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Abstract—As blood pressure is considered one of the most
important metrics of human health, it is critical to have a de-
vice to measure blood pressure accurately and practically. Non
Invasive Blood Pressure(NIBP) device is one of the solutions.
To be able to perform well, NIBP devices need to be equipped
with the right algorithm to measure blood pressure. One
of the most popular blood pressure measurement algorithms
is the oscillometric-based algorithm. This algorithm involves
Oscillometric Waveform(OMW) extraction, envelope detection,
and blood pressure estimation. In this paper, the authors want
to develop and implement an oscillometric based algorithm for
real-time NIBP measurement in a prototype patient monitor
device. The algorithm will be tested in case-based and (Beat
Per Minute) BPM-based data, and will be evaluated according
to Indonesian Ministry of Health’s standard. Our test yields
promising result, with errors below 5mmHg

Keywords— NIBP, Oscillometric, Mean Arterial Pressure, Sys-
tolic Blood Pressure, Diastolic Blood Pressure

1. Introduction
Blood pressure is one of the most important metrics for human

health. Humans can be very prone to disease if their blood pressure
is too high or too low. Some of the most dangerous disease caused
by blood pressure is Cardiac Arrest, Stroke, and many more. [1]
To avoid this disease, periodical monitoring of blood pressure is
vital. Traditionally, blood pressure is measured by medical staff
using traditional medical equipment. This method requires good
skill from the medical staff to be able to measure the patient’s blood
pressure. Another problem with this method is that this method
requires a meeting between the medical staff and the patient. This
is often impractical, especially in emergencies where the patient is
unable to go anywhere.

To solve this problem, a simple and portable machine is devel-
oped to measure blood pressure automatically. This device is often
called NIBP(Non Invasive Blood Pressure) Monitor. Such devices
can be purchased easily in health equipment stores. Even some
of the hospitals/clinics also use this kind of device because of its
practicality [2]. Most NIBP monitor devices use an oscillometric-
based algorithm to measure blood pressure. This algorithm uses
a cuff that is inflated on the patient’s arm to stop blood flow in
the arm, then the pressure of the cuff is monitored using a high-
precision pressure sensor. From the pressure data, the Oscillometric
waveform can be separated and from this waveform, Mean Arte-
rial Pressure(MAP), Systolic Blood Pressure (SBP), and Diastolic
Blood Pressure (DBP) can be calculated. To be able to measure
blood pressure accurately, the oscillometric algorithm needs to be
tuned carefully. In this paper, the authors want to develop and

implement an oscillometric based algorithm for real-time NIBP
measurement in a prototype patient monitor device.

2. Previous Work

Basically, in NIBP devices, the Oscillometric based algorithm
is widely used. It usually involves taking the maximum pressure
in the Oscillometric Waveform as Mean Arterial Pressure (MAP),
then deciding SBP and DBP based on the MAP. The algorithm to
decide SBP and DBP is still an open problem, because different
NIBP devices may have different approaches/algorithms. Some
approaches use statistical-based method, some use DSP-based
method, and some uses Neural Network Approach.

Some of the statistical-based methods involve statistical models
to find the systolic and diastolic characteristic ratios. In [3] and
[4], Bayesian Model is used to determine the SBP and DBP ratio,
while in [5], Gaussian Mixture Model is used to estimate SBP and
DBP ratio. These works try to find systolic and diastolic ratios
by finding the posterior probability distribution function of these
ratios. Although the ratios found using this approach is accurate,
the process of calculating these statistical model can be hard and
complex. This can make the blood pressure measurement time
longer, which is not desired.

Another approach to estimate SBP and DBP is to use the
derivative of the Oscillometric Waveform Envelope(OMWE). In
[6] and [7], the maximum slope of OMW is used to estimate
SBP and DBP ratios. This technique can also produce accurate
SBP and DBP ratios compared to the empirically chosen ratios.
The problem with this method is that the accuracy of the ratios
is highly dependent on the quality of the OMWE. If the OMWE
contains noise then the performance of this method can degrade
significantly.

Besides using ratios, SBP and DBP can also be obtained from
the oscillometric pulse itself. This can be done by evaluating the
pulse shape in different cuff pressures [8]. In [9], Digital Signal
Processing (DSP) based method is used to evaluate this pulse shape
to obtain various pulse morphologies. This technique can lead to
a better understanding of the relationship between blood pressure
and OMW but requires a good understanding of the DSP concept,
which is not practical. Another problem with this technique is that
this technique is very noise prone because whenever the OMW is
corrupted by noise, its pulse morphology can change drastically.

With the development of AI, various AI models have been
proposed to estimate SBP and DBP. For example, Deep Neural Net-
work is proposed to estimate SBP and DBP directly from OMWE
in [10]. In [11], Adaptive Neuro-Fuzzy Inference System(ANFIS)
is used to estimate SBP and DBP from OMWE. In [12], Principal
Component Analysis (PCA) is combined with Neural Networks
to estimate SBP and DBP from OMWE. These networks can
estimate SBP and DBP accurately and are not sensitive to noise.



The downside of this approach is that some models may require
large datasets and computational power.

Despite the success of implementing various concepts to es-
timate SBP and DBP, the most common and empirical way to
determine SBP and DBP is to use the fixed ratio algorithm. In
the fixed ratio algorithm, SBP and DBP are estimated using a pre-
determined fixed ratio to the MAP. This ratio is chosen usually
by trial and error. This algorithm usually involves Oscillometric
Waveform(OMW) extraction, envelope detection, and SBP-DBP
estimation. Some papers discuss this algorithm, and their compar-
ison can be seen in Table 1.

3. Proposed Method

In this paper, the authors used an Oscillometric based algorithm
to measure blood pressure. The block diagram of this algorithm
is shown in Figure 1. As seen in Figure 1, this algorithm takes
the raw cuff pressure data read by the pressure sensor as an input.
From this input, the following steps are performed:

Figure 1. Block Diagram of The Algorithm Used in This Paper

1) Filtering
The main objective of this step is to separate the Os-
cillometric Waveform from the Cuff Pressure Waveform.
To separate the Oscillometric Waveform from the Cuff
Pressure Waveform, low pass, and high pass filtering is
performed on the input signal. The signal is first low-
pass filtered to get the cuff pressure waveform. Then
the cuff pressure waveform is further filtered using the
high pass filter to obtain the oscillometric waveform. The
low pass filter and high pass filter cutoff frequency are
tuneable parameters in this step. An example of the raw
data and filtered data can be seen in Figure 2 and Figure
3, respectively.
As seen in Figure 3, the output of the low pass filter
is the declining pressure of the deflating cuff. The MAP,
SBP, and DBP will be determined from this cuff pressure
waveform. The position of the MAP, SBP, and DBP will
be obtained from the oscillometric waveform, which is
the output of the high-pass filter.

2) Signal Amplification and offsetting
The oscillometric waveform obtained from the cuff pres-
sure waveform is still very weak and it contains negative
values. To make the oscillation clearer, the signal will be
amplificated. After the signal is amplificated, a dc offset
will be added to get rid of negative values.

3) Signal Smoothing

Figure 2. Raw Data of the Cuff Pressure Read by the Sensor

Figure 3. The Result of the Low Pass and High Pass Filter

The obtained oscillometric waveform is often still noisy,
or it has too much oscillation. This will make detecting
the envelope of the waveform hard. To avoid this, the
signal will be smoothed using a moving average filter.
The frame size and repetition of the filter are tuneable
parameters in this step. The formula used in the moving
average filter is shown in Equation 1.

y[n] =
1

N

N−1∑
k=0

x[n− k] (1)

where y[n] is the smoothed signal, N is the length of the
signal, and k is the sumation iteration index
The comparison of the Oscillometric Waveform before
and after signal smoothing can be seen in Figure 4. As
seen in Figure 4, the oscillometric waveform obtained
from the high pass filter is very noisy. This will cause
the signal envelope hard to be obtained. Using a moving
average filter, the oscillometric waveform is successfully
smoothed and the signal is less noisy.

4) Envelope Detection
After the Oscillometric Waveform is obtained, the en-
velope of this waveform will be taken. This signal en-
velope is often called Oscillometric Waveform Enve-
lope(OMWE). To obtain OMWE, an envelope detector



TABLE 1. COMPARISON OF FIXED-RATIO ALGORITHM IN DIFFERENT PAPERS

Paper OMW extraction Envelope Detector SBP and DBP estimation

[13] Filter 0.3 Hz-6 Hz not mentioned ratio of 0.55 and 0.85

[14] Polinomial fitting Cubic spline interpolation ratio of 0.487 and 0.658

[15] Filter 0.5Hz-1.5 Hz Cubic spline interpolation least square method

Figure 4. Oscillometric Waveform Before and After

algorithm is used. The flowchart of the algorithm is
shown in Figure 5.
As seen in the flowchart, the algorithm takes the maxi-
mum point between ith sample and (i+ frame)th sam-
ple of the oscillometric waveform. After the maximum
point is taken, the signal envelope is incremented until
it reaches the maximum point. If the signal envelope is
larger than the maximum point, the envelope signal will
be decremented. After the signal envelope is obtained, it
can be smoothed by the moving average filter. The frame
length is the only tuneable parameter in this step.

5) MAP, Systolic, and Diastolic calculation
The last step of this algorithm is to determine MAP, SBP,
and DBP, which are the value of Mean Arterial Pressure,
Systolic Pressure, and Diastolic Pressure output of the
measurement. The steps of the calculation are shown in
Figure 6. As seen in Figure 6, the program accepts cuff
pressure waveform(CPW) and Signal Envelope as input.
The first step is to calculate yMAP, which is the maxi-
mum amplitude of the envelope signal. Then, the program
will calculate ysys and ydia, which is the value of yMAP
× rs and yMap × rd, respectively. The parameter rs and
rd is a pre determined fixed ratio and will be the tuneable
parameter of this step. After yMAP, ysys, and ydia is
obtained, xMAP, xsys, an xdia is determined. The value
of xMAP is taken as the index of yMAP. The value of
xsys is taken as the index of min(yMAP-ysys), and the
value of xdia is taken as the index of min(yMAP-ydia).
The last step is to obtain MAP, SBP, and DBP. MAP is
taken as CPW[xMAP], SBP is taken as CPW[xsys], and
DBP is taken as CPW[xdia].
An example of MAP, SBP, and DBP calculation can be
seen in Figure 7.
As seen in Figure 7, MAP is taken as the pressure in
Cuff Pressure Waveform whose index corresponds to the

Figure 5. Envelope Detector Flowchart

maxpoint. Maxpoint is defined as the maximum pressure
in the Oscillometric Waveform. SBP is taken as the pres-
sure in Cuff Pressure Waveform which index corresponds
to the pressure in the Oscillometric Waveform which is
closest to sysratio*maxpoint. DBP is taken as the pressure
in Cuff Pressure Waveform which index corresponds to
the pressure in the Oscillometric Waveform which is



Figure 6. MAP,SYS,DIA Calculation Flowchart

Figure 7. An Example of MAP, SBP, and DBP calculation

closest to diaratio*maxpoint. In this case, MAP is 42
mmHg, SBP is 59 mmHg, and DBP is 33 mmHg.
Although this algorithm is enough for most of the cases,
sometimes there are cases such as shown in Figure 8.
MAP is 211, SBP is 255, and DBP is 79. It can be seen
that DBP is very wrongly estimated because MAP is 215,
SBP is 255, and DBP should be 186. To minimize this

kind of error, the determination of SBP and DBP can
be limited to a certain part of the signal, centered at
the maxpoint of the envelope signal. This introduces a
new parameter p to determine how much portion to the
left and right of the signal envelope is to be considered
in SBP and DBP estimation. The example of SBP and
DBP estimation of the case in Figure after using the p
parameter is shown in Figure 9. Therefore, the tuneable
parameters in this step are SysRatio, DiaRatio, and p.

Figure 8. An Example of DBP Estimation Error

Figure 9. An Example of DBP Estimation After Using p Parameter

3.1. Parameter Selection

In the algorithm that is used in this paper, several tuneable
algorithms are available. The value of each parameter that is used
in this paper is shown in Table 2

3.2. Dataset Creation

The dataset used in this paper to evaluate the accuracy of
the signal is made using CONTEC MS200 NIBP Simulator. The
machine can be set to produce a cuff pressure waveform of a certain
BPM, Systolic, and Diastolic blood pressure. The pressure pro-
duced by this calibrator is read using a pressure sensor, controlled
by an ESP32 microcontroller. Finally, the data is printed into the
serial monitor and saved to a txt file. The Systolic and Diastolic
variation in this dataset can be seen in Table3. Each variation is



TABLE 2. PARAMETER OF THE ALGORITHM

parameters value

low pass filter cutoff 20Hz

high pass filter cutoff 0.3Hz

moving average filter frame 10 , 5

envelope frame length 100

moving average filter frame 40

p 0.2*data length

rs 0.75

rd 0.9

taken for 30,60,120, and 180 BPM, and is repeated 6 times, so in
total the dataset has 168 data.

TABLE 3. DATASET DISTRIBUTION

Case ID Systolic(mmHg) Diastolic(mmHg) MAP(mmHg)

1 60 30 40

2 80 50 60

3 100 65 76

4 120 80 93

5 150 100 116

6 200 150 166

7 255 195 215

3.3. Algorithm Implementation

The program implementation is divided into two phases, which
are algorithm development and real time implementation of the
algorithm. The details of those phases will be explained in the
next subsubsections.

3.3.1. Algorithm Development. The algorithm is developed
using MATLAB R2023a. MATLAB is chosen because of its ver-
satility in signal processing applications and to make it easier to
plot and analyze the signal in each step of the algorithm. Although
MATLAB has its library and toolbox to implement various DSP
algorithms, in this paper the authors try to minimize the usage of
such functions. This is done to make it easier to port the algorithm
into other languages, for example, C language.

3.3.2. Real-Time Implementation. The algorithm is imple-
mented in a prototype patient monitor device developed using
ESP32. Block Diagram of the system can be seen in Figure 10.
As seen in Figure 10, the system consists of a ESP32 microcon-
troller, a mprls0300yg00001b pressure sensor, 2 valves and valve
drivers, a motor driver and a motor pump. The ESP32 controls the
system by reading the pressure sensor, turning the pump on/off,
and opening/closing the valve. This system is implemented for a
prototype patient monitor that can be seen in Figure 11, while an
example of the patient monitor display is shown in Figure 12.

4. Result and Discussion

In this section, the testing result will be displayed and dis-
cussed

Figure 10. Block Diagram of the Patient Monitor

Figure 11. The Developed Patient Monitor

4.1. Algorithm Performance

The algorithm is tested in two ways. One way is to test the
algorithm BPM based, and the other way is to test the algorithm
Case-Based. These two methods are done to see if the algorithm is
robust in terms of case and BPM. If the algorithm’s performance is
different in each case, then different parameters need to be adjusted
in each case/BPM. The BPM and case-based performance of the
algorithm can be seen in Table 4 and 5, respectively.

TABLE 4. BPM-BASED PERFORMANCE OF THE ALGORITHM

BPM MAP Error(mmHg) Sys Error Dia Error

30 3.1667 4.0476 2.8333

60 3.0476 3.1905 2.3810

120 3.1429 4.0952 3.2143

180 3.4762 2.8571 2.5238

4.2. Discussion

According to the document issued by Indonesian Health Min-
istry on Bed Side Monitor Device testing, the maximum dif-
ference/error of the blood pressure reading is +-5 mmHg. This
standard is taken to evaluate the performance of the algorithm.



Figure 12. The Developed Patient Monitor

TABLE 5. CASE-BASED PERFORMANCE OF THE ALGORITHM

Case MAP Error(mmHg) Sys Error Dia Error

1 2.9583 3.8333 2.3750

2 3.1250 4.5 1.625

3 2.875 3.2917 2.7083

4 3.25 2.2083 2.3333

5 3.4167 4.8333 3.2083

6 3.5 4.375 3.5

7 3.4167 3.125 3.4167

Table 4 and 5 shows that in each BPM and case, no average
error is more than 5 mmHg. This means that the algorithm works
well in each BPM and each case. Hence, no further parameter
tuning is needed.

5. Conclusion

In this paper, a algorithm for calculating blood pressure using
NIBP method is proposed. The algorithm is suitable for real-
time NIBP measurement. To evaluate the algorithm, it is then
tested using a database created using the NIBP machine calibrator
according to the Indonesian Ministry of Health standard. The
algorithm manages to read Systolic and Diastolic blood pressure
with mean error below +-5 mmHg, which satisfies the condition
required by the Indonesian Health Ministry. This performance is
valid for 7 different blood pressure cases and 4 different BPM,
which shows the robustness of this algorithm. To further improve
the work done in this paper, this algorithm can be implemented to
measure a real patient’s blood pressure. This will further test the
algorithm’s robustness, as well as the complexity of the algorithm.
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