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Abstract—The popular CLIP model has empowered various
zero-shot learning tasks by unifying them into the vision-language
alignment framework. However, due to the dynamic subject-
object interactions and complex motion variations, the egocentric
videos become more diverse and widen the gap between the
vision and language data, which limits the applicability of the
CLIP model. Thanks to the widely used Inertial Measurement
Unit (IMU) in wearable devices, this paper proposed an Inertial
Strengthened CLIP (IS-CLIP) model to refine the visual represen-
tation of egocentric videos, which achieves highly effective zero-
shot multimodal egocentric activity recognition. Our IS-CLIP is
composed of two modules, i.e., the Subject-object Interaction
Refinement Module (SIRM) and the Subject-motion Guided
Aggregation Module (SGAM). On the one hand, SIRM embeds
the motion patterns of IMU into the visual representation of
each frame to enhance the action-related features. On the other
hand, the SGAM maps the IMU to the frame-wise weights to
aggregate the visual representations of all frames, which reduces
the differences between the videos of the same action with
different speeds, directions, and temporal locations. Experiments
on the UESTC-MMEA-CL dataset show that the proposed IS-
CLIP outperforms many state-of-the-art methods in the zero-shot
multimodal egocentric activity recognition task.

Index Terms—egocentric vision, multimodal activity recogni-
tion, IMU, zero-shot learning, CLIP

I. INTRODUCTION

Egocentric activity recognition (EAR) has become a sig-
nificant research direction, with the widespread application of
wearable devices in fields such as health monitoring, human-
robot interaction, etc [1], [2]. In recent years, numerous
outstanding fully supervised deep learning methods for ego-
centric activity recognition have emerged [3]–[5], leveraging
wearable device sensors such as cameras, inertial sensors,
and optical flow. For example, Huang et al. [6] introduce the
knowledge graph and present a knowledge-driven egocentric
activity recognition framework. Hao et al. [7] extend a single
inertial sensor to two-hand inertial sensors and propose a
two-branch late-fusion framework. With the development of
technology, practical application scenarios have proposed zero-
shot demand, which requires that the model be trained on
base categories while being capable of recognizing novel
categories [8], to reduce the labor-intensive data acquisition
and annotation. However, none of the previously mentioned
methods possess zero-shot recognition capabilities.

Contrastive Language Image Pre-training (CLIP) [9], which
is trained on hundreds of millions of image-caption pairs
collected from the Internet, has good feature representation
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Fig. 1. The IMU provides supplementary information on subject motion,
which is utilized to refine CLIP’s visual representation. (a) Subject-object
Interaction Refinement: In hand movements mode, we should focus on the
cup in hand rather than the irrelevant phone. (b) Subject-motion Guided
Aggregation: Utilize the IMU’s temporal features to emphasize video frames
with significant motion.

for images and texts. There are many CLIP-based image
recognition works [10]–[12] that show amazing zero-shot per-
formance. Recently, some research has applied CLIP to video
input and achieved zero-shot third-person video activity recog-
nition. ActionCLIP [13] proposed the “pre-train, adapt, and
fine-tune” paradigm for activity recognition and expanded text
labels to enhance the matching between video and text. Open-
VCLIP [14] models spatial-temporal relationships in videos
and proposes the interpolated weight optimization method to
maintain the generalization of CLIP after training. FROSTER
[15] adopts a residual feature distillation approach to ensure
that CLIP retains its generalization while effectively adapting
to activity recognition.

However, zero-shot methods based on videos typically en-
counter two significant challenges when applied to egocentric
activity recognition. First, egocentric videos capture complex
external environments rather than the action subject. Numerous
irrelevant objects appear in the video, severely impacting
CLIP’s visual representation. Second, changes in first-person
video may reflect environmental object movement rather than
the subject’s motion, causing significant interference with ac-
tivity recognition. Inertial sensors on wearable devices provide
additional motion data of the action’s subject, offering crucial



compensation to mitigate these interferences and achieve more
accurate visual-language alignment. To our knowledge, there
is currently a lack of research on integrating IMU data into
zero-shot egocentric activity recognition based on CLIP.

Therefore, we introduce the IMU modality and utilize IMU’s
subject motion information to strengthen the CLIP’s visual
representation. To this end, we design the Subject-object Inter-
action Refinement Module (SIRM) and Subject-motion Guided
Aggregation Module (SGAM). Specifically, egocentric videos
usually contain multiple background objects, most of which
are irrelevant to the activity. IMU time-frequency features
correspond to typical motion mode, such as hand and head
movements. The SIRM utilizes IMU time-frequency features
as query vectors to guide the focus on objects related to
behavior patterns. On the other hand, the SGAM module
leverages the temporal features of IMU to emphasize video
frames with significant motion, reducing the interference from
frames without subject motion and the differences between
instances of the same action caused by the environment. In
addition, our method employs feature distillation [16] to more
effectively embed the knowledge of CLIP into the multimodal
model.

Overall, we are the first to propose a zero-shot multimodal
(video and IMU) egocentric activity recognition framework
based on CLIP, called IS-CLIP. We introduce IMU data to
refine the CLIP visual representation of video to enhance the
zero-shot performance. Our method achieves state-of-the-art
performance in two zero-shot settings on the UESTC-MMEA-
CL [17] dataset, establishing an exemplary benchmark for
zero-shot multimodal egocentric activity recognition.

II. METHOD

A. Preliminaries
First, we introduce the procedure of zero-shot recognition

based on CLIP and apply it to a single video modality.
Zero-shot recognition aims to classify the unseen category
set CN through the classification network trained on the seen
category image set CB, where CB ∩ CN = ∅. In this context,
the traditional classification head relying on fully connected
layers loses its effectiveness. Thanks to CLIP’s rich image-
text knowledge and image-text matching paradigm [9], CLIP
is often used as a classifier for various tasks to easily achieve
zero-shot capabilities [18]–[20]. Specifically, an image Ii is
passed through the visual encoder V(·) to obtain a visual
embedding vi. On the other side, constructed text inputs like
”a photo of a [Class]” are fed into the language encoder
L(·) to obtain text embeddings {t1, t2, ...tn}, where n is the
number of classes. Then, the cosine similarity between the
visual embedding vi and each text embedding tj , j ∈ [1, n] is
calculated by:

cos(vi, tj) =
vi · tTj

∥vi∥ · ∥tj∥
, j ∈ [1, n] (1)

and the category ci of the image Ii is defined as:

ci = argmax
j∈[1,n]

cos(vi, tj) (2)

In this way, zero-shot recognition can be achieved by just
appending semantic inputs of novel categories. For video input,
the method of equally spaced frame extraction is usually
used, and the input is actually a set of time-ordered images
{It1 , It2 , ...ItN }. All of them passed through the visual en-
coder to obtain visual embeddings {vt1 , vt2 , ...vtN }. These
embeddings are then averaged into one visual embedding
and matched with the semantic embeddings for classification
according to Eq. (1)(2). This CLIP-based single video modal-
ity activity recognition method should be considered as our
baseline.

B. Framework Pipeline

The overall framework of zero-shot multimodal egocentric
activity recognition is illustrated in Fig. 2. The input of the
model is N frames extracted from the video and IMU data
of the same time period. IMU data includes accelerometer
and gyroscope, which are one-dimensional time series data. In
order to better extract the time domain and frequency domain
features of IMU data, we performed the short-time Fourier
transform (STFT) [21] on the IMU data. The STFT divides
a long-time signal into several short periods and then applies
the Fourier transform to each period. In this way, the spectrum
of the signal in each time period can be obtained, thereby
describing the time-frequency characteristics. The formula for
STFT is defined as:

STFT(x(t))(τ, ω) =

∫ ∞

−∞
x(t)w(t− τ) e−jωt dt (3)

where x(t) is the time signal, w(t−τ) is the window function,
τ is the time offset, and ω is the frequency.

In the visual branch, we built two identical ViT-B/16 visual
encoders and initialized them with CLIP pre-trained weights.
In order to maintain the generalization of CLIP, we adopt
knowledge distillation. One of the encoders is regarded as
the teacher model, and its parameters are completely frozen.
The other one is the student model whose last two blocks
in the transformer and the last fully connected layer are fine-
tuned during training. N frames are respectively passed through
the teacher encoder and the student encoder to obtain visual
features f t

v and fv ∈ RN×512, and feature distillation is
performed between them. The distillation loss Lkd is defined
as:

Lkd = 1− 1

N

N∑
i=1

f t
vi · fvi

∥f t
vi∥∥fvi∥

(4)

In the IMU branch, the accelerometer and gyroscope spectro-
grams obtained by STFT are sent to the IMU encoder to extract
their respective time-frequency features. Note that the two
sensors share one encoder to reduce the number of parameters.
The two sensor features are then concatenated and reduced
dimension through a linear layer to obtain the IMU feature
fIMU ∈ R1×512.

Next, we need to consider how to integrate visual and IMU
features. The presence of motion-irrelevant objects in first-
person videos and pseudo-motion caused by these objects can
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Fig. 2. (a) An overview of our proposed zero-shot multimodal egocentric activity recognition framework. The input is temporally ordered frames and IMU
data (accelerometer and gyroscope). Among them, STFT stands for short-time Fourier transform, (b) SIRM: Subject-object Interaction Refinement Module. (c)
SGAM: Subject-motion Guided Aggregation Module. Note that N in the figure represents N frames of an instance rather than the batch size.

interfere with CLIP’s visual representation. The supplemen-
tary information on subject motion provided by IMU data
can mitigate these interferences. Meanwhile, CLIP has never
encountered IMU data, directly fusing IMU and visual features
would harm generalization. For these reasons, we design the
SIRM and SGAM modules, which use IMU features fIMU to
refine visual representation capabilities, resulting in enhanced
visual embeddings v ∈ R1×512.

Finally, the visual embedding is matched with the text
embedding for category prediction, as Eq. (1)(2). On the text
processing side, it is exactly the same as vanilla CLIP, with
all parameters frozen. The overall loss L of the framework is
defined as:

L = LCrossEntropy + Lkd (5)

C. Subject-object Interaction Refinement Module (SIRM)

In egocentric videos, there are usually many objects that
are irrelevant to the behavior, which are mixed into the visual
features to affect the image-text matching of CLIP. The main
advantage of IMU data is that it can provide subject’s motion
information, which can reflect the basic motion mode, and we
should focus on the objects related to motion in vision. Inspired
by this, we present the Subject-object Interaction Refinement
Module (SIRM). We use the IMU feature fIMU ∈ R1×512

as query vectors and visual features fv ∈ RN×512 as both
‘key’ and ‘Value’ for multi-head attention calculation. Note
that fIMU performs attention calculations with each of the N
dimensions in fv . The calculation process is as:

Qi = fIMUWQi, Ki = fvWKi, Vi = fvWV i (6)

headi = softmax
(
QiK

T
i√

dk

)
Vi (7)

f
′

v = Concat(headi)WO, i ∈ [1, 8] (8)

Among them, WQ,WK ,WV ,WO are weight matrices, and i
is the number of heads. In this way, the interaction between
IMU and visual features generates the weighted mask, which
is applied to enhance key object attention to refine the visual
features. Furthermore, we also add residual connections to the
visual features before and after refinement, thereby preserving
the generalization capabilities of CLIP.

D. Subject-motion Guided Aggregation Module (SGAM)

Among the N frames extracted at equal intervals from the
video, not all frames are in the period of subject move-
ment. Furthermore, changes between frames may be caused
by the motion of unrelated objects in the video rather than
the movement of the subject. The video-based single-modal
method cannot effectively identify critical frames, and directly
averaging visual features will dilute essential information. The
IMU’s temporal features can accurately reflect the strength of
the subject’s movement. Therefore, we propose the Subject-
motion Guided Aggregation Module (SGAM), as shown in
Fig. 2(c). We map the IMU features fIMU ∈ R1×512 to
N dimensions in the time series through a projection layer
(MLP) and apply softmax to obtain the temporal weighted
mask. Then, weighted fusion is performed on the N temporally
ordered visual features f

′

v ∈ RN×512 so that the final visual
embedding v contains more information from periods of the
subject’s intense activity.

III. EXPERIMENTS

We mainly report the results of our method on zero-shot
egocentric activity recognition and compare them with other



TABLE I
ZERO-SHOT EGOCENTRIC ACTIVITY RECOGNITION RESULTS UNDER TWO EXPERIMENT SETTINGS. THE FINE-TUNED CLIP IS OUR BASELINE, WHICH USES

KNOWLEDGE DISTILLATION. HM IS THE HARMONIC MEAN.

Method Publication Prompt
Augment

Base(16) Novel(16) Base(24) Novel(8)

Accnovel Accbase HM Accnovel Accbase HM

ActionCLIP [13] Arxiv2021 ✓ 35.0 99.1 51.7 44.7 98.8 61.5
XCLIP [22] ECCV2022 × 41.6 99.7 58.7 54.6 98.8 70.4

VPT [23] ECCV2022 × 31.1 94.6 46.8 39.1 94.5 55.3
Text4Vis [24] AAAI2023 × 43.9 98.8 60.8 55.2 98.2 70.7

ViFi-CLIP [25] CVPR2023 × 55.3 98.2 70.7 63.7 96.9 76.9
Open-VCLIP [14] ICML2023 ✓ 63.9 96.6 76.9 75.9 95.3 84.5

FROSTER [15] ICLR2024 ✓ 64.0 97.0 77.1 71.4 97.1 82.3

CLIP [9] ICML2021 × 58.5 55.2 56.8 68.0 44.5 53.8
Fine-tuned CLIP - × 60.5 97.6 74.7 74.2 96.6 83.9

IS-CLIP(ours) - × 66.3 97.7 79.0 77.8 97.2 86.4

state-of-the-art CLIP-based activity recognition methods. Fur-
ther, we conduct an in-depth analysis of the proposed modules’
effectiveness. Finally, we conduct ablation experiments on both
modalities and method components.
Dataset and metric. We conduct experiments on the UESTC-
MMEA-CL [17] dataset, which is a multimodal dataset of
first-person perspective activity recognition acquired by smart
glasses. Alongside first-person perspective video from the
camera, it also includes data streams from acceleration and
gyroscope sensors. The dataset consists of 32 categories of
human daily activities, with 4,553 samples in the training set
and 1,316 samples in the test set. We adopt two zero-shot
settings on this dataset, i.e., the first 16 classes as base classes
and the first 24 classes as base classes, separately. Since we
focus on zero-shot performance, the critical evaluation metric
is the accuracy of novel classes.
Implementation details. Our model adpot ViT-B/16 as the
visual encoder and initialize with CLIP pretrained weights.
We train the model on base catrgories for 50 epochs on an
RTX4090 GPU, and the batch size is 16. We utilize different
optimizers and learning rates for various model parameters. For
the visual encoder of CLIP, we employ the Adam optimizer
with a learning rate of 1e-5. SGD is the optimizer for other
parameters with a learning rate of 1e-3.

A. Zero-shot Egocentric Activity Recognition

To validate the superiority of our multimodal framework,
comparative experiments are conducted under two different
zero-shot settings. The experimental results are presented in
Table I. All comparison methods use only the video modality
as input, as they inherently lack the capability to adapt to
inertial measurement unit (IMU) data input. These methods are
all based on CLIP, thus possessing certain zero-shot recogni-
tion capabilities. Therefore, comparing our method with these
advanced methods is reasonable. We adopt the same fine-
tuned method as described in this paper, including knowledge
distillation, to obtain a robust baseline, which is referred to as

Fine-tuned CLIP in Table I.
The experimental results show that our method outperforms

the baseline by 5.8% and 3.6% in novel categories’ accuracy
(Acc) under the two settings, respectively. This demonstrates
that our proposed modules effectively adapt to IMU input
and leverage the advantages of IMU data to enhance zero-
shot detection performance. Compared to the second-best
method, our novel categories’ Acc is higher by 2.3% and 1.9%,
achieving state-of-the-art performance. Notably, we don’t use
prompt augmentation as some other methods do. This further
showcases the superiority of the multimodal approach. Addi-
tionally, we also achieved the best performance in the harmonic
mean metric, indicating that our multimodal method improves
the overall network performance rather than boosting zero-shot
recognition at the expense of base class performance.

B. Analysis of Visual Feature

Our goal is to embed CLIP knowledge into a multimodal
framework based on video and IMU data, to achieve zero-
shot egocentric activity recognition that is superior to single
video modality. To this end, we design the SIRM and SGAM
modules to adapt to the input of IMU data and enhance zero-
shot capabilities. To verify the effectiveness of our method,
two aspects should be considered: (1) whether the two modules
enhance the representation of visual features. (2) whether the
addition of IMU modality enhances or impairs CLIP’s image-
text matching ability. In this subsection, we examine the effect
of our method at the feature level.

Firstly, we project the visual embeddings of our method
and the baseline into 2D space using the t-SNE algorithm
to observe their distribution. As shown in Fig. 3, the visual
embeddings of our method are significantly more separable
after the two modules guided by IMU data. Among them,
the distance between classes is increased dramatically, and the
distribution within the class is more compact. More impor-
tantly, the problematic categories that were initially mixed are
also successfully distinguished. These results prove that our



Fig. 3. t-SNE plots of our method and baselines’ visual embeddings on novel
categories. Our method shows better separability.

method exactly enhances the visual representation. In addition,
we count the cosine similarity of each novel category instance’s
visual embeddings and their corresponding text embeddings,
and show the mean of category dimension. As shown in Fig.
4, the results show that the similarity between visual and
semantic embedding has increased in almost all categories.
This verifies that the integration of IMU data does not destroy
the knowledge of CLIP, and the ability of zero-shot recognition
is improved as expected after being refined by our method.

C. Ablation Study

We conduct ablation experiments in (Base:16, Novel:16)
zero-shot setting of UESTC-MMEA-CL dataset. Table II
shows that SIRM and SGAM modules can effectively im-
prove the accuracy of novel categories. Among them, the
improvement brought by adding SGAM is better, and the
improvement in the base categories is also more apparent. This
is because the recognition method based only on video frame
extraction naturally lacks temporal information regardless of
whether it is zero-shot. However, temporal features can be
easily obtained through IMU data. The employment of SIRM
will slightly reduce the performance of base categories, which
may be because the feature representation learned based on
full supervision is more accurate than the refinement guided
by IMU.

Furthermore, we also conduct ablation experiments on ac-
celerometer and gyroscope modalities, as shown in Table III.

Fig. 4. Comparison of the average cosine similarities of visual and text
embeddings on novel categories.

The results show that the integration of both modalities can
effectively improve the performance of the novel categories,
which further proves the superiority of our proposed multi-
modal framework.

TABLE II
ABLATION STUDY OF PROPOSED MODULES.

SIRM SGAM Base Novel HM

97.6 60.5 74.7
✓ 97.1 63.9 77.0

✓ 98.6 64.6 78.1
✓ ✓ 97.7 66.3 79.0

TABLE III
ABLATION STUDY OF ACCELEROMETER AND GYROSCOPE MODALITIES.

Accelerometer Gyroscope Base Novel HM

97.6 60.5 74.7
✓ 97.7 64.1 77.4

✓ 98.3 65.3 78.5
✓ ✓ 97.7 66.3 79.0

IV. CONCLUSIONS

In this paper, we pioneeringly proposed a multimodal zero-
shot egocentric activity recognition framework based on video
and Inertial Measurement Unit (IMU). We embed the knowl-
edge of CLIP into this framework to achieve zero-shot recogni-
tion capabilities and design two modules to adapt IMU input to
enhance zero-shot performance. Our method achieves state-of-
the-art zero-shot egocentric activity recognition performance,
to establish a benchmark for subsequent research based on
video and IMU in this field.
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