first quarter of layers primarily retains local informa-

tion while discarding global information (see data points
cropped in the orange box).

2) Weights with high dynamic ranges are found in two to
three levels preceding the last two layers, where many
outliers exist (see data points cropped in the green box).
It reveals that these layers adjust their priority to global
or local embeddings when facing different inputs.

3) Aside from the layers mentioned above, the weights in
the remaining layers are low-dispersive, indicating that
the division of labor is distinct in each layer.

4) On average, the local information is utilized more in the
overall percentage than the global information (see the
dashed lines), which opposes to the hypothesis of equal
importance.

We also conducted an experiment in which the global
branches of the first four layers in GLASS-s12 were dropped
since their weights were close to zero, according to Fig. 3.
Relative to the original GLASS-s12, this arrangement yields
comparable SI-SDRi performance (20.4 for WSJ0-2mix and
16.1 for WHAM), but converges faster. Due to the specific
vision we have assigned for those layers, the subsequent layers
can be more focused on their priorities and have a better
grasp of what kind of embedding to employ. This highlights
the importance of using global and local dependencies in an
appropriate order, not to mention the reduction of parameters
that leads to faster convergence. Furthermore, these findings
suggest that an interleaving pattern of local and global extrac-
tors is suboptimal.

E. Ablation Study

Inspired by the visualization of the branch weights, a ques-
tion naturally emerges: What if only one branch is used while
the other is dropped? We conduct an ablation study, shown in
Tab. IV, verifying whether both the global context extractor
and the local context extractor are useful. It turns out that
the performance of the model using only the local extractor
is superior to the one using only the global extractor, even
though Transformer is unarguably a more powerful design.
The result gives hints on an essential and supplementary role
for local and global features respectively, yet they complement
each other when using both branches. The same finding can
also be indicated from Fig. 3, where the overall weight for the
local branch is greater than that of the global branch.



TABLE II
THE SI-SDR AND SDR IMPROVEMENT SCORES OBTAINED BY GLASS AND PREVIOUS WORKS IN WSJ0-2MIX AND WHAM!.

Method Size WSJ0-2mix WHAM!
SI-SDRi ↑ SDRi ↑ SI-SDRi ↑ SDRi ↑

Chimera++ [26] 32.9M 11.5 12.0 9.9 -
Deep CASA [1] 12.8M 17.7 18.0 - -
BiLSTM-TasNet [2] 23.6M 13.2 13.6 12.0 -
Conv-TasNet [3] 5.1M 15.3 15.6 12.7 -
DPRNN [4] 2.6M 18.8 19.0 13.9 -
SuDoRM-RF [5] 2.6M 18.9 - - -
VSUNOS [6] 7.5M 20.1 - 15.2 -
DPTNet [7] 2.7M 20.2 20.6 14.9 15.3
SepFormer [8] 26M 20.4 20.5 16.3 16.7
Wavesplit [9] 29M 21.0 21.2 15.4 15.8
GLASS-c12 14.8M 20.0 20.3 15.7 16.1
GLASS-s12 14.1M 20.3 20.5 16.1 16.2
GLASS-c16 19.9M 20.4 20.6 16.2 16.4
GLASS-s16 18.6M 20.8 21.0 16.5 16.8

Fig. 3. The box plot of branch weights for model with 12 and 16 layers. ’+’ symbols denote outliers, and dashed lines plot the mean of all layer weights.

TABLE III
THE EFFECT ON DIFFERENT RESPECTIVE FIELD IN LOCAL BRANCH.

Model kernel size
k = 9 k = 17 k = 25 k = 33

GLASS-s16 20.82 20.84 20.76 20.57

F. Time complexity

In Fig. 4, we plot the execution time of each model. The
first thing that comes into sight is the linear function against
the step function. Being also categorized as a frame-online
system, Conv-TasNet [3] has the same linear time complexity
as GLASS. Regardless of the latency gap caused by their
respective parameter size, GLASS holds a large margin of

TABLE IV
ABLATION STUDY ON BRANCH DROPOUT.

local global SI-SDRi ↑ SDRi ↑
✓ 18.75 18.91

✓ 18.48 18.72
✓ ✓ 20.84 21.01

better separation quality than Conv-TasNet. On the other
hand, the step function describes the chunked modeling of
the DP-based method. Albeit this stepping characteristic helps
reduce the time complexity if a long recording is readily in
hand [28], the fact that it takes more time to separate short
frames disqualifies the DP mechanism from being a frame-



Fig. 4. Execution time, ran by GTX1080Ti, plotted as a function of the input
length. RTF stands for real-time factor.

online application. Using GLASS, instead, reserves more spare
time for downstream speech applications, say online speaker
diarization [29], to operate.

V. CONCLUSIONS

In this study, we introduce GLASS, a novel approach
that explores the use of global and local information in
speech separation. GLASS employs a parallel design with
branches extracting and merging features based on contextual
importance. Evaluation results demonstrate the state-of-the-art
performance of GLASS. The learned branch weights provide
insights into an optimal pattern for integrating global and local
information, enhancing interpretability and understanding in
speech separation. Our work contributes to advance future
endeavors in optimizing network architectures for speech sep-
aration.
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