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Abstract—Detection and classification of heart murmurs are
crucial for the early and timely diagnosis and treatment of
cardiovascular diseases. However, heart murmurs often overlap
with normal heart sounds, making their detection difficult. In this
paper, we propose a two-stage method for separating murmurs
before their classification. The first stage employs Constrained
Singular Spectrum Analysis to exploit the distinct statistical char-
acteristics of heart sounds and murmurs, facilitating their initial
separation. The second stage leverages the capability of Wavelet
Transform to effectively localize sound components in both time
and frequency domains, which is essential for separating subtle
murmurs that are not completely removed during the first
stage. After these two stages, normal heart sounds are precisely
extracted, and the remaining audio components, predominantly
murmurs, are effectively classified. Our results demonstrate that
pre-separating murmurs enhances the classification performance,
achieving an accuracy of over 99% after using transfer learning.
The proposed method can improve the clarity and accuracy
of heart sound analysis, thereby facilitating better diagnostic
evaluations and interventions in clinical settings.

I. INTRODUCTION

Cardiovascular disease is one of the leading threats to human
health. Murmurs are very important indicators of such diseases.
Therefore, detecting heart murmurs is crucial for the early and
timely diagnosis and treatment of cardiovascular conditions
[1]. A heart murmur is an abnormal sound heard during the
cardiac cycle, typically audible with the aid of a stethoscope,
and is often described as a whooshing or swishing noise
[2]. This sound results from turbulent blood flow through
the heart. Different types of murmurs are associated with
various underlying heart diseases [3]. For instance, systolic
murmurs, such as those associated with aortic stenosis or
mitral regurgitation, occur during ventricular contraction and
often indicate abnormalities in valve structure or function.
Diastolic murmurs, like those linked to aortic regurgitation
or mitral stenosis, manifest during ventricular relaxation and
suggest issues such as valve incompetence or narrowing [4].
Fig. 1 illustrates the normal heart sound and different types
of murmurs. Often, murmurs are obscured by normal heart
sounds and other noises [5]. Extensive experience and training
for physicians are needed to identify heart murmurs.

In recent years, various computer-aided technologies have

been applied to classify murmurs. In [6] the authors presented
a method using wavelet transform and Hilbert phase envelope
to classify abnormal heart signal sounds into ten classes
depending on the occurrence moment. Many machine learning
approaches have also been proposed to detect and classify
normal heart sounds and heart murmurs, such as the K-Nearest
Neighbour (KNN) algorithm, Support Vector Machines (SVM)
algorithm [7], Convolution Neural Network (CNN) [8], Resid-
ual Networks (ResNet) [9], and Attention Mechanism [10].
However, they don’t attempt the murmur separation method
before classification. In [11], [12] the authors have used
deep learning methods for source separation. Although the
separation results are competitive, their methods require a large
data size for training [13].

In this paper, we introduce and employ signal processing
and machine learning methods to separate and classify different
types of murmurs. Normal heart sounds generally have slow
variation and hence a lower Zero Crossing Rate (ZCR) [14] and
more peaky distribution, denoted by higher kurtosis [15] com-
pared with murmurs. We use Constrained Singular Spectrum
Analysis (CSSA) with ZCR and kurtosis to initially separate
the normal heart sound from the murmur. Subsequently, we
apply Wavelet Transform (WT) for further extraction of the
murmur to achieve high separation precision. Finally, we use
machine learning techniques to classify the separated murmurs
into their respective types.

II. METHODOLOGY

A. Separation of Heart Sound and Murmur

Fig. 2 demonstrates the overall separation process. The
method is a two-stage process for the separation of murmurs
from original sounds. In the first stage, CSSA is used to
initially segregate the normal heart sound from the original
sound. This stage can filter out the regular heartbeats, although
some murmurs may remain mixed within the extracted sound.
The second stage focuses on refining the normal heart sound
obtained from the first stage using WT to achieve a high-
precision separation of the normal heart sounds.

Singular Spectrum Analysis (SSA) is a non-parametric
method particularly advantageous for analyzing non-linear and
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Fig. 1. Normal Heart sound (a) and heart sounds with (b) aortic regurgitation
murmur, (c) aortic stenosis murmur, (d) mitral regurgitation murmur, (e) mitral
stenosis murmur, (f) mitral valve prolapse murmur, (g) pericardial friction
murmur, and (h) pulmonary stenosis murmur.

Fig. 2. The overall flowchart for separating heart sound and murmur.

non-stationary time series data. It has many applications such
as noise reduction, signal reconstruction, forecasting future
trends and biomedical signals [16]. Using SSA, the signal
is decomposed into multiple components first, and then the
desired signals are reconstructed according to some constraints,
referred to as CSSA. The normal heart sounds tend to have
lower ZCR and higher kurtosis compared with the murmurs.
Therefore, setting ZCR or kurtosis as constraints in the CSSA
process is an approach to differentiating these sounds. The
above process can be summarized as follows.

After selecting a fixed window length L, the original signal
x is transformed from a one-dimensional signal of length N

into an L×K trajectory matrix X , where K = N − L+ 1.

X =


x0 x1 x2 · · · xK−1

x1 x2 x4 · · · xK

...
...

...
. . .

...
xL−1 xL xL+1 · · · xN−1

 (1)

In the next step, the covariance of the Hankel ma-
trix X , S = XXT , is decomposed into UΛUT

where Λ is a diagonal matrix consisting of the eigenval-
ues λ1, λ2, . . . , λL (λ1 ≥ λ2 ≥ . . . ≥ λL) and U =
[U1, U2, · · · , UL] is the orthonormal eigenvectors of S.
Here, X =

∑d
i=1 Xi where d = Rank(X). After applying

diagonal averaging, the original signal x is converted into a
N × d matrix R, with each component Ri representing a one-
dimensional signal of length N .

R =
[
R0 R1 R2 · · · Rd−1

]
(2)

Next, we apply the constraint along with W , a column vector
filled with binary values, to selectively extract the desired
component from R.

W =


w0

w1

...
wd−1

 , wi = {0, 1} (3)

This selection process allows us to reconstruct the final signal
xr, which is obtained by multiplying R by W , denoted as
R×W .

xr = R×W (4)

CSSA with ZCR: ZCR measures how frequently the signal
changes between positive and negative values. For each com-
ponent Ri of the signal, we calculate the ZCR. If the computed
rate is below or equal to a predefined threshold, then we assign
wi a value of 1; otherwise, wi is set to 0. CSSA with ZCR
enables selective signal reconstruction based on the dynamic
characteristics of each component.

wi =

{
1 ZCR(Ri) ≤ threshold,
0 ZCR(Ri) > threshold.

(5)

CSSA with Kurtosis: Kurtosis is a statistical measure that
describes the distribution’s peakedness relative to a normal
distribution. In this method, we optimize a vector of parameters
W to maximise the kurtosis of R×W . This task constitutes a
nonlinear integer programming problem, which can effectively
be solved using Genetic Algorithm (GA). Such an algorithm is
effective for solving complex optimization challenges involv-
ing the nonlinear cost function and constraint. Fig. 3 illustrates
the process by which the CSSA with kurtosis separates the
heart sounds from murmurs. CSSA with kurtosis enables selec-
tive signal reconstruction based on the statistical characteristics
of each component represented by its distribution.
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Fig. 3. The process for CSSA with kurtosis.

W = max
W

kurtosis(R×W ) (6)

In the first stage of separating heart sound and murmur, we
employ CSSA both with ZCR and kurtosis. Each method is
utilized to separate the normal heart sound, leaving the murmur
as the residual component. Following this, we calculate the
correlation between the separated normal heart sound and
the murmur. The method—either CSSA with ZCR or CSSA
with kurtosis—that yields the lower correlation between these
components is then selected as the input to the second stage
of the analysis. Fig. 4 shows the flowchart of CSSA in the
first stage. This approach ensures that the method leading to
the least similarity between the normal sound and the murmur
is advanced, enhancing the effectiveness of the separation
process.

Fig. 4. The flowchart of CSSA in the first stage of separation.

In the second stage of separating heart sound and murmur,
we employ WT to meticulously filter out the residual murmur
from the heart sound obtained in the first stage. WT is
known for its time-frequency analysis capabilities, making
it particularly effective for analyzing non-stationary signals,
where the signal characteristics change over time [17]. This
makes WT an important tool in various applications, such as
signal compression, noise reduction, and feature extraction.
WT works by decomposing a signal into a set of wavelets,
which are functions that can capture both frequency and tem-
poral location information simultaneously. This decomposition
allows for a multi-resolution analysis of the signal, enabling
the identification of features that may not be apparent in the
original time-domain representation. Given that our signal is
discrete, we employ the Discrete Wavelet Transform (DWT)
to distinguish the residual murmurs from the normal heart
sounds identified initially. During the application of DWT,
the heart sound signal is decomposed into various frequency
components at different scales. The filtering process involves
thresholding and reconstructing the signal to ensure that the
residual murmur is effectively separated from the normal heart
sounds.

After completion of these two stages, the process results in
precise extraction of normal heart sounds. The use of CSSA
and DWT ensures that both stages complement each other,
leading to a more refined separation process. The separated
murmurs, are then separated and can be used for classification.
This separation is crucial as it allows for a focused analysis
of murmur characteristics without the interference of normal
heart sounds. This two-stage method enhances the clarity and
accuracy of heart sound analysis, facilitating better diagnostic
evaluations and interventions in clinical settings.

B. Classification of Murmur

Once the murmur has been separated, we proceed to extract
its features and employ machine learning for classification. For
this purpose, we utilize four distinct classification methods:
SVM [18], Random Forest (RF) [19], CNN [20] and transfer
learning [21].

SVM is a supervised machine learning algorithm and its
goal is to find an optimal hyperplane that can best separate
different classes by maximizing the margin between the closest
data points of each class, known as support vectors. RF is a
bagging method within ensemble learning and can enhance the
accuracy and stability of predictions by constructing multiple
decision trees and aggregating their outputs by majority voting
for classification. By training each tree on different subsets of
data and features, Random Forest enhances model robustness
and accuracy and reduces overfitting. For SVM and RF, we use
Mel Frequency Cepstral Coefficients (MFCCs) as the feature
input.

CNN is a deep learning algorithm and our proposed ar-
chitecture is shown in Fig. 5. This CNN comprises two
convolutional layers and two max pooling layers which help
in extracting and downsampling spatial hierarchies of features,
two fully connected layers that synthesize these features into
predictions, and three dropout layers strategically placed to
prevent overfitting by randomly omitting a subset of features
during training. For CNN, we use the Mel Spectrogram as the
feature input. The Mel Spectrogram is considered as a coloured
image which has been resized to 224 × 224 for three colour
channels of red, blue and green.

Fig. 5. The architecture of the designed CNN.
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Transfer learning aims to learn from diverse and compre-
hensive data and then apply the learned knowledge to a new
task. We use Wav2cec 2.0 [22] as the pre-trained model which
is trained on a large amount of audio data. Wav2Vec 2.0
is an end-to-end self-supervised learning model that directly
takes raw audio waveforms as input [23]. After pretraining, the
model can be fine-tuned to perform classification directly. Fig.
6 shows the architecture of transfer learning using Wav2vec
2.0 as the pre-trained model.

Fig. 6. The architecture of transfer learning using Wav2vec 2.0 as the pre-
trained model.

III. EXPERIMENT AND RESULTS

Data: We utilized the publicly available dataset from [24]
that includes four classes of abnormalities: Aortic Stenosis,
Mitral Regurgitation, Mitral Stenosis, and Mitral Valve Pro-
lapse. Additionally, we expanded the data by collecting data for
three more abnormal classes: Aortic Regurgitation, Pericardial
Friction, and Pulmonary Stenosis from online open sources,
such as Google.

Separation: Fig. 7 shows the separation results of seven
types of murmurs using CSSA and WT.

Classification: Accuracy, F1 Score, Sensitivity, and Speci-
ficity are widely used to evaluate the performance of classi-
fication models, providing a comprehensive assessment of a
model’s predictive accuracy and precision in handling both
positive and negative classifications.

Accuracy is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

where TP stands for true positives, TN for true negatives,
FP for false positives, and FN for false negatives.

F1 Score is the harmonic mean of Precision and Recall,
calculated as:

F1 Score = 2× Precision × Recall
Precision + Recall

(8)

where Precision is calculated as:

Precision =
TP

TP + FP
(9)

and Recall (also known as Sensitivity) is calculated as:
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Fig. 7. Separation of seven types of murmurs from the original sounds: the
top signal is the original sound, the middle signal is the separated normal heart
sound, and the bottom signal is the separated murmur; (a) aortic regurgitation
murmur, (b) aortic stenosis murmur, (c) mitral regurgitation murmur, (d) mitral
stenosis murmur, (e) mitral valve prolapse murmur, (f) pericardial friction
murmur, and (g) pulmonary stenosis murmur.

Recall = Sensitivity =
TP

TP + FN
(10)

Specificity is calculated as:

Specificity =
TN

TN + FP
(11)

Together, these metrics provide a detailed understanding of
a model’s performance, allowing evaluation and fine-tuning
of models for optimal predictive accuracy and precision in
classification tasks.

Tables I and II respectively present the results for two
different cases: (i) classification using the original, unseparated
sound, and (ii) classification of murmur signals following their
separation using CSSA and WT. The results from these tables
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clearly demonstrate that the pre-separation of murmurs sig-
nificantly enhances the performance metrics, achieving higher
Accuracy, F1 Score, Sensitivity, and Specificity.

TABLE I
ACCURACY, F1 SCORE, SENSITIVITY, AND SPECIFICITY METRICS
FOR THE CLASSIFICATION OF SEVEN MURMUR TYPES (AS, AR,

MR, MS, MVP, PF, PS) USING SVM, RF, CNN, AND TRANSFER
LEARNING; THE ORIGINAL SOUND HAS BEEN USED HERE.

SVM RF CNN Transfer
Learning

Accuracy 91.27% 94.76% 97.38% 99.13%

F1 Score 92.03% 94.68% 97.33% 98.97%

Sensitivity 91.56% 94.20% 97.47% 98.86%

Specificity 98.50% 99.10% 99.56% 99.85%

TABLE II
ACCURACY, F1 SCORE, SENSITIVITY, AND SPECIFICITY METRICS
FOR THE CLASSIFICATION OF SEVEN MURMUR TYPES (AS, AR,

MR, MS, MVP, PF, PS) USING SVM, RF, AND TRANSFER
LEARNING; THE SEPARATED MURMURS USING CSSA AND WT HAS

BEEN USED HERE.

SVM RF CNN Transfer
Learning

Accuracy 94.76% 96.94% 98.69% 99.56%

F1 Score 94.88% 97.42% 98.73% 99.49%

Sensitivity 94.53% 97.29% 98.93% 99.47%

Specificity 99.10% 99.49% 99.78% 99.92%

IV. CONCLUSIONS

In this study, we introduced a novel two-stage method to
separate murmurs from heart sounds before applying murmur
classification. The initial stage involves utilizing CSSA to
decompose the heart sound signal, followed by reconstructing
the signal using ZCR and kurtosis as constraints. Subsequently,
WT is applied in the second stage to further extract the
murmur. This two-stage approach is designed to maximize
the precision of murmur separation, thereby improving the
performance of subsequent classification tasks. Our experimen-
tal results have been promising, showing that pre-separating
murmurs can enhance classification performance, with ac-
curacy levels exceeding 99% after using transfer learning.
This methodological advancement has the potential to greatly
improve the quality and effectiveness of medical care, enabling
more accurate and reliable diagnosis of heart conditions.

REFERENCES

[1] C. Xu, X. Li, X. Zhang, et al., “Cardiac murmur
grading and risk analysis of cardiac diseases based on
adaptable heterogeneous-modality multi-task learning,”
Health Information Science and Systems, vol. 12, no. 1,
p. 2, 2023.

[2] M. M. Milani, P. E. Abas, and L. C. De Silva, “A critical
review of heart sound signal segmentation algorithms,”
Smart Health, vol. 24, p. 100 283, 2022.

[3] J. Prince, J. Maidens, S. Kieu, et al., “Deep learning
algorithms to detect murmurs associated with structural
heart disease,” Journal of the American Heart Associa-
tion, vol. 12, no. 20, e030377, 2023.

[4] C. J. Riley, “Assessment of the heart,” History and
Physical for the Pediatric Dental Patient: Establishing
a Systematic Approach for Procedural Sedation, pp. 43–
60, 2024.
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