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Abstract—Due to having the mixture of heart and lung sounds,
the traditional automatic cardiopulmonary sound signal anal-
yses have some challenges in achieving sufficient classification
accuracy and robustness. The aim of this study is to improve
the performance of respiratory disease classification model by
cardiopulmonary sound separation. We used 920 auscultated
audio signals involving 127 subjects who were healthy or had
different respiratory conditions. For separation of lung sounds
from heart sounds and other interferences we have developed
an adaptive subspace analysis which iteratively maximizes the
kurtosis. The separated lung sound is then classified using random
forest classifier, and the classification performance is evaluated
by cross-validation. The results show that the classification
performance of cardiopulmonary sound for different age groups
(infants and adults) significantly improves.

I. INTRODUCTION

Lung diseases mainly including chronic obstructive pul-
monary disease (COPD), lung cancer and asthma are the major
global public health problem. These diseases not only affect the
quality of life of patients, but also place an enormous burden
on global healthcare systems. Pulmonary sound classification
plays an important role in clinical diagnosis, personalized treat-
ment, public health monitoring, medical research and teaching,
automation and telemedicine. By improving the accuracy and
efficiency of pulmonary sound classification, the management
and treatment of respiratory diseases can be significantly
improved, and the quality of patients’ lives can be improved.

Lung sounds are usually heard or recorded using stetho-
scope, which is also used for heart sound auscultation. The
sounds heard by the stethoscope from the chest wall consist
mainly of heart sounds, lung sounds, and other underlying
sounds, such as thorax and muscle frictions. Heart sounds
are mainly caused by the mechanical activity of the heart,
including closing of the heart valves and the vibration of the
heart.

A parallel source separation system is proposed to extract
heart and lung sounds from single-channel mixed signals based
on non-negative matrix decomposition and clustering strategies
[1]. In addition, a hard threshold is used in the wavelet trans-
form domain to separate the non-stationary part of the input
signal (heart sound) from the stationary part (lung sound). By
placing two microphones on the left and right chest walls to
collect signals, the fast ICA algorithm is applied to separate
the heart and lung sound signals [2]. Blind source separation

is performed using non-negative matrix factorization (NMF).
By constructing spectral mask and using NMF to decompose
spectral features, heart and lung sound signals are separated
[3]. A new period-encoding depth-using autoencoder (PC-
DAE) method is proposed to isolate mixed cardiopulmonary
sounds in an unsupervised manner by assuming different
periodicity between the heart and respiratory rates [4].

Singular spectrum analysis (SSA) reveals the intrinsic struc-
ture of the data by breaking down the time series into inter-
pretable components [5][6][7][8][9]. Therefore, in this paper,
the collected cardiopulmonary sound signals are separated by
SSA algorithm advance to extract purer lung sound signals, so
as to improve the accuracy of subsequent classification of lung
diseases.

VGG16 deep learning model has been used to detect and
classify lung diseases [10]. The study has a large, publicly
available dataset containing X-ray images of COVID-19, pneu-
monia, and pneumothorax. Classification of the lung diseases
using deep learning and interpretable artificial intelligence
(XAI) techniques has been discussed [11]. It mainly uses
a variety of deep learning models, including convolutional
neural networks (CNNs), hybrid model, integrated model and
transformer model, and combines XAI technology to improve
the interpretability of the model. A multi-class classification
method based on CNN to learn from pulmonary disease
images has been proposed in [12]. The pre-processing has
been performed using center clipping, the fine-tuning learning
performed using the EfficientNet B7 model, and the Multi GAP
structure used to maximize the features of each layer.

Random forest is an ensemble learning method based on
decision trees that is widely used in classification and regres-
sion tasks. It constructs multiple decision trees by randomly
selecting samples and features during the training process,
significantly improving the stability and generalization ability
of the model, while being able to assess the importance of
features and provide an interpretation of the classification
results [13].

In this paper, we propose a method combining SSA and
random forest classifier to separate cardiopulmonary sound
signals from infants and adults, and classify the extracted
lung sounds into various pulmonary diseases. The method
is implemented through three main steps: signal separation,
feature extraction, and classification including model training



and validation.

II. DESCRIPTION OF DATABASE

In this study we use the ICBHI 2017 Challenge dataset as
the baseline dataset for pulmonary auscultation sounds for the
detection of respiratory diseases. It includes 920 recordings
ranging in length from 10s-90s from 127 subjects. In total,
there are 5.5 hours of recordings, containing 6898 breathing
cycles. The data includes both clean breathing sounds and
noisy recordings in real life. The data are from either healthy
subjects or those having one of the seven categories of respi-
ratory diseases.

III. METHODOLOGY

A. Singular Spectrum Analysis

SSA is a powerful time series analysis and processing tool,
which is often used for single-channel signal separation, noise
reduction, and pattern recognition [9]. The basic principle is
to decompose and reconstruct the one-dimensional time series
signal by embedding it into the high-dimensional trajectory
space and extracting meaningful subspace structure from it.

1) Embedding: First, the one-dimensional time series is
transformed into a high-dimensional trajectory matrix by
stacking overlapping signal segments. Given a time series
X = {x1, x2, . . . , xN} and window length L. In general, L
satisfies 2 ≤ L < N/2, where N is the length of the time
series. In this research, L takes the value of 250. Then, we
construct a trajectory matrix X by the Hankel transform of
the signal, where each column is an overlapping segment of
the time series, defined as:

X =


x(1) x(2) · · · x(K)
x(2) x(3) · · · x(K + 1)

...
...

. . .
...

x(L) x(L+ 1) · · · x(N)

 (1)

where the trajectory matrix X is a matrix of L rows and K
columns, where each column of X is part of the original signal,
L is the window length or embedding dimension, and K is
the number of columns of the trajectory matrix, equal to K =
N − L+ 1.

2) The Covariance Matrix and Eigenvalue Decomposition:
Next, we compute the covariance matrix S of the trajectory
matrix X . The covariance matrix S is defined as

S = XXT (2)

Then, the EVD is performed, and the eigenvalues are sorted,
and the relevant principal components are extracted for the
separation of subsequent signals.

3) Adaptively Grouping the Desired Signal Components:
From the morphology of the signals it is evident that the heart
sound has a higher kurtosis than the lung sound. This property
is exploited as a criterion for our adaptive single-channel
source separation system. To select the desired eigentriples, we
multiply a diagonal matrix W by EVD factors and optimize

it in each iteration. The W matrix is initialized as an identity
matrix, and it is iteratively optimized to maximize the kurtosis
of the signal. Kurtosis measures the sharpness of the signal
distribution. In each iteration, the W matrix is updated by
evaluating the gradient of kurtosis with respect to W and
using the gradient descent method. Let the kurtosis function
be estimated as follows:

Kurt(X) =
1

N

N∑
i=1

(Xi − µ)4

/(
1

N

N∑
i=1

(Xi − µ)2

)2

(3)

where X is the separated signal, Xi = Wiiλ
1/2
i Ui, N denotes

the total number of data points, Kurt stands for kurtosis, and
µ is the average value of the signal X . In the optimization
process, W is then updated as:

W (i+ 1) = W (i)− α · ∇W (Kurt) (4)

where α is the learning rate and ∇W (Kurt) is the gradient
concerning W . λi and Ui are respectively, the ith eigenvalue
and eigenvector of S in eq.(2).

4) Reconstruction: According to the optimized W matrix,
the covariance matrix S is decomposed into the lung sound
interferences subspaces including the heart sound subspace
from which each signal can be reconstructed.

Then, the time domain signal is reconstructed by diago-
nal averaging [9], transforming the matrix back into a one-
dimensional signal while retaining the main characteristics
of the desired lung sound signal. Through these steps, SSA
can effectively separate lung sound and heart sound signals,
providing accurate data for subsequent signal analysis and
diagnosis.

5) Kurtosis: Kurtosis is a statistic that measures the peaked-
ness of the distribution of a signal’s probability distribution. By
maximizing the kurtosis, the accuracy of signal separation can
be improved, especially when separating non-Gaussian signal
components [14]. In this study, we propose to regularize the
SSA-based signal reconstruction by maximizing the kurtosis of
the reconstructed signal component to optimize the separation
effect of heart and lung sounds. The overall is shown in Fig.
1.

Fig. 1: The adaptive SSA algorithm regularized by kurtosis
maximization criterion.

B. Random Forest Classifier

A random forest is an ensemble learning method that builds
multiple decision trees for classification or regression. Each
tree is trained on a different sample set and feature subset,
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and the final prediction is voted on by the results of all trees
[12].The process of building and evaluating a random forest
classifier is shown in Fig. 2.

Fig. 2: The process of building and evaluating a random
forest classifier.

For the original dataset, random forest generates multiple
training sets through Bootstrap sampling [15]. Each training
set is obtained by randomly drawing samples from the original
data set, and the size of each training set is the same as the
original dataset. Assume T is a training set generated through
Bootstrap sampling: {xi}ni=1 of which each xi is randomly
drawn from the original data set, there are put back, so each
sample may be repeated in the training set.

For each of the Bootstrap sampling to generate the training
set, build a decision tree. Split at each node, randomly select
m characteristics (namely feature subset), and then select the
best split point from these features [11]. If the total number
of features is p, it is usually m ≪ p (classification problem)
or m ≈ p (regression problem). For each node, select the
split point that maximizes information gain or minimizes
Gini impurity in the feature subset. If the feature subset is
{x1, x2, . . . , xm}, the optimal split point is selected as s, where
s represents the point of split, the information gain brought
about by s, or the reduction of Gini impurity [15].

After all the trees are built, the random forest makes a final
prediction by integrating the results of all the tree predictions.
For the classification tasks, the random forest determines the
final category through a majority voting mechanism. Let N be
the number of trees in the forest and yj the prediction of the
j-th tree for sample x, then the final prediction category ŷ is:

ŷ = mode(y1, y2, . . . , yN )

where mode represents the mode function, that is, the class
that returns the most occurrences. For the regression task,
the random forest determines the final predicted value by
averaging the predicted values of all trees. Let ŷj be the
predicted value of the j-th tree for a new sample x, then the
final predicted value ŷ is:

ŷ =
1

N

N∑
j=1

ŷj

IV. RESULTS AND DISCUSSION

According to the characteristics of cardiopulmonary sound
data selected in this study, the embedding dimension (window

length) of SSA was set to 250 for constructing the trajectory
matrix. For the W matrix optimization part, the learning rate
is set to 0.01 for the gradient descent optimization of diagonal
W matrix. At the same time, the convergence threshold is
set to 1e-6 and the maximum number of iterations is set to
100, which is used to determine the convergence condition
of the gradient descent algorithm and control the number of
iterations of the gradient descent algorithm. The following
takes one of the speech signals as an example to illustrate the
effectiveness of using SSA and Kurtosis algorithm to separate
the cardiopulmonary sound signals.

A. Results of separation

From the signal waveform and the histogram of Fig. 3, we
can see that the amplitude of the original signal varies greatly
at different time points, and the amplitude value presents
a symmetric distribution between -0.2 and 0.2, and a wide
frequency band. The time domain waveform and histogram of
separated lung sound signal are similar to the original signal,
including a wide frequency range and complex time domain
changes. It is consistent with the characteristics that lung
sounds usually contain high and low frequency components
and vary with the respiratory cycle. The time domain waveform
of separated heart sound signal is regular, the amplitude is
relatively small and the periodicity is consistent. The amplitude
values of the histogram are concentrated between -0.02 and
0.02, and the distribution is narrow. This is consistent with
the physiological characteristics of heart sounds, which are
mainly concentrated in the lower frequency range and produce
a distinct pulse with each heartbeat.

In Fig. 3, the spectrum diagram shows the frequency distri-
bution of signals at different time points, and power spectral
density diagram shows the power distribution of signals at dif-
ferent frequencies. The reconstructed pulmonary sound signal
has a significant energy distribution in the frequency range of
0 to 10 kHz, especially with a strong component above 1 kHz,
and has a high power over a wide frequency range.

The reconstructed heart sound signals are mainly concen-
trated in the low frequency range (0 to 1 kHz), have low power,
and show periodic changes on the timeline. This is consistent
with the low-frequency nature of the heart sound signal and
the pulses produced by each heartbeat. The spectral diagram
and the power spectrum density analysis further quantified the
distribution of the separated signal in the frequency domain,
and proved the efficiency of the separation process.

In addition, in terms of numerical value, the dot product
of reconstructed lung sound signal and heart sound signal
is 1.480311, and Pearson correlation coefficient is 0.172788,
indicating that the linear correlation between the two signals is
weak, and there is a certain independence in the time domain.
This further illustrates that the separation effect is better and
the correlation between the signals is low.

In addition, in terms of numerical value, the dot product
of reconstructed lung sound signal and heart sound signal
is 1.480311, and Pearson correlation coefficient is 0.172788,
indicating that the linear correlation between the two signals
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(a) Time domain waveform of
original signal (left top),

reconstructed lung sound signal
(left middle) and heart sound

signal (left bottom).

(b) Histogram of the original
signal (right top), reconstructed

lung sound signal (right
middle), and heart sound signal

(right bottom).

(c) Spectrograms of
reconstructed lung sound

signals (left top) and heart
sound signals (left bottom).

(d) Power spectral density
(PSD) of reconstructed lung

sound signals and heart sound
signals (right).

Fig. 3: Analysis of Time Domain, Histogram, Spectrogram,
and Power Spectral Density of Cardiopulmonary Sound

Signals.

are weak, and there is a certain independence in the time
domain.

The overall classification accuracy with balanced dataset of
infant samples before and after separation was 0.3333 and
0.5. The classification performance of the cardiopulmonary
sound after separation has different performance in different
categories.

B. Results of lung disease classification

Here is a summary of the respiratory diseases in the
database, including the breakdown for children aged 7 years
or younger in Table I. Because the number of samples of LRTI
and Asthma patients is too small to be accurately classified,
these two types of samples were not considered in the actual
experiment.

TABLE I: Summary of the respiratory diseases in the database
Disease Category Number of All Patients Number of All Samples Number of Infants (≤ 7 years) Number of Samples (≤ 7 years)
Healthy 26 35 16 21
COPD 64 793 0 0
URTI 14 23 12 21
Bronchiectasis 7 16 0 0
Pneumonia 6 37 1 3
Bronchiolitis 6 13 6 12
Total 123 917 35 57

Table II and Table III illustrate respectively the performance
of the classifier performance before and after applying SSA
with balanced dataset. Precision represents the percentage of
all samples correctly classified. Recall represents the propor-
tion of all samples. F1 Score is the harmonic average of

accuracy rate and recall rate,and is a comprehensive evaluation
of the two.

TABLE II: The classification performance before and after
lung sound separation (infants).

Disease Category Precision (After) Precision (Before) Recall (After) Recall (Before) F1 Score (After) F1 Score (Before)
Bronchiolitis 0.66667 NAN 0.66667 0 0.66667 NAN

Healthy 0 0 0 0 NAN NAN
Pneumonia 0.33333 0.5 0.66667 1 0.44444 0.66667

URTI 1 0.25 0.66667 0.3333 0.8 0.28571

TABLE III: The classification performance before and after
lung sound separation (infants and adults).

Disease Category Precision (After) Precision (Before) Recall (After) Recall (Before) F1 Score (After) F1 Score (Before)
Bronchiectasis 0.75 0.73333 0.92308 0.84615 0.82759 0.78571
Bronchiolitis 0.41667 0.4375 0.38462 0.53846 0.4 0.48276

COPD 0.92308 0.92308 0.92308 0.92308 0.92308 0.92308
Healthy 0.4 0.36364 0.30769 0.30769 0.34783 0.33333

Pneumonia 0.75 0.66667 0.92308 0.76923 0.82759 0.71429
URTI 0.36364 0.125 0.30769 0.076923 0.33333 0.095238

In general, the classification model of cardiopulmonary
sound after separation has different performance in different
categories. For infant data, the classification performance of the
bronchitis and upper respiratory infection categories improved
significantly. However, for the healthy and pneumonia cate-
gories, the model performance did not significantly improved
or deteriorate. When the adult data were added, the perfor-
mances of the model in the identification of bronchitis, healthy
and pneumonia were different, and the overall performance
of the identification of pneumonia and upper respiratory tract
infection was significantly improved.

Classification of the separated single infant samples and
the addition of the adult samples were generally better than
classification of the unseparated samples. After separation, the
model has higher accuracy and lower loss in training and
validation data. The unseparated models showed obvious signs
of overfitting, the verification accuracy and loss fluctuated
greatly, and the classification performance was poor.

The overall classification accuracy with balanced dataset of
infant samples before and after separation was 0.3333 and 0.5,
and that of all samples before and after separation was 0.57692
and 0.62821, and the accuracy with unbalanced dataset of all
samples before and after separation was 0.91385 and 0.91603,
respectively. In conclusion, the separation of cardiopulmonary
sounds is helpful to improve the accuracy and stability of
respiratory disease classification.

V. CONCLUSIONS

In this study, SSA algorithm has been regularized by
maximization of kurtosis to enhance auscultated sound signal
separation. The classification performance before and after
separation was evaluated for a random forest classifier and
used cross-validation and provided a comprehensive evaluation
process and detailed analysis of the results.

The separation of cardiopulmonary sound signals from in-
fants and adults significantly improved the performance of the
respiratory disease classification model. The results suggest
that by incorporating kurtosis for SSA optimization, the model
is better equipped to handle the complexities of cardiopul-
monary sounds, leading to more accurate classifications. This

4



(a) Confusion Matrix After
Separation (Infants).

(b) Confusion Matrix Before
Separation (Infants).

(c) Confusion Matrix After
Separation (Infants and Adults).

(d) Confusion Matrix Before
Separation (Infants and Adults).

(e) Confusion Matrix After
Separation (Unbalanced

Dataset).

(f) Confusion Matrix Before
Separation (Unbalanced

Dataset).

Fig. 4: Confusion Matrices for Different Conditions.

study provides empirical support for the practical application
of cardiopulmonary sound separation technology in clinical
settings, demonstrating its potential to enhance diagnostic
accuracy and contribute to better patient outcomes.
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