
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Dynamic Sensor Placement on Graphs Based on
Graph Signal Sampling Theory
Saki Nomura∗, Junya Hara†, Hiroshi Higashi†, and Yuichi Tanaka†
∗ Tokyo University of Agriculture and Technology, Tokyo, 184–8588 Japan

† Osaka University, Osaka, 565–0871 Japan
E-mail: s nomura@msp-lab.org, {j.hara, higashi, ytanaka}@comm.eng.osaka-u.ac.jp

Abstract—In this paper, we consider a sensor placement prob-
lem where sensors can move within a network over time. Most
existing methods assume that sensor positions are static, i.e., they
do not move, however, many mobile sensors like drones, robots,
and vehicles can change their positions over time. Moreover,
underlying measurement conditions could also be changed, which
are difficult to cover with statically placed sensors. We tackle the
problem by allowing the sensors to change their positions in their
neighbors on the network. We dynamically determine the sensor
positions based on graph signal sampling theory such that the
non-observed signals on the network can be best recovered from
the observations. For signal recovery, the dictionary is learned
from a pool of observed signals. It is also used for the sensor
position selection. In experiments, we validate the effectiveness
of the proposed method via the mean squared error of the
reconstructed signals. The proposed dynamic sensor placement
outperforms the existing static sensor placement in synthetic data.

I. INTRODUCTION

Sensor placement problem is one of the main research topics
in sensor networks [1]–[3]. Its purpose is to find K sensor
positions among N candidates (K < N) where sensors can be
placed optimally so that the reconstruction error is minimized
in some sense. It has been extensively studied in machine
learning and signal processing [2], [4]–[6].

Data on a network can be measured by sensors located
at its nodes like wireless sensor networks, the Internet, and
power grids [7]. Therefore, sensor placement on a network, i.e.,
graph, has been widely studied [8]. In the graph-based sensor
placement problem, nodes of the graph represent possible
sensor positions, edges correspond to relationships among the
sensors, and the signal value on a node is a measurement.

Many existing works of sensor placement problem assume
the static sensor placement, i.e., sensors do not or cannot
move [9]–[11]. However, the measurement conditions could
be changed over time. In this case, the selected sensors in the
static positions do not reflect the current signal statistics. This
may lead to the limitation of reconstruction qualities.

To overcome the limitation of the above-mentioned problem,
in this paper, we propose a dynamic sensor placement where
sensors can flexibly change their positions over time. To
realize the dynamic sensor placement, we sequentially learn
the dictionary for signal reconstruction from a pool of observed
signals on a network (i.e., graph signals) by utilizing sparse
coding. We then dynamically determine the sensor positions
at every time instance based on graph signal sampling theory

[12], such that the non-observed graph signal can be best
recovered from the sampled graph signal.

In experiments, we demonstrate that the proposed method
outperforms existing sensor placement methods in synthetic
datasets.

Notation: We consider a weighted undirected graph G =
(V, E), where V and E represent sets of nodes and edges,
respectively. The number of nodes is N = |V| unless otherwise
specified. The adjacency matrix of G is denoted by W where
its (m,n)-element Wmn ≥ 0 is the edge weight between the
mth and nth nodes; Wmn = 0 for unconnected nodes. The
degree matrix D is defined as D = diag (d0, d1, . . . , dN−1),
where dm =

∑
n Wmn is the mth diagonal element. We use

graph Laplacian L := D −W as a graph variation operator.
A graph signal x ∈ RN is defined as a function x : V → R.
Simply speaking, x[n] is located on the node n ∈ V of G.

The graph Fourier transform (GFT) of x is defined as
x̂(λi) = ⟨ui,x⟩ =

∑N−1
n=0 ui[n]x[n], where ui is the ith

column of an orthonormal matrix U. It is obtained by the
eigendecomposition of the graph Laplacian L = UΛU⊤ with
the eigenvalue matrix Λ = diag (λ0, λ1, . . . , λN−1). We refer
to λi as a graph frequency.

II. GRAPH SIGNAL SAMPLING

In this section, we introduce graph signal sampling. We first
review sampling theory on graphs and then describe a sampling
set selection on graphs in [13].

A. Sampling Theory on Graphs

Here, we assume graph signals (i.e., sensor measurements
in this paper) inherit the underlying graph information like
smooth signals which dominate at low graph frequencies on a
network [14]. Suppose that a graph signal is characterized by
the following model [12]:

x := Ad, (1)

where A ∈ RN×M (M ≤ N) is a known generator matrix
and d ∈ RM is a vector containing expansion coefficients. We
can also assume that the small number of atoms (i.e., columns
in A) essentially contributes to the signal x. The generator
matrix A specifies the signal subspace A, i.e., A = R(A),
where R(·) represents the range space. A piecewise constant
(PC) model is well-studied generators [12], [15], [16].

If we do not know the exact A but have its prior knowledge,
it may be learned from the observations. Let X ∈ RN×M

be a collection of M graph signals. Typically, A has been
determined by A = U , where U is obtained by the singular
value decomposition (SVD) of the collection of observed
signals X := UΣV⊤ [17], and U and V are unitary matrices.

Let S⊤ ∈ RK×N (K ≤ N) be an arbitrary linear sampling
operator where columns of S are linearly independent. Here-
after, we assume K = M for simplicity, while we can easily
extend the case of K < M . It specifies the sampling subspace
S, i.e., S = R(S). A sampled graph signal is represented
by c = S⊤x. It is best recovered by the following transform
[18]–[20]:

x̃ = A(S⊤A)†c, (2)

where ·† is the Moore-Penrose pseudoinverse.
If A and S together span RN and only intersect at the

origin, perfect recovery, i.e., x̃ = x, is guaranteed. This is
referred to as the direct sum (DS) condition [12]. Note that the
DS condition implies whether S⊤AA⊤S is invertible, since
(S⊤A)† = A⊤S(S⊤AA⊤S)−1 holds if and only if the DS
condition is satisfied.

From the perspective of the sensor placement, S⊤ can be
considered as a node-wise sampling operator. In the following,
we introduce a design method of S⊤ on G for an arbitrary
generator.

B. D-optimal Sampling Strategy

We introduce a graph signal sampling method utilized for
our dynamic sensor placement [20]. Here, we define a node-
wise sampling operator as follows:

Definition 1 (Node-wise graph signal sampling). Let IMV ∈
{0, 1}K×N be the submatrix of the identity matrix indexed by
M⊂ V (|M| = K) and V . The sampling operator is defined
as

S⊤ := IMVG, (3)

where G ∈ RN×N is an arbitrary graph filter.

While G is arbitrary, a typical selection of G is the identity
matrix or a graph lowpass filter as that in classical sampling
theory. In a sensor placement perspective, IMV specifies the
sensor positions on G and G can be viewed as a coverage area
of sensors. For example, we consider the following polynomial
filter

[G]nm =

N−1∑
i=0

P∑
p=0

αpλ
pui[n]ui[m] =

[
U

(
P∑

p=0

αpΛ
p

)
U⊤
]
nm

,

(4)

where {αp} are arbitrary coefficients. In graph signal process-
ing, (4) is referred to as a P -hop localized filter [21], whose
nonzero response is limited within P -hop neighbors of the
target node. This implies that the coverage area of all sensors
is limited to P -hop.

Sensor placement problem is generally formulated as

M∗ = arg max
M⊂V

e(M), (5)

where e is a properly designed cost function. Typically, e
is designed based on the optimal experimental designs [22],
such as A-, E-, and D-optimality. D-optimality is one of the
popular experimental designs and is widely used in graph
signal sampling. The D-optimality is more appropriate than
other optimality designs if we aim to recover graph signals
from non-ideally sampled signals [20].

In the D-optimal design, the following problem is considered
as selecting an optimal sampling set for graph signals [20]:

M∗ = argmax
M⊂V

det(ZM), (6)

where Z = GAA⊤G and thus ZM = IMVGAA⊤GI⊤MV .
Recall that S⊤AA⊤S is invertible when the DS condition
is satisfied. Therefore, the maximization of det(ZM) =
det(S⊤AA⊤S) = |det(S⊤A)|2 leads to the best recovery
of graph signals.

The direct maximization of (6) is combinatorial and is
practically intractable. Therefore, a greedy method is applied to
(6). Suppose that rank(Z) ≥ K. In [23], (6) can be converted
to a greedy selection as follows:

y∗ =argmax
y∈Mc

det(ZM∪{y})

= argmax
y∈Mc

Zyy − ZyM(ZM)−1ZMy. (7)

The selection is performed so that the best node y∗ is appended
to the existing sampling set M one by one.

III. DYNAMIC SENSOR PLACEMENT ON GRAPHS

In this section, we propose a dynamic sensor placement
problem based on sampling theory on graphs. First, we derive
online dictionary learning based on sparse coding. Second, we
consider the control law of sensors. Fig. 1 shows the overview
of the proposed method. The flow of the proposed method is
outlined as follows:

1) The dictionary is sequentially learned from previous ob-
servations (Section III-A).

2) Time-varying graph signals are sampled and reconstructed
based on graph sampling theory (Section II).

3) Sensor positions are dynamically determined based on the
dictionary (Section III-B).

A. Online Dictionary Learning

In sampling and reconstruction introduced in Section II-A,
A in (1) is assumed to be fixed. Note that (7) is regarded as
a static sensor placement problem since the sensor positions
are determined only once. In contrast, we consider the time-
varying At in this paper where the subscript t denotes the time
instance. In this setting, the optimal sensor positions can be
changed according to At.

2

Qt

ct

x̃t

Qt

x̃t

Qt+1

x̃t = Ãt(S
�Ãt)ctX̃t−1

Ãt−1

D̃t−1

Ãt

D̃t

X̃t

Ãt

Dictionary Update

ReconstructionSampling at
Sensor Placement

Dictionary Learning
(Section III-A)

Graph Signal Sampling (Section II)

Sensor Placement
Update

Dynamic Sensor Placement
(Section III-B)

X̃tUpdate

Tt1
TimeTime Time･･････X0,A0,D0,Q1

Fig. 1: Overview of the proposed method.

We infer a time-varying generator At from previous D
observations

Xt−1 = [xt−D, . . . ,xt−1], (8)

in every time instance for dynamic sensor placement.
We assume the measurement model as follows:

Xt = f(Xt−1), (9)

where f is a mapping from Xt−1 to Xt. That is, every obser-
vation is generated from signals in the previous time instance.
Although the mapping of the time-evolution, f , is generally
unknown, we suppose that f is Lipschitzian, i.e., there exists
some constant L that satisfies the following inequality.

∥f(Xt−1)− f(Xt)∥F ≤ L∥Xt−1 −Xt∥F . (10)

By definition of f , (10) can be transformed into

∥Xt −Xt+1∥F ≤ L∥Xt−1 −Xt∥F . (11)

This assumption implies that signals vary smoothly in time1.
Next, we consider estimating the generator At as a dictio-

nary from (the estimated) X̃t−1 in (8) based on the assumption
in (11), where ·̃ corresponds to the estimated vector/matrix.

Since the exact value of the number of atoms, M , may
not be known in general, herein, we suppose M ≪ D, and
denote a dictionary and expansion coefficient by At ∈ RN×D

and dt ∈ RD, respectively. Therefore, we seek the optimal
At such that the number in nonzero values of dt is close to
M , i.e., dt is sparse. This setting is similar to well-studied
dictionary learning problems [24], [25].

Let Dt = [dt−D+1, . . . ,dt] ∈ RD×D be the collection of
expansion coefficients from time t−D+1 to t. Then, we can
express Xt = AtDt (see (1)).

Here, we assume that the graph G, initial generator matrix
A0, and expansion coefficients matrix D0 are given for train-
ing, where A0 and D0 are arbitrary matrices. Following from
(11), we suppose that Xt is sufficiently close to Xt−1. As a
result, we formulate the following problem:

arg min
Ãt,D̃t

∥X̃t−1 − ÃtD̃t∥2F + µ∥D̃t∥1 + η∥Ãt − Ãt−1∥2F ,

(12)

1Note that (11) is necessary to stably learn the dictionary, while we do not
explicitly estimate f in the following part.

where X̃t−1 = Ãt−1D̃t−1, and µ and η are the parameters.
The first term in (12) is the data fidelity term for Ãt. The
second and third terms are for the regularization controlling the
sparsity of D̃t and the temporal variation of Ãt, respectively.

Note that we need to solve (12) with respect to two variables
Ãt and D̃t, which jointly form a nonconvex optimization. In
this paper, we divide (12) into two independent subproblems
with respect to Ãt and D̃t, and solve them alternately, similar
to the method in [25].

First, we solve (12) with respect to Ãt by fixing D̃t as
D̃t−1. In this case, we easily obtain the closed-form solution
for the dictionary as follows:

Ãt = arg min
Ãt

∥X̃t−1 − ÃtD̃t−1∥2F + η∥Ãt − Ãt−1∥2F

= (ηÃt−1 + X̃t−1D̃
⊤
t−1)(ηID + D̃t−1D̃

⊤
t−1)

−1. (13)

Second, we update D̃t in (12) by using Ãt in (13), i.e.,

D̃t = arg min
D̃t

∥X̃t−1 − ÃtD̃t∥2F + µ∥D̃t∥1. (14)

To solve (14), we utilize the proximal gradient method [26]–
[28], whose problem is given by the following form.

D̃t = arg min
D̃t

g(D̃t) + h(D̃t), (15)

where g is a differentiable function and h is a proximable
function [22]. Note that (15) is set to the entire problem being
convex. As a result, the optimal solution is obtained by the
following update rule.

D̃t,n+1 = proxγh(D̃t,n − γ∇g(D̃t,n)), (16)

where n+1 is the number of iterations, γ is the step size, ∇g
is the gradient of g, and proxγh is defined as

proxγh(D) = arg min
C

1

2
∥C−D∥2F + γµ∥C∥1 = Sγµ(D),

(17)

where Sγµ is the soft thresholding operator defined as follows:

[Sγµ(D)]ij =


Dij − γµ, Dij ≥ γµ

0, |Dij | < γµ

Dij + γµ, Dij ≤ −γµ.
(18)

By applying (17) to (16), we have the following iteration with
ISTA [29].

Dt,n+1 = Sγµ(Dt,n − γ∇g(Dt,n))

= Sγµ{Dt,n − 2γA⊤
t (AtDt,n − X̃t−1)}, (19)

We set the step size as γ ≤ 1/λmax(A
⊤
t At) according to

the convergence condition of ISTA [29]. We iterate (19) until
∥Dt,n+1 − Dt,n∥2F < ϵ where ϵ is a small constant. The
optimization of (12) is summarized in Algorithm 1.

In the following, we formulate the dynamic sensor place-
ment based on the learned dictionary. The control law of sen-
sors is also derived based on the sampling strategy introduced
in (7).

3

Algorithm 1: Online Dictionary Learning

Input: X̃t−1, Ãt−1, D̃t−1, t
if t = 1 then

Ã1 = A0

else
Ãt = (ηÃt−1 + X̃t−1D̃

⊤
t−1)(ηID + D̃t−1D̃

⊤
t−1)

−1

D̃t = D̃t−1

while ∥D̃t,n − D̃t,n−1∥2F ≥ ϵ do
D̃t,n+1 = Sγµ{D̃t,n − 2γÃ⊤

t (ÃtD̃t,n − X̃t−1)}
n← n+ 1

Output: Ãt

B. Dynamic Sensor Placement

For brevity, we define the following matrix:

Nt := Ã⊤
t G. (20)

Note that we now assume that Ãt is given. With (20), (7) can
be rewritten by a dynamic form as2

y∗t =arg max
y∈Mc

N⊤
:yN:y −N⊤

:yN:M(N⊤
:MN:M)−1N⊤

:MN:y

=arg max
y∈Mc

∥νy∥2 − ∥PR(N:M)νy∥2,
(21)

where νy = N:y and PR(Q) is the orthogonal projection onto
R(Q). Since N can temporally vary, the optimal solution in
(21) can also change in every time instance.

Note that (21) is based on a greedy selection introduced
in Section II-B. However, in practice, this optimization may
not be efficient for large graphs: The control law with (21)
implies that we need a large computational burden if all sensor
positions are sequentially determined at every time instance.
This results in a delay for sensor relocations which should be
alleviated.

In this paper, instead, we consider selecting the sensor
positions independently, i.e., (21) is solved for a sensor in-
dependently of the other ones. In the following, we rewrite
(21) as a distributed optimization.

Here, we denote the position of the ith sensor at the tth time
instance by qi,t. We define the ith Voronoi region in the graph
G as follows:

Wi,t = {v ∈ V | d(v, qi,t) < d(v, qj,t),∀qj ∈ Qt}, (22)

where d(v, qi,t) is the shortest distance between v and qi,t, and
Qt = {qj,t}j=1,...,K denotes the set of all sensor positions at
t. Note that, in each Wi,t, only one sensor is contained: We
illustrate its example in Fig. 2.

By utilizing (22), we can rewrite (21) for seeking the best
position of a sensor within its Voronoi region Wi,t as follows:

q∗i,t+1 = arg max
y∈Wi,t

∥νy∥2 − ∥PR(N:Mi,t
)νy∥2. (23)

2For notation simplicity, we omit ·t in Nt hereafter.

Algorithm 2: Dynamic Sensor placement
Input: Sensing matrix G, initial positions of sensors

Q1, time duration T
for t = 1, . . . , T do

Update the dictionary Ãt with Algorithm 1
Update the data matrix X̃t

Calculate the Voronoi regions {Wi,t}i=1,...,K

Nt ← Ã⊤
t G

par for i = 1, . . . ,K
Calculate PR(N:Mi,t

)

Calculate the P hop neighbors {NP
i,t}i=1,...,K

q∗i,t+1 = arg max
y∈Wi,t∩NP

i,t

∥νy∥2 − ∥PR(N:Mi,t
)νy∥2

Qt+1 ← {q∗i,t+1}i=1,...,K

Output: Sensor positions {Qt}t=1,...,T+1

Fig. 2: Voronoi diagram on a graph. Nodes with circles repre-
sent the current sensor positions. Each colored area represents
the Voronoi region corresponding to each sensor.

Since (23) depends only on the Voronoi region of a sensor,
all sensor selections in (23) are independent of each other.
Therefore, we can select sensors by (23) in a distributed
fashion.

When we assume mobile sensors, their movable areas could
be restricted to their neighbors. To reflect this, we can further
impose a constraint on the Voronoi region where the movable
nodes are restricted to the P -hop neighbors of the target node.
The P -hop neighbor of the ith sensor (node) is defined as

NP
i,t = {v ∈ V | d(v, qi,t) ≤ P}. (24)

As a result, the proposed control law of sensors in (23) is
further modified as follows:

q∗i,t+1 = arg max
y∈Wi,t∩NP

i,t

∥νy∥2 − ∥PR(N:Mi,t
)νy∥2. (25)

Algorithm 2 summarizes the proposed dynamic sensor place-
ment method3. Note that our main contribution is to formulate
dynamic sensor placement as graph signal sampling. We may
be able to use other methods, such as those described in [30]
and [31], as internal algorithms for dictionary learning.

3We utilize the MATLAB notation where we denote the parallel processing
in Algorithm 2 as par for.

4

REFERENCES REFERENCES

IV. EXPERIMENTS

In this section, we compare reconstruction errors of time-
varying graph signals measured by selected positions of sen-
sors. We perform recovery experiments for synthetic datasets.

We suppose that the graph G is given a priori. The nodes
represent the candidates of sensor positions, and the edges indi-
cate the paths where sensors can move. Sampling is performed
at every time instance. After sampling, the reconstructed
signal at t, i.e., x̃t, is stored as the latest signal collection
X̃t, which is used for the dictionary/sensor positions update.
Simultaneously, x̃t−D is discarded from X̃t.

A. Setup

We compare the signal reconstruction accuracy of the pro-
posed method with those of the following existing methods.

1) Static1: Static sensor placement with the fixed dictionary
learned by the SVD only once at t = 0 [17]. This method
does not change the dictionary over time.

2) Static2: Static sensor placement (similar to Static1) with
the non-fixed dictionary learned by the SVD at every time
instance.

Since the SVD-based dictionary learning is still widely-used in
many sensor placement applications [32], Static1 and Static2
are possible baseline methods. We also compare the proposed
method to the extreme case of the proposed method, i.e., P =
∞. In this case, sensors can move anywhere in Voronoi region
regardless of the current sensor positions.

The recovery experiment is performed for signals on a
random sensor graph with N = 256. The number of sensors
is set to K = 8.

We consider the following the piecewise-constant (PC)
model:

x =

M−1∑
i=0

d[i]1Ti
= [1T1

, . . . ,1TM
]d, (26)

where Ti (i = 1, . . . ,M) is the nonoverlapping subset of
nodes for the ith cluster: [1Ti

]n = 1 if the node n is in Ti
and 0 otherwise [33]. In this case, the generator matrix is
A = [1T1

, . . . ,1TM
] where M is the number of clusters. The

number of clusters is set to M = 3. We randomly separate
nodes into M clusters so that nodes in a cluster are connected.
We generate dt as follows:

dt =

3{exp(− t
25) sin(t+

π
3) + 1}

3{exp(− t
25) sin(2t) + 1}

3{exp(− t
25) sin(3t− π

3) + 1}

 . (27)

In this model, signal values in a cluster change simultaneously
(but the temporal frequencies are different for different clus-
ters). It can be a possible model for clustered sensor networks.

For the PC model, we generate the data matrix Xt with
T = 40. The number of time slots is set to D = 20. The
initial expansion coefficients and dictionary can be arbitrary
as mentioned in Section III-A. In the experiment, however,
we used an SVD-based dictionary for a fair comparison to
alternative methods. Therefore, A0 = U at t = 0, where U

is obtained by the SVD of the known measurement data, i.e.,
X0 = UΣV⊤. The initial value of Dt is also set to D0 =
11⊤. We set the temporal sampling period Ts = π

30 to avoid
aliasing.

The parameters of the dictionary learning are experimentally
set to (γ, η, µ) = (10−4, 3, 1), and P = 1 is used for the sensor
movable area where we assume a sensor can only be moved
to its one-hop neighbor based on reasonable sensor mobility.

Recovery accuracy is measured in noisy scenarios where
white Gaussian noise w[i] ∼ N (0, 0.1) is added to the signals.
For all methods, the initial position of sensors is determined
by a state-of-the-art sampling set selection method on graphs
[2]. We calculate the averaged mean squared errors (MSEs)
for 50 independent runs.

B. Results

Fig. 3 shows the experimental results for the noisy case.
We also show examples of the original and reconstructed
graph signals of PC models in Fig. 4. Fig. 3 indicates that
the proposed method shows consistently (and significantly)
smaller MSEs than the other methods in all time instances,
and the MSE of the proposed method gradually decreases over
time. This validates that the proposed method can adapt to the
change in measurement conditions, while the static methods
fail to do so. In this experiment, P = 1 and ∞ do not results
in a large difference. However, as shown in Fig. 4 at t = 13,
we observe that P = ∞ produces a larger error than P = 1
because several sensor locations are very close to each other.
A possible reason for this is that the sensor positions were
biased toward the right side.

V. CONCLUSION

In this paper, we propose a dynamic sensor placement
method based on graph sampling theory. We sequentially learn
the dictionary from a time series of observed graph signals by
utilizing sparse coding. Using the dictionary, we dynamically
determine the sensor placement at every time instance such that
the non-observed graph signal values can be best recovered
from those of the observed (selected) nodes. In experiments,
we demonstrate that the proposed method outperforms existing
static sensor placement methods in synthetic datasets.

More details on theoretical aspects and comprehensive ex-
perimental results with respect to this paper can be found in
[34].

ACKNOWLEDGMENT

This work is supported in part by JSPS KAKENHI under
Grant 23K26110 and 23K17461, and JST AdCORP under
Grant JPMJKB2307.

REFERENCES

[1] F. Y. Lin and P.-L. Chiu, “A near-optimal sensor placement algorithm
to achieve complete coverage-discrimination in sensor networks,”
IEEE Commun. Lett., vol. 9, no. 1, pp. 43–45, 2005.

[2] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega,
“Eigendecomposition-free sampling set selection for graph signals,”
IEEE Trans. Signal Process., vol. 67, no. 10, pp. 2679–2692, 2019.

5

(b) PC model

M
SE

t

Fig. 3: MSE comparison of the reconstructed synthetic data.

Original graph Proposed Static2Static1Proposed
(P = ∞)

t = 4

t = 9

t = 13

Fig. 4: Reconstructed graph signals for PC signals at time t =
4, 9, 13. Circled nodes represent selected sensor positions.

[3] Y. Jiang, J. Bigot, and S. Maabout, Sensor Selection on Graphs via
Data-driven Node Sub-sampling in Network Time Series, 2020. arXiv:
2004.11815.

[4] A. Downey, C. Hu, and S. Laflamme, “Optimal sensor placement
within a hybrid dense sensor network using an adaptive genetic
algorithm with learning gene pool,” Struct. Health Monit., vol. 17,
no. 3, pp. 450–460, 2018.

[5] J. Li, “Exploring the potential of utilizing unsupervised machine
learning for urban drainage sensor placement under future rainfall
uncertainty,” J. Environ. Manage., vol. 296, p. 113 191, 2021.

[6] S. Joshi and S. Boyd, “Sensor selection via convex optimization,”
IEEE Trans. Signal Process., vol. 57, no. 2, pp. 451–462, 2008.

[7] L. M. Oliveira and J. J. Rodrigues, “Wireless Sensor Networks: A
Survey on Environmental Monitoring.,” J. Commun., vol. 6, no. 2,
pp. 143–151, 2011.

[8] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega, “Efficient sensor
position selection using graph signal sampling theory,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), IEEE, 2016, pp. 6225–6229.

[9] B. Li, H. Liu, and R. Wang, “Efficient sensor placement for signal
reconstruction based on recursive methods,” IEEE Trans. Signal
Process., vol. 69, pp. 1885–1898, 2021.

[10] H. Zhou, X. Li, C.-Y. Cher, E. Kursun, H. Qian, and S.-C. Yao, “An
information-theoretic framework for optimal temperature sensor allo-
cation and full-chip thermal monitoring,” in DAC Design Automation
Conference 2012, IEEE, 2012, pp. 642–647.

[11] K. Visalini, B. Subathra, S. Srinivasan, G. Palmieri, K. Bekiroglu,
and S. Thiyaku, “Sensor placement algorithm with range constraints

for precision agriculture,” IEEE Aerosp. Electron. Syst. Mag., vol. 34,
no. 6, pp. 4–15, 2019.

[12] Y. Tanaka, Y. C. Eldar, A. Ortega, and G. Cheung, “Sampling signals
on graphs: From theory to applications,” IEEE Signal Process. Mag.,
vol. 37, no. 6, pp. 14–30, 2020.

[13] J. Hara and Y. Tanaka, “Sampling set selection for graph signals
under arbitrary signal priors,” in 2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2022,
pp. 5732–5736.

[14] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83–98, 2013.

[15] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, no. 24, pp. 6510–6523, 2015.

[16] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs:
Uncertainty principle and sampling,” IEEE Trans. Signal Process.,
vol. 64, no. 18, pp. 4845–4860, 2016.

[17] B. Jayaraman and S. M. Mamun, “On data-driven sparse sensing and
linear estimation of fluid flows,” Sensors, vol. 20, no. 13, p. 3752,
2020.

[18] Y. C. Eldar, Sampling Theory: Beyond Bandlimited Systems. Cam-
bridge University Press, 2015.

[19] Y. Tanaka and Y. C. Eldar, “Generalized sampling on graphs with sub-
space and smoothness priors,” IEEE Trans. Signal Process., vol. 68,
pp. 2272–2286, 2020.

[20] J. Hara, Y. Tanaka, and Y. C. Eldar, “Graph signal sampling under
stochastic priors,” IEEE Trans. Signal Process., 2023.

[21] D. I. Shuman, B. Ricaud, and P. Vandergheynst, “Vertex-frequency
analysis on graphs,” Appl. Comput. Harmon. Anal., vol. 40, no. 2,
pp. 260–291, 2016.

[22] L. Condat, “A primal–dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” J.
Optim. Theory Appl., vol. 158, no. 2, pp. 460–479, 2013.

[23] F. Zhang, The Schur Complement and Its Applications. Springer
Science & Business Media, 2006, vol. 4.

[24] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, 2006.

[25] K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal di-
rections for frame design,” in 1999 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 1999,
pp. 2443–2446.

[26] G. B. Passty, “Ergodic convergence to a zero of the sum of monotone
operators in Hilbert space,” J. Math. Anal. Appl., vol. 72, no. 2,
pp. 383–390, 1979.

[27] P. Tseng, “Applications of a splitting algorithm to decomposition in
convex programming and variational inequalities,” SIAM J. Control
Optim., vol. 29, no. 1, pp. 119–138, 1991.

[28] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal
forward-backward splitting,” Multiscale Model. Simul., vol. 4, no. 4,
pp. 1168–1200, 2005.

[29] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” en, SIAM J. Imaging Sci.,
vol. 2, no. 1, pp. 183–202, Jan. 2009.

[30] K. Zhang, M. Coutino, and E. Isufi, “Sampling graph signals with
sparse dictionary representation,” in 2021 29th European Signal
Processing Conference (EUSIPCO), IEEE, 2021, pp. 1815–1819.

[31] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in Proceedings of the 26th annual international
conference on machine learning, 2009, pp. 689–696.

[32] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, “Data-
driven sparse sensor placement for reconstruction: Demonstrating the
benefits of exploiting known patterns,” IEEE Control Syst. Mag.,
vol. 38, no. 3, pp. 63–86, 2018.

[33] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Representations
of piecewise smooth signals on graphs,” in 2016 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2016, pp. 6370–6374.

[34] S. Nomura, J. Hara, H. Higashi, and Y. Tanaka, “Dynamic sensor
placement based on sampling theory for graph signals,” IEEE Open
Journal of Signal Processing, 2024, in press.

6

