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Abstract—Audio Deepfake Detection (ADD) is of critical con-
cern due to its social relevance. The development of ADD solution
faces the limitation of the low diversity of language resources and
is restricted to a limited number of speakers. However, there is
a need for a more reliable ADD system due to advancements in
deepfake audio generation by the attackers. Most of the existing
datasets for ADD task are limited to a language count, so their
usage remains limited to restricted number of speakers. Also, in
most of the existing datasets for ADD, the number of issue of some
speakers’ real and deepfake exists, and others are unavailable. In
this study, we implemented a configuring version of Generative
Adversarial Networks (GANs), namely, High Fidelity-GAN, to
create dataset, GAN-Guideded Multilingual Deepfake Detection
Corpus(GGMDDC). We achieved Mean Openion Score (MOS)
of 4.52 for the proposed system, which proved to be better than
MOS of the existing systems.
Index Terms - HiFi-GAN, Mel Spectrogram, Multilingual Deep-
fakes, Audio Deepfake Detection.

I. INTRODUCTION

Deepfake is the synthetic data generated, converted, or

edited using the Deep Learning (DL) algorithm with the goal of

making fake audio, video, or image that sounds real. In recent

years, deepfake content in image, video, and audio formats has

become a boom with advancement in technology. In the earlier

days, it took a lot of work to generate deepfake because of the

complex nature of data patterns or the limited computational

resources.

Deepfake signals are generated by preserving the voice

and sentence structure, in order to make them close to real

speech signals. Innovation of Generative Adversarial Networks

(GANs) in 2014, resulted in a solution to many problems

e.g., data augmentation using generative models [1], [2]. The

potential of GAN for ADD task has also been explored

previously [3]. It is motivated by recent advancements in GAN,

particularly, High-Fidelity Generative Adversarial Networks

(HiFi-GAN), to generate deepfake audio from real utterances.

HiFi-GAN (High fidelity means, closely matches the natural

human voice in terms of clarity, accuracy, and realism) works

in two phases. In the first phase, it predicts the low resolution

intermediate representation of linguistic features in terms of

the Mel spectrogram [4], and in the last phase, it creates the

synthetic raw waveform from the intermediate representation

of the Mel spectrogram [5]. During this process, we took sam-

pling frequency as 22050 samples per second, all representing

the 16-bits fidelity. As output, raw audio will closely resemble

the qualities of human speech. We created a HiFi-GAN model

to generate the dataset. At first, we trained a model using

the LJ Speech dataset, in which we employed a generator

(G), and discriminator (D). We trained the model with the LJ

Speech audio dataset containing 13,100 samples. After 600k

steps, we got an optimized model, which was further used to

generate deepfake files. For inference purposes, the samples

pass through the upsampling (22050 Hz from 16000 Hz) phase,

where a pre-trained feature extraction module extracts Mel

spectrograms, which are further passed through a generator to

extract and learn the speaker’s properties. Further, it will pass

through a discriminator to test the quality of the generated

signal.

A. Related Work

Many studies have been lately focusing on Audio Deepfake

Detection (ADD) task [7]. However, attackers succeed to

attack many times due to the perceptually similar creation of

deepfake audio, which creates threat to audio insecurity. Many

researchers have started working on ADD tasks, and many

datasets have been developed to safeguard society against the

adverse effects of deepfakes. However, most of the existing

datasets are restricted to one language (English) speakers

only, resulting in difficulty to detect deepfakes in another

language. One of the most popular existing dataset for ADD

task, namely, FoR (Fake or Real) is also restricted to English

dialect only [8]. Other popular datasets, namely, in-the-wild

(ITW) [9], Singfake [10], and ASVSpoof [11], [12] datasets

are also released with English and Mandarin language speakers

recordings only.

Recently released dataset, namely, WaveFake [13], con-

tains audio samples in two languages (English and Japanese).

Many a times, attackers plan to generate deepfake audio of

celebrities, politicians, or businessman in native languages,

resulting in a failure of good performance models trained on

one language only. In highly populated countries, such as

China, and India, native language-based deepfakes seems as

real to locals, creating a threat to subjects’ personality, security,

and business. In this study, we propose a dataset (containing

samples collected from 10 different languages), namely, GAN-

guideded Multilingual Corpus for Deepfake Detection Corpus

(GGMDDC). This dataset is aimed to boost ADD research

activity, due to its property of being robust to speakers’ dialect.

It contains some of the most popular languages of world, such

as Russian, French, Hindi, etc. resulting in its broad application

perspective for ADD task.



Fig. 1. Panel I (deepfake signal), and Panel II (real speech): (a), (b), and (c) shows the waveform, short speech segment, and Mel spectrogram, respectively
(White boxes in Panel I (c) and Panel II (c) highlight the similarities between the deepfake and real speech samples).
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Fig. 2. Architecture of HiFi-GAN. Adapted from [6].

Fig. 1 (a) shows that mostly both signals (deepfake as well as

real) are similar to each other. However, a significant difference

can be noted in the amplitude variations in both waveforms.

It can be observed that the deepfake signal has more high

amplitude samples than a low number of high amplitude

samples. Also, in Fig. 1, it can be observed that Panel I and

Panel II show the variational differences in amplitude over

time. In the generated speech spectrogram, there are three

bands with a broader frequency range compared to Panel II, or

real audio. The real audio displays the thin and well-defined

bands, indirectly showing the narrower frequency range as

more focused and natural speech. The distribution of the

frequency and amplitude over time helps identify the deepfake

audio from the spectrogram characteristics.

II. PROPOSED METHODOLOGY

A. Why HiFi-GANs?

In the case of deepfake detection, the dataset should con-

tain high quality and controllable speech samples. To create

GGMDDC, we employ HiFi-GAN speech synthesis architec-

ture, to create deepfake audio samples from the real datasets.

To choose the appropriate architecture, we surveyed several

architectures, such as Tacotron [14], Tacotron2 [15], Deep

Voice 3 [16], clariNet [17], Parallel WaveGAN [18], and many

more (as mentioned in Table I). Tacotron is an end-to-end TTS

model, which follows the seq2seq paradism to synthesis the

speech [14]. Tacotron predicts the Mel spectrogram from the

text and later on uses the Griffin-Lim reconstruction algorithm

[19] to construct the raw waveforms. However, model struggle

with unusual or unexpected text inputs, resulting in incorrect

or nonsensical outputs, and achived the MOS of 3.82 out of the

5-scale. The Tacotron2 [15] uses the recurrent seq2seq network

with an attention mechanism to predict the Mel spectrograms,

and later on vocoder transforms the Mel spectrogram to the raw

waveform. Deep Voice 3 [16], follows the fully-convolutional

architecture with monotonic attention mechanism, to minimise

the limitation of the seq2seq models for waveform synthesis,

again, the control over the prosody is the less as compared to

the Tacotron2 and achieves the MOS of the 3.62, which was

less than the first version of the Tacotron. ClariNet [17] and

Parallel WaveGAN [18] are limited to single-stage speech syn-

thesis models. Where ClariNet [17] is built on an autoregres-

sive (AR) [18] Text-to-Wave (T2W) neural network, and Paral-

lel WaveGAN employs a non-autoregressive (NAR) WaveNet

architecture. ClariNet provides faster inference speed because

of its AR structure. However, because of its fully parallel

design, Parallel WaveGAN [18] trains far more quickly than

ClariNet [17]. In particular, it takes just 2.8 days compared

to the 12.7 days for ClariNet [17]. Despite this discrepancy,

both models, i.e., ClariNet [17] [17] and parallel WaveGAN

[18] achieve most of 4.15 and 4.16, respectively, and achieve

comparable quality while synthesizing raw waveforms. One

of the major issues in almost every existing work is Real-

Time Capability (RTC), which is provided by a few models.

The RTC models have low MOS compared to HiFiGAN,

forcing us to employ HiFi-GAN for deepfake generation. As
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shown in Table I, Transformer TTS [20], HiFiGAN [6], Fre-

GAN [21], Fastspeech2 [22], Glow-TTS [23], and BigVGAN

[24]. All models perform a significant amount of the speech

synthesis quality but in terms of the other parameters, e.g.,

Quality-of-Speech (QoS), inference speed, real-time capability,

computational cost, and multiple modalities. Recent models

have significantly improved upon previous works, bringing the

quality of synthesized audio closer to natural human speech.

However, many models, such as Tacotron [14], lack the RTC or

require significant computations for fast inference. In contrast,

HiFi-GAN performs high inference speed without generat-

ing poor-quality samples [6]. In such cases, handling multi-

speakers and diverse speech modalities is essential to generate

robust deepfake audio, which tends to struggle for AR and

NAR when a dataset containing multiple speakers or different

speech styles. To balance the quality, speed, and robustness

against various inputs, make the HiFiGAN a superior choice

over other architectures like Tacotron [14], clariNET [17], and

parallel WaveGAN [5].

Additionally, they have greatly reduced training and infer-

ence times without degrading speech synthesis performance.

We initially started with the LJ Speech dataset, which includes

the speech of a single female speaker for model training.

However, despite its high quality recordings, the dataset lacks

speaker diversity, and the result could have been more optimal.

Consequently, we fine-tuned the model on the VCTK dataset

(which contains recordings from 109 speakers with various

accents and speaking styles) using transfer learning. This

approach significantly improved the ability of the model to

generate deepfake audio that closely resembles the original

speech samples in the real dataset. Fig. 1 illustrates the

high degree of similarity achieved between the original and

synthetic samples.

The generator architecture [6] is initially built using the

convolutional neural networks as shown in Fig. 2. It starts

with the convolution layers (ConvTranspose1D) and weight

normalization (each layer followed by a nonlinear activation

function f(·)), which helps to extract the different aspects of

the Mel spectrogram from the input features by decoupling

the magnitude of the weight vector from the Mel spectrogram,

also it progressively increases the temporal resolutions of the

signal, and do feature mapping-stretches over time according

to the specific upsample rates for the high frequency details.

The feature maps are refined to the final audio waveform with

the single output channel at the final layer by normalizing the

weights. However, the MRF (Multiple Receptive Field-fusion)

[26] block is also used in generator architecture because it

identifies the various lengths of hidden patterns from the Mel

spectrograms. A large receptive field helps to identify the

phonemes more effectively [4], [26]. Resblock1 and Resblock2

are multi-scale architectures that apply multiple convolutional

operations to the different delations rated to capture local and

global temporal dependencies from nonlinear transformations

and residual connections. The feature maps are refined to the

final audio waveform with the single output channel at the final
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Fig. 3. Architecture of discriminator. After [6].

layer by normalizing the weights.

1) Discriminator: The discriminator D identifies the short

and long-term dependencies on the raw waveform made by

the generator. To achieve natural-sounding speech synthesis, it

is crucial to understand the long-term dependencies in speech

signal. This ensures that the generated speech closely mimics

natural human speech. Studies reported in [4], [14] treat audio

as a sinusoidal signal with varying periods to capture the

nonlinear correlations between different phonemes.

To capture various repeating patterns, the discriminator

(refer Fig. 3) is divided into two sub-discriminators: (1)
Multi-Period Discriminator (MPD), and (2) Multi-Scale
Discriminator (MSD). DMPD is a mixture of multiple sub-

discriminators. It tries to capture the implicit features of

the raw waveform with a different period sizes to avoid

overlapping from a length, T. Mathematical representation

as follows in Eq. (1), where N represents the number of

sub-discriminators, D denotes the contribution of each sub-

discriminator to the overall discriminator’s decision, i.e.,

DMPD =

N∑
i=1

Di. (1)

DMSD architecture was proposed first by Kumar et al. [26].

MSD combines the three sub-discriminators, e.g., raw audio,

*2 average-pooled audio, and *4 average-pooled audio. Each

of the discriminator convolutions is covered using the leaky

ReLU. Discriminator uses the weight and spectral normaliza-

tion [27] to do stable training, and avoid exploding gradient

problems in discriminator networks.

2) Loss Functions: As the original papers of the GANs

[28], [29] utilize minimax as shown in Eq. (2) and Wasserstein

loss functions, operating on distance or probability distri-

butions between generated and real data. Minimax loss es-

tablishes a competitive game for realistic sample generation.

Wasserstein loss in WGANs focuses on minimizing Wasser-

stein distance for smoother gradients. In particular,

max
D

V (D) = Ex[log(D(x))] + Ez[log(1−D(G(z)))]. (2)

Loss function makes a balance between the generator and

discriminator. WGAN refines Wasserstein loss with a gradient

penalty, enhancing stability in GAN training. The loss function

of both networks is next.

1) Generator Loss Function: Let G denote the generator,

D denote the discriminator, and α be a reward/penalty
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TABLE I
COMPARISON OF VARIOUS ARCHITECTURES BASED ON VARIOUS EVALUATION FACTORS

Architecture Dataset 5-Scale MOS QoS
(MOS)

Inference
Speed RTC$ Multiple

Modalities
Computati-
onal Cost Limitations

Tacotron [14] NAE 3.82±0.08* Fair Moderate No Moderate Moderate
Alignment issues and artifacts issues
generates mechanical-sounding voice.

Tacotron 2 [15] LJ Speech 4.52±0.06* Good Moderate No Good High
Slower inference speed and higher
computational cost.

Deep Voice
3 [16]

VCTK 3.01±0.29* Fair Moderate No Good High Higher computational requirements.

ClariNet [17] IES 4.15±0.25* Good Moderate No Excellent Moderate
Training can be complex and
resource-intensive.

Parallel
WaveGAN [18]

Custom
Dataset

4.16±0.09* Good Very Fast Yes Good Low
May not capture fine speech details
as well as others.

Transformer
TTS [20]

US English
female

4.44±0.05* Good Moderate No Good Moderate Requires significant training data.

HiFi-GAN [25] LJSpeech 4.36±0.07* Good 1,186× Yes Excellent Moderate Can be resource-intensive in some
cases.

Fre-GAN [21] LJ Speech 4.25±0.04 Good Moderate No Good Moderate
Requires careful tuning for best
results.

FastSpeech
2 [22]

LJ Speech 3.83±0.08 Fair Very Fast Yes Good Low
Lower expressiveness compared to
some models.

Glow-TTS [23] LJ Speech 4.01±0.08 Good Moderate No Good Moderate More complex training process.

BigVGAN [24] LibriTTS 4.11±0.09 Good Fast Yes Good Low May struggle with very diverse speakers.

* shows confidence interval is 95%. $ RTC - Real-Time Capability, NAE - North Americal English, QoS = Quality of Speech.

factor. The generator loss (LG) can be formulated, in

simple words as:

GL = [α · reward + (1− α) · penalty]. (3)

In the other words,

GL = θg
1

m

m∑
i=1

log(1−D(G(z(i)))). (4)

2) Discriminator Loss Function: Let G denote the gen-

erator, D denote the discriminator, and α be a re-

ward/penalty factor. The discriminator loss (LD) can be

formulated as follows, in simple words:

DL =
1

m

m∑
i=1

[
logD(x(i))+log(1−D(G(z(i))))

]
. (5)

It penalizes itself for misclassifying a real instance as

fake or a fake instance (created by the generator) as real

by maximizing the Eq. (5).

3) Training Paradigm: The training paradigm of the HiFi-

GAN follows the Goodfellow et al. [28]. The primary goal of

GAN training is to find an equilibrium, where the generator

produces realistic data that fool the discriminator. As per Eq.

(6):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))].
(6)

The training of the HiFi-GAN is being used for speech-related

tasks, e.g., ASR, Text-to-Speech (TTS) synthesis [26]. Training

is set up using the multiple loss functions described earlier.

III. DATASET FORMATION

This Section proposes the presents dataset structure and its

design details. Due to the limited language resources, the au-

thors were unable to collect data manually as real samples were

collected for our dataset. Alternatively, in this study, we pro-

pose a dataset in which we generated 40,000 deepfake samples

of real utterances that were collected from the VoxLingua107

dataset [30], which is one of the most popular largest open

source multilingual dataset for Spoken Language Identification

(SLID) task. VoxLingua107 was formed by recording utter-

ances from 107 different languages and data from 6628 hours.

Limited to storage resources, authors could not create a dataset

for more than 10 languages, namely, Russian, French, Arabic,

Spanish, Vietnamese, Mandarin Chinese, English, Hindi, Por-

tuguese, and Sanskrit. Around 11.35 hours of data was selected

from each language having based on time duration statistics.

Comprising 10 languages in the GGMDDC, it is also robust

to speaker’s dialects. To our best knowledge and belief, this

is the first study of its kind that employs and proposes the

corpus, which contains both the real and the corresponding

fake utterances of each speaker w.r.t. text material used for

the recordings. The total number of utterances in the proposed

dataset is 80,000 (40,000 real and 40,000 fake), making it one

of the largest datasets among currently available open source

datasets in the literature. Dataset statistics and demo is publicly

available at 1.

A. Real Data

First, we collected all the samples available from the

VoxLingua107 dataset (which is an open source freely avail-

able dataset) [30]. We labeled them into 5 classes based on the

audio duration of particular samples, namely, A (0-5 seconds),

1For more details, https://iamshreeji-copy1.github.io/submission_website/
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B (5-10 seconds), C (10-15 seconds), D (15-20 seconds), and E

(> 20 seconds). After that, we selected 1,000 random samples

(except in one (Sanskrit) class) from each class collectively

to form a dataset of total of 111.16 hours (40,000 samples)

of real data. We eliminated the issue due to audio sample size

dependencies by selecting the variable length audio. In order to

generalize sampling rate to 16 kHz, all audios of VoxLingua107

were resampled to 16 kHz before generating deepfake files

from it. The resampling process was carried out in order to

generalize the dataset.

B. Fake Data

We use the model based on HiFi-GANs to generate deep-

fakes from the real signal (described in subsection II-A). We

employed to process the real audio and generate the deepfake

audio of the same speaker with the same utterance spoken in

the original sample. HiFi-GAN generated deepfake illustrate

almost similar properties as the real signals. Audio-based

comparison of generated deepfakes and real, as discussed in

sub-Section I-A, illustrates the difficulties in distinguishing

between fake vs. real. Due to their perfect creation (i.e., high

perceptual similarity), these generated deepfakes are extremely

difficult to distinguish between human ears. As the dataset is

generated by sophisticated machine learning/DL methods, it

also aims to fool the ADD system and humans.

C. Results

Table II compares the performance of various datasets

using several metrics, namely Perceptual Evaluation of Speech
Quality (PESQ), Short-Time Objective Intelligibility (STOI),

Fréchet Distance, Mean Opinion Score (MOS), Subjective
Mean Opinion Score (SMOS), and Mel Cepstral Distortion
(MCD). The proposed dataset demonstrates superior perfor-

TABLE II
COMPARISON W.R.T. VARIOUS EXISTING DATASETS

Dataset PESQ STOI Frechet
Distance MCD MOS SMOS

FoR [8] 1.02 -0.01 228.74 4.12 4.02 24.95
ITW [9] 1.06 0.22 287.66 34.20 3.64 3.46

Singfake [10] 1.32 0.07 324.31 34.22 4.36 4.38
Wavfake [13] 2.91 0.95 276.3 34.82 4.4 4.11

Proposed 1.02 0.12 220.22 23.63 4.52 4.39

mance across these metrics. Specifically, it achieves a PESQ

score of 1.0213, which is competitive with the other datasets.

The STOI score of 0.1224 is notably higher, indicating better

intelligibility. Additionally, the proposed dataset records the

lowest Frechet distance of 220.22, suggesting it generates

deepfakes that are perceptually closest to the real audio.

The Mean Opinion Score (MOS) of 4.52, and Subjective

Mean Opinion Score (SMOS) of 4.39 are the highest among

all datasets, reflecting higher quality and naturalness of the

generated audio. Lastly, the Mel Cepstral Distortion (MCD)

score of 23.638 is the lowest, indicating better spectral qual-

ity. These results collectively demonstrate that the proposed

dataset, when used with HiFi-GAN, is capable of generating

more convincing and high quality deepfakes compared to the

existing datasets.

IV. SUMMARY AND CONCLUSIONS

In this study, we proposed GGMDDC dataset, which is

generated using recently proposed, HiFi-GAN. Real data in

GGMDDC dataset was acquired from VoxLingua107 dataset,

whose deepfakes were generated GGMDDC. Total of 40,000

files collectively form GGMDDC dataset. A proposed dataset

is a multilingual dataset, which consists of 10 different lan-

guages, resulting into a wide application of dataset. We also

proposed a few experiments on GGMDDC dataset, result-

ing into a comparable accuracy. Future works involve more

detailed experimentation and analysis on proposed dataset

using advanced DL methods. One key limitation of this study

would be the GAN architecture used in this work use pre-

trained models in English to generate multilingual voices in 10

different languages. Limitations of this study include training

GANs on the LJ Speech and VCTK dataset, i.e., a single

language dataset. Capturing the critical phoneme patterns of

different languages is challenging when using a dataset from

just one language. In the future, We aim to address this lim-

itation by training the model on diverse languages and large-

scale datasets to overcome this issue. However, the model’s

effectiveness will increase when trained on the multilingual

dataset and provides the generalized diverse and dialects

linguistic characteristics to identify the deepfake. The rapid

involvement of the deepfake generation is already a challenge

for deepfake detection. Implementing the robust multilingual

dataset is computationally intensive due to the detection in

diverse scenarios in real-time, which makes ongoing research

on ADD more complicated and challenging, which remains an

open research challenge associated with our detection process.
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