
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

AI-generated image detectors are surprisingly easy
to mislead... for now

Zihang Lyu, Jun Xiao, Cong Zhang and Kin-Man Lam
The Hong Kong Polytechnic University, Kowloon, Hong Kong

E-mail: {zihang.lyu, jun.xiao, cong-clarence.zhang}@connect.polyu.hk, enkmlam@polyu.edu.hk

Abstract—AI-generated image detectors, also known as fake
image detectors, have demonstrated remarkable performance
across different datasets and generators, achieving superior
detection accuracy and generalizability. Considering the struc-
tures of existing AI-generated detectors, which perform binary
classification, we propose a simple yet effective adversarial attack
method, namely Binary Fast Gradient Sign Method (BFGSM),
in this paper. We demonstrate that existing AI-generated image
detectors are sensitive to subtle and imperceptible distortions,
which raises serious safety risk for these models and makes
them inadequate for real-world applications. Experimental results
show that our proposed attack successfully misleads current AI-
generated image detectors, reducing the attack distortion level by
7.72% with negligible impact on the misleading success rate.

I. INTRODUCTION

As large language models and deep generative models have
made great progress in recent years, artificial intelligence-
generated content (AIGC) has become increasingly prevalent
in people’s daily lives. Consequently, the associated security
and privacy issues have garnered significant attention from
researchers, with generated image detection being one of the
most critical aspects.

The detection of generated images initially focused on
generative adversarial networks (GANs). Some studies first
applied co-occurrence matrices [1] and frequency domain
analysis [2]. Wang et al. [3] found that, with proper data
augmentation and pre-processing, CNN-generated images can
be easily spotted, and a detector trained on a single type
of generator can generalize to different types of generated
images. Recent studies [4], [5] further extend this idea into
diffusion models with enhanced feature encoding and artifact
representation. However, despite the fact that current gener-
ative image detectors have demonstrated progressively higher
detection accuracy and precision, these methods typically sim-
plify the detection problem into a binary classification task and
employ straightforward classifiers. This approach introduces
a significant security vulnerability: these detectors lack the
ability to resist adversarial attacks.

Adversarial attacks [6], [7] play an important role in eval-
uating and enhancing the robustness of classifiers. These
attacks involve manipulating the input data to deceive machine
learning models. For image classification, a general strategy
is to generate a small and unnoticeable perturbation to input
images, leading classifiers to produce incorrect labels. Fig.
1 shows some adversarial examples generated by the Binary
Fast Gradient Sign Method (BFGSM) proposed in this paper.
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Fig. 1. Visualization of two adversarial examples generated by our proposed
Binary Fast Gradient Sign Method (BFGSM): the left column represents the
input image from real and fake datasets, respectively; the middle column
shows the adversarial noise to be applied to the original image; the right col-
umn demonstrates the generated adversarial example. Common AI-generated
image detectors are successfully misled with unnoticeable perturbations.

It clearly demonstrates that by adding a small noise that is
unnoticeable to human eyes, the classifier can be easily misled.
It is worth noting that for conventional classifiers, the security
threat posed by adversarial attacks is relatively minor, as
misleading these classifiers does not yield significant benefits.
However, in the domain of generative image detection, evading
the discriminator is a primary objective for malicious users,
thereby imparting exceptional importance to adversarial attacks
in this field.

In this paper, to address the research gap in adversarial
attacks within the domain of generated image detection and
to provide a paradigm for future studies, we first analyze
the weaknesses of existing detectors when facing adversarial
attacks and the underlying reasons for these vulnerabilities.
Subsequently, we propose a simple yet effective adversarial
attack method based on the traditional Fast Gradient Sign
Method (FGSM), named BFGSM, to specifically mislead
generated image detectors. This approach retains the simplicity
of the traditional FGSM [9] structure while requiring only
minimal modifications to the images. We aim for this method
to provide a new baseline for misleading binary classification
and to contribute to the development of more robust detectors
in future research.

The main contributions of this paper are summarized as
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Fig. 2. Illustration of the overall framework of existing AI-generated image detectors: A variety of research studies have been conducted to generate feature
representations that aim to distinguish generated images from real images, including data augmentation [3], frequency domain artifacts [2], neighboring pixel
relationship [5], feature encoding [4], and information compression [8]. These feature mapping techniques are usually fixed in the training process, with only
the CNN-based classifier being trainable. Such framework design makes it vulnerable to adversarial attack.

follows:
1) We introduce adversarial attacks to the field of AI-

generated image detection and show that existing detec-
tors can be easily misled with a simple adversarial attack
method, which is an essential step for AI-generated
image detectors in industrial-level practice.

2) We propose a novel Binary Fast Gradient Sigh Method
that can mislead current AI-generated image detectors
effectively.

3) Experimental results show that our proposed method
can mislead existing detectors with smaller distortion
compared to current attacking methods, demonstrating
superior effectiveness.

II. RELATED WORK

A. AI-generated Image Detection

While generated images can refer to a large number of
images, the detection of AI-generated image mainly focuses on
deep generative models, e.g. GANs and diffusion models, and
some low-level vision tasks like image enhancement [10]–[12]
and super-resolution [13]–[18]. This task initially focused on
forged faces, known as deepfakes [19], and gradually tends to
generalize fake image detection. Some methods are tailored
for domain-specific generation, for example, frequency-level
artifacts [2] for GAN images and DIRE [20] for Diffusion
images. Other research aims for a universal fake image detector
that trains the detectors with images from a single generator
and is capable of detecting images generated from various
sources. Wang et al. [3] initially proposed a simple yet
effective detector that using data from ProGAN [21] and has
the ability to generalize to detect images from other GAN
models and some low-level vision tasks. Ojha et al. [4] further
analyzed the detection of GAN and Diffusion images and
proposed a feature representation for generated images, which
extends the idea of universal fake image detectors to diffusion
models.

B. Adversarial Attack

With the widespread application of deep neural networks
[22]–[28], adversarial attacks have become a highly focused
research area. The study of adversarial attacks began with

Szegedy et al. [29], who discovered several intriguing proper-
ties of neural networks. They demonstrated, for the first time,
that neural networks could be misled with slight distortions.
The initial objective was to develop the equation of minimum
distortion to mislead general classifier. However, due to high
complexity, this objective was turned to find the minimum loss
function addition that leads to misclassification. As the first
approach, the proposed method constructs reliable adversarial
examples, but with low efficiency and a complex algorithm
structure. This idea was further enhanced through the Fast
Gradient Sign Method (FGSM) [9], a gradient-based attack
method that generates adversarial examples by computing the
gradient of the loss function with respect to the input image
and adding small perturbations in the direction of the gradient.
This method is simple and fast, and some research also extends
FGSM into iterative versions [30] and integrates a momentum
term [31] to achieve a stronger attack effect. These attacking
methods require full knowledge of the model structure and
are known as white-box attack. Other research [32], [33] also
focuses on black-box attacks where the attacker knows nothing
about the model’s internal information.

III. METHODOLOGY

A. Analysis of AI-generated image detectors
Revisiting the model structure of existing AI-generated

image detectors, we find that they commonly focus on feature
representation and data pre-processing. Fig. 2 illustrates the
overall pipeline of these detectors as explored in various
research studies. Researchers have experimented with various
sophisticated methods to identify representations that differen-
tiate between real and fake images. However, they have often
overlooked the design of the classifier. Typically, a CNN-based
network is chosen, sometimes incorporating a ResNet [34]
block. This simplistic design leaves the detectors vulnerable
to adversarial attacks. Additionally, the binary classification
design represents another reason that existing detectors fail to
resist adversarial attacks, which will be elaborated on in the
following section.

B. Misleading AI-generated image detectors
We propose a simplified version of FGSM [9] targeted

for binary classification, namely Binary FGSM (BFGSM), to
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retain the original simplicity and success rate while reducing
the distortion level applied to images. Suppose x and y are
the original input image and label, θ represents the model
parameters, the adversarial example x̄ is generated by the
traditional FGSM [9] as follows:

x̄ = x+ ϵ · sign(∇x(L(θ, x, y)), (1)

where L represents the model loss function and ∇x(L(θ, x, y))
calculates the model gradient with respect to x. Here the
perturbation level is controlled by the hyper-parameter ϵ. How-
ever, unlike multi-class classification problems, where multiple
categories compete, misleading a binary classifier only requires
the target class output to fall below a fixed threshold, typically
set to 0.5 with the assumption that the input dataset is balanced.
This means that when attacking binary classifiers, we can apply
relatively smaller noise to samples where the model is less
certain, without worrying about a decrease in success rate.
In contrast to cases where the model is highly confident, for
inputs near the threshold, even a very small perturbation can
cause the model to make incorrect predictions. Specifically, it
can be formulated as follows:

min
αx

∥x− (x+ αx · sign(∇x(L(θ, x, y)))︸ ︷︷ ︸
x̄

∥2, (2)

subject to P (x̄) = P (x) and D(x̄) ̸= D(x), where P (·) de-
notes the data distribution, and D(·) denotes the AI-generated
image detector. Intuitively, after adding the small perturbation,
the data distribution is preserved but the AI-generated image
detectors should produce inaccurate prediction labels. There-
fore, in this paper, we consider the perturbation controlling
term αx to follow the distribution of classification confidence:
for images that hold a high classification confidence, we apply
a relatively larger distortion and vice versa, denoted as:

αx = ϵ · |ŷ − γ|
z

, (3)

where γ represents the classification threshold, ŷ is the model
output of x through a sigmoid activation function, and z =
max(|ŷ − γ|) is the normalizing term. The proposed BFGSM
then generates the adversarial example as follows:

x̄ = x+ αx · sign(∇x(L(θ, x, y)). (4)

Let N represent the number of samples. We adopt the binary
cross entropy as the loss function, represented as follows:

L = − 1

N

N∑
n=1

(y log(ŷ) + ((1− y) log(1− ŷ))). (5)

Fig. 3 shows the framework of the proposed BFGSM.
We can observe that the adversarial examples are produced
dynamically with the model output.

IV. EXPERIMENTS

A. Dataset and Implementation Details

Dataset Information. We evaluate our method on the Uni-
vFD(UniversalFakeDetection) [4] dataset, which consists of
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Fig. 3. Illustration of our proposed BFGSM. The perturbation controlling
layer controls the magnitude of the adversarial noise, making it adaptive
to the original image and corresponding target detector, thus reducing the
perturbation level.

various of generative models from GAN and diffusion models
to some low-level vision tasks, including ProGAN [21], Cy-
cleGAN [35], BigGAN [36], StyleGAN [37], GauGAN [38],
StarGAN [39], Deepfakes [19], SITD [10], SAN [13], CRN
[40], IMLE [41], Guided Diffusion Model [42], LDM [43],
Glide [44] and DALL-E [45]. Different variants of LDM on the
number of steps and classifier-free diffusion guidance (CFG)
are adopted. Glide has different settings for downsampling and
upsampling.
Evaluation Metrics. Following the target classifiers [3], [4],
we select the classification accuracy and average precision as
the evaluation metrics. To demonstrate the effectiveness of the
proposed attacking method, we also adopt the L2 norm as a
standard metric to evaluate the magnitude of the perturbations.
Implementation Details. We selected CNN Detection [3] and
UnivFD [4] as targets for our attacks. The former method
pioneered the field of AI-generated image detection through
appropriate data augmentation, while the latter advanced the
field with its feature extraction techniques. These two clas-
sifiers aptly represent the current state of the field. Both
classifiers are trained on real and fake images from ProGAN
[21] and have the ability to generalize to other generative
models. All experiments were conducted on PyTorch on a
single NVIDIA RTX 4090 GPU.

B. Effect of Binary Fast Gradient Sign Method

The accuracy and average precision (AP) of the target detec-
tors before and after the attack are illustrated in Table I and Ta-
ble II. It can be observed that with our proposed BFGSM, the
performance of both target detectors has significantly declined,
with an average decrease of 45.23% in accuracy and 49.28% in
AP. The experimental results demonstrate the capability of our
proposed attacking method to mislead classifiers, confirming
that existing fake image detectors are indeed vulnerable to
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TABLE I
THE ACCURACY OF THE TARGET DETECTORS FOR AI-GENERATED IMAGES ON THE UNIVFD DATASET BEFORE AND AFTER THE ATTACK. THE AVERAGE

ACCURACY AFTER THE ATTACK IS HIGHLIGHTED IN BOLD.

Detection
method

Adversarial
attack

Generative Adversarial Networks Deep
fakes

Low level vision Perceptual loss Guided LDM Glide DALL-E Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/ CFG
100
steps

100
27

50
27

100
10

Avg.
Acc.

CNN classifier [3] % 99.99 85.20 70.20 85.70 78.95 91.70 53.47 66.67 48.69 86.31 86.26 60.07 54.03 54.96 54.14 60.78 63.80 65.66 55.58 69.58
! 68.01 15.52 15.60 14.43 22.03 3.68 0.02 10.83 29.45 7.46 13.37 12.65 18.10 18.20 18.10 18.60 18.30 18.90 18.05 17.96

UnivFD [4] % 100.0 98.50 94.50 82.00 99.50 97.00 66.60 63.00 57.50 59.50 72.00 70.03 94.19 73.76 94.36 79.07 79.85 78.14 86.78 81.38
! 77.35 53.2 53.75 45.85 63.65 29.05 6.40 6.00 38.00 45.75 46.00 34.15 47.30 41.10 48.65 42.15 41.50 41.50 46.05 42.49

TABLE II
ILLUSTRATION OF THE ACCURACY OF DIFFERENT DETECTORS FOR AI-GENERATED IMAGES ON THE UNIVFD DATASET. THE BEST AND THE SECOND-BEST

RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY.

Detection
method

Adversarial
attack

Generative Adversarial Networks Deep
fakes

Low level vision Perceptual loss Guided LDM Glide DALL-E Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Gau-
GAN

Star-
GAN SITD SAN CRN IMLE 200

steps
200

w/ CFG
100
steps

100
27

50
27

100
10 mAP

CNN classifier [3] % 100.0 93.47 84.50 99.54 89.49 98.15 89.02 73.75 59.47 98.24 98.40 73.72 70.62 71.00 70.54 80.65 84.91 82.07 70.59 83.58
! 92.83 31.38 30.77 30.87 31.93 31.03 30.63 30.83 30.80 32.16 35.61 30.71 30.75 30.77 30.75 30.83 30.80 30.97 30.75 34.48

UnivFD [4] % 100.0 99.46 99.59 97.24 99.98 99.60 82.45 61.32 79.02 96.72 99.00 87.77 99.14 92.15 99.17 94.74 95.34 94.57 97.15 93.38
! 87.04 55.21 54.03 44.37 68.19 34.93 30.79 31.00 32.59 31.21 33.05 32.84 49.44 37.45 50.27 37.43 37.28 37.43 46.24 43.73

adversarial attacks. Moreover, unlike multi-class classifiers,
adversarial attacks on binary classifiers only need to decrease
their performance to chance levels rather than zero in order
to significantly mislead them, as such reduced performance
is practically meaningless. An interesting phenomenon is that
generative models evaluated on the same dataset of real images
always exhibit similar performance, as shown in Table I with
examples, such as LDM, Glide, and DALL-E. This can be
explained by the fact that images more resistant to adversarial
attacks are concentrated in the real dataset. However, malicious
users can easily mislead detectors by presenting generated
images as real ones. This further illustrates the vulnerability
of current detectors to adversarial attacks.

C. Effect of Dynamic Perturbation Controlling

Table III compares the misleading success rate of our
proposed BFGSM with the traditional FGSM on the two target
detectors, as well as the L2 distance between the generated
adversarial examples and the original images. To mislead a
binary classifier, it only needs to reduce the classification
accuracy to chance performance. Therefore, we maintain a
balance between the level of perturbation and the success
rate to compare the effectiveness of different attack methods
under the premise of successfully misleading the classifiers.
It is clear that our proposed method significantly reduces the
perturbations to the original images with almost no impact on
the success rate. The noise level is reduced by 7.72% with only
a negligible success rate decrease of 0.04%, demonstrating the
superiority of our method. Such performance indicates that the
proposed BFGSM is a more suitable adversarial attack method
in the field of AI-generated image detection. It is sufficiently
simple and efficient while significantly reducing the distortion
level of the attack, making it more difficult to detect under the
same level of perturbation and serving as a proper baseline for
further adversarial attack and detector robustness evaluation.

TABLE III
ILLUSTRATION OF THE MISLEADING SUCCESS RATE (%) AND AVERAGE L2

DISTANCE BETWEEN ORIGINAL IMAGES AND THE ADVERSARIAL
EXAMPLES GENERATED BY FGSM AND OUR PROPOSED BFGSM W.R.T

THE TARGET DETECTORS ON THE UNIVFD DATASET.

Detection methods CNN classifier [3] UnivFD [4]

Success rate L2 Distance Success rate L2 Distance

FGSM 74.20 2.29 47.86 1.94
BFGSM (Ours) 74.19 2.22 47.79 1.70

V. CONCLUSIONS

As AI-generated content continues to integrate into human
society, the importance of AI-generated image detection in
fields, such as security, privacy, and copyright, continues to
increase. Despite the remarkable performance achieved by
existing AI-generated image detectors, their vulnerability to
adversarial attacks allows malicious users to easily bypass
them, hindering their true industrial-level application. In this
paper, we first analyze the structure of general detectors and
point out that the lack of classifier design and the nature of
binary classification are the reasons for existing shortcomings.
Subsequently, we propose a simple yet effective adversarial at-
tack method tailored for AI-generated image detection, namely
the Binary Fast Gradient Sign Method (BFGSM). This method
utilizes an adaptive controlling term that changes dynamically
with the classification confidence of the input image with
respect to the target detector, applying only the necessary noise
level to mislead each specific image. Experimental results
demonstrate that the proposed BFGSM can easily mislead
existing classifiers with minimal perturbations, showcasing
the effectiveness and superiority of our method. This study
establishes a new research paradigm for adversarial attacks in
the field of AI-generated image detection and provides a new
adversarial attack baseline for misleading binary classification.
We anticipate it will contribute to the development of more
robust detectors in future studies.
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