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Abstract—This paper addresses the quantile regression task
when some non-negligible portion of data are corrupted by
accidental factors such as temporary sensor malfunctions. Here,
the task is to find the empirical quantile of the “reliable” data
with the “unreliable” ones excluded. For this task, we propose the
MC-pinball loss which is the composition of the minimax concave
(MC) penalty and the pinball loss. The simulation results show
that the proposed approach yields reasonable estimates of the
true quantile. A potential benefit of the proposed approach is
also shown with respect to the parameter tuning.

I. Introduction
Quantile regression [1] has been studied for more than

half a century, and it has been applied to various problems,
including wind power generation [2], [3], power forecast [4],
wage estimation [5], [6], gold price estimation [7], to name
just a few. It still remains an active research topic in many
areas including signal processing [8] and statistics [9].

We consider the situation where the input vectors (xi)
m
i=1

and the outputs (yi)
m
i=1 are given. The key assumption here

is that a non-negligible portion of the outputs are corrupted
by accidental factors such as temporary sensor malfunctions,
measurement/transmission errors, and human errors. Those
outputs will be referred to as unreliable data. The rest of the
outputs are reliable data assumed to be modeled well by means
of linear estimation. As such, we define the residual vectors

ε := [ε1, ε2, · · · , εm]> := y −Xθ? ∈ Rm, (1)

where y := [y1, y2, · · · , ym]> ∈ Rm, X :=
[x1 x2 · · · xm]> ∈ Rm×n, and θ? ∈ Rn is the ‘true’
regression vector.

The deterministic xis, yis, and εis are samples of random
vector X and rondom variables Y and ε, respectively. Here,
ε obeys a mixture of distributions of which the probability
density function is given by

h(ε) := (1− β)f(ε) + βg(ε), ε ∈ R, (2)

where f is the density of ε for reliable data, and g is that for
unreliable data with its proportion β ∈ [0, 1]. The set of εis
for reliable data is denoted by Dr = (εi)i∈Ir

(⊂ D := (εi)i∈I),
where Ir ⊂ I := {1, 2, · · · ,m}. The conditional density of Y
given X = x is given by hY (y | X = x) = h(y − x>θ?),
where y − x>θ? = ε. We also define fY (y | X = x) =
f(y − x>θ?) and gY (y | X = x) = g(y − x>θ?).

To clarify the concept, the situation under consideration is
illustrated in Fig. 1. The reliable data are concentrated, while
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Fig. 1: An example of density of ε. Circle/cross indicates εi(= yi −
x>

i θ?) for reliable/unreliable data.

the unreliable data reside in those regions which are apart from
the region of reliable data. Suppose, for instance, that one is
interested in the traffic of wireless communication, or more
specifically, one would like to know such an interval in which
the “actual” traffic falls with a prespecified probability. In this
context, each “reliable” datum yi is the actual traffic given xi,
and εi is the mismatch from its ‘best’ linear approximation
in some sense. In this case, yi is regarded as a sample of Y
generated from fY (Y | X = xi). The “unreliable” data, on
the other hand, deviate from the actual traffic, and those data
may cause fatal errors in quantile regression.

Keeping the above arguments in mind, the desirable interval
would be estimated by finding the empirical quantiles using the
dataset that solely contains the “reliable” data. Since separating
those reliable and unreliable data is a nontrivial task, the
goal of the current study is to build a loss function which is
insensitive to the “unreliable” data so that its minimizer gives a
reasonable estimate of the empirical quantiles of the “reliable”
data. The so-called pinball loss (an asymmetric least absolute
deviation) is typically used for quantile regression, and the
question address in this work is how to make it insensitive to
the “unreliable” data.

In this paper, we first consider the use of Moreau enhance-
ment of the pinball loss function, motivated by the fact that the
Moreau enhancement of the absolute-value function has been
used successfully for robust signal recovery [10]. It then turns
out to be undesirable for the present task. We therefore propose
an alternative approach based on the MC-pinball loss which
is a composition of the pinball loss with the minimax concave
(MC) penalty [11], [12]. The proposed loss has a couple of
nice properties leading to insensitivity to the unreliable data.
Numerical studies are presented with f being the Gaussian



distribution and with g being three different distributions: the
uniform distribution, the gamma distribution, and a point mass
(Dirac’s delta function). We demonstrate that the proposed
approach yields a good estimate of the true quantile in terms of
system mismatch (the quantile estimation error) and coverage
rate even for a large β up to 0.5, while the performance of
the conventional approach based on the pinball loss degrades
sharply as β increases slightly from zero.

II. Robust Quantile Regression Problem under
Unreliable Data

Throughout the paper, let N, R, and R++ denote the sets of
nonnegative integers, real numbers, and strictly positive real
numbers, respectively. Let X be a real-valued random vector of
dimension n ∈ N∗ := N\{0}, and Y be a real-valued random
variable which is related to X . The αth conditional quantile
function of Y given X = x is defined by qα(x) := inf{y ∈
R : F (y | X = x) ≥ α}, where X may be characterized by
its (right-continuous) distribution function F (y | X = x) :=
P{Y ≤ y | X = x} [1], [9].

In practical applications, the data could be changed into
completely different values due to a variety of reasons during
the data acquisition/transmission process. Such “unreliable”
data do not obey the true distribution, and hence the empirical
αth quantile using the whole dataset containing the unreliable
data could be significantly different from of the data distri-
bution. The task is therefore to estimate the αth empirical
quantile of the set of “reliable” data, which is expected to be
a reasonable estimate of the true quantile of fY (y | X = x).
Here, we assume implicitly that those unreliable data reside
mostly in those regions which are apart from the bulk of
reliable data, i.e., such unreliable data that are mixed up with
the reliable one are supposed to give negligible impacts on the
estimation. See Fig. 1.

The αth empirical quantile x>θ̂α at x from the training
dataset is obtained via minimization of the pinball loss function
[1]

∑m
i=1 ρα(yi − x>

i θ), where (see Fig. 2)

ρα : R → [0,+∞) : z 7→

{
αz, if z ≥ 0,

−(1− α)z, otherwise.
(3)

In the present scenario, the empirical quantile obtained with
the pinball loss would be an estimate of the quantile of hY (y |
X = x), while what is desired to estimate is the quantile of the
density fY (y | X = x) of the reliable data. In the following
section, we present a modified loss function to seek for the
empirical quantile of the reliable data.

III. Proposed Approach to Robust Quantile Regression

Under the implicit assumption stated in the previous section,
the idea is to modify the pinball loss in such a way that it
saturates when |z| exceeds some thresholds. A similar idea
has been studied in the context of robust signal recovery [10]

− 15 − 10 − 5 0 5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

pinball = 0 .9

pinball = 0 .7

proposed = 0 .9

proposed = 0 .7

( )

( )

( )

( )

Fig. 2: Pinball and proposed losses (α = 0.7, 0.9)

using the MC penalty [11], [12]

φMC
γ : R → [0,+∞) : z 7→


|z| − 1

2γ
z2, if |z| < γ,

1

2
γ, otherwise,

(4)

where γ ∈ R++ is the saturation factor.
In fact, the MC penalty can be expressed as φMC

γ = | · |
− γ | · |. Here, for any convex function f : R → R, its Moreau
envelope of index γ > 0 is defined by

γf(z) := min
x∈R

(
f(z) +

1

2γ
(z − x)2

)
, z ∈ R. (5)

The function φMC
γ has an enhanced sparsity-promoting prop-

erty owing to the Moreau envelope γ | · | of | · |, and thus φMC
γ

is referred to as the Moreau enhancement [13] of | · |.
We first consider a straightforward approach of applying

the Moreau enhancement to the pinball loss. This approach,
however, will turn out to be undesirable in the present context.
Therefore, we propose an alternative approach by composing
the two functions ρα and φMC

γ , and we finally compare it with
the straightforward approach.

A. Moreau-enhanced Pinball Loss and Its Issues
The Moreau-enhanced pinball function is given by

φα,γ : R → [0,+∞) : z 7→ ρα(z)− γρα(z)

=



α2

2
γ, if z ≥ αγ,

αz − 1

2γ
z2, if 0 ≤ z < αγ,

−(1− α)z − 1

2γ
z2, if − (1− α)γ < z < 0,

(1− α)2

2
γ, otherwise.

(6)

The process of generating φα,γ from | · | is indicated in
Fig. 3 by the blue arrow. Different weights are given to each
side of | · | to obtain the pinball loss ρα (bottom left). The
Huberized pinball (bottom middle, the Moreau envelope of
ρα) is subtracted from ρα to obtain φα,γ . It can be seen that
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Fig. 3: The generation processes of the proposed loss φMC-pin
α,γ and the Moreau-enhanced pinball loss φα,γ for α = 0.9.

the constants after saturation for φα,γ significantly differ from
each other on both sides of the real line. Because of this,
φα,γ encourages a larger portion of data than the desirable
proportion α stay on the left side if α ≈ 1 (or on the right
side if α ≈ 0).

Viewing Fig. 3 under (6), moreover, it can be seen that
the ranges of nonzero gradient on the left and right sides are
proportional to 1−α and α, respectively. Indeed, the quantile
estimate needs to be such that the number of data on each
side is proportional to α and 1 − α. If ε for reliable data is
uniformly distributed, for instance, the nonzero-gradient ranges
are desired to share the same proportion. In this specific case,
the ranges for φα,γ have the reciprocal proportion, implying
that φα,γ is undesirable to separate undesirable data from (the
bulk of) reliable ones. To resolve those issues mentioned above,
we propose an alternative approach in the following subsection.

B. Proposed Loss Function

We define the MC-pinball function as follows:

φMC-pin
α,γ : R → [0,+∞) : z 7→ φMC

γ ◦ ρα(z)

=


αz − α2

2γ
z2, if 0 ≤ z ≤ 1

α
γ,

−(1− α)z − (1− α)2

2γ
z2, if − 1

(1− α)
γ < z ≤ 0,

1

2
γ, otherwise,

(7)

where γ ∈ R++ governs the points at which the gradient
vanishes. The task of estimating the empirical quantile of

reliable data is cast as the following minimization problem:

min
θ∈Rn

ΦMC-pin
α,γ (y −Xθ) :=

m∑
i=1

φMC-pin
α,γ (yi − x>

i θ). (8)

The MC-pinball function φMC-pin
α,γ is depicted in Fig. 2. It

approximates the pinball loss well in the vicinity of the origin,
while it saturates on both sides of the real axis. The generation
process of the proposed loss is indicated by the red arrow in
Fig. 3. As stated already, the MC loss (top right) is generated
by subtracting the Huber function (top middle: the Moreau
envelope of | · |) from | · | (top left). It is then composed with
ρα to obtain the proposed loss φMC-pin

α,γ (bottom right).
Comparing the two graphs in the bottom-right panel of

Fig. 3 under (4), φMC-pin
α,γ possesses the following remarkable

properties: (i) the constants γ/2 after saturation coincides on
both sides with each other, and (ii) the nonzero-gradient ranges
are proportional to α and 1 − α. These are in sharp contrast
to the case of φα,γ , and φMC-pin

α,γ is free from the issues of
φα,γ raised in Section III-A. Indeed, the range proportion is
desirable when ε for reliable data is uniformly distributed, and
the proposed loss works well when it is normally distributed,
as shown by simulations in Section IV.

Thanks to properties (i) and (ii), a solution of the problem
in (8) tends to give a robust estimate of the true quantile.
To obtain an intuition, suppose, under property (ii), that the
reliable data reside in the vicinity of the empirical quantile of
the reliable data, and that the unreliable data are scattered in
the saturated region (see Fig. 1). In this case, the empirical
quantile is likely a minimizer of the MC-pinball loss for the
reliable data in an approximate sense. Importantly, moreover,



the unreliable data do not affect the minimizer, because a slight
deviation from the empirical quantile of the reliable data does
not change the losses at all for those unreliable data owing to
property (i). Consequently, a solution of (8) would be a good
approximation of the empirical quantile of the reliable data
(and thus a reasonable estimate of the true quantile).

Remark 1. The proposed loss has the following asymp-
totic properties: (i) limγ→+∞ φMC-pin

α,γ = ρα, and (ii)
limγ↓0(γ/2)φ

MC-pin
α,γ = ‖ · ‖0. This implies that γ needs to be

tuned appropriately. Fortunately, our numerical studies suggest
that the proposed loss gives a good performance for γ chosen
from a reasonably wide range.

IV. Numerical Examples
We conduct simulations to show that the proposed approach

yields robust estimates of the true quantiles under a variety
of situations. After presenting the simulation conditions, we
show how the performance changes as the proportion β of
unreliable data changes. We then show insensitivity of the
proposed approach to the choice of the parameter γ.

A. Simulation conditions
Throughout, we consider the quantile regression for α =

0.1, 0.9 to find the 80% interval with the top and bottom 10
percents excluded. The input matrix X ∈ Rm×n (m = 2000,
n = 11) and the regression vector θ? ∈ Rn are i.i.d. with
the uniform distribution U [0, 1] and the standard Gaussian
distribution, respectively.1 The output vector is generated as
y := Xθ? + ε, where ε ∈ Rm is i.i.d. with the densities
f and g described below. The residuals εi of reliable data
are generated from the Gaussian mixture distribution f(ε) :=
1

3

1√
2π · 0.12

exp

(
− (ε+ 0.5)2

2 · 0.12

)
+

2

3

1√
2π · 0.22

exp

(
−

(ε− 0.5)2

2 · 0.22

)
. For the generation of εi of unreliable data, we

consider three types of distributions (see Fig. 4): (i) the uniform

distribution g1(ε) :=


1

2a
, −a ≤ ε ≤ a,

0, otherwise,
for a := 50, (ii) the

gamma distribution g2(ε) := b exp
(
−bε

)
, ε > 0, for b := 100,

and (iii) the point mass g3(ε) := δ(ε− c) for c := 100, where
δ is Dirac’s delta.

Two experiments are conducted.
Experiment A: The performance is compared for different
proportions β of unreliable data for the tuned parameter
γ := 2.0.
Experiment B: The performance of the proposed approach is
tested for different saturation factors γ for β = 0.3.

To seek for a stationary point of the proposed loss in (8),
we employ Algorithm 1, where

∇θΦ
MC-pin
α,γ (y −Xθ) =

m∑
i=1

∇θφ
MC-pin
α,γ (yi − x>

i θ). (9)

1Following the convention, the last component of each row vector is a
constant so that the last component of θ? represents the bias term.

Algorithm 1 generalized gradient descent
Set θ0 := 0, γ ∈ R++, µ ∈ R++.
For k = 0, 1, 2, · · ·
θk+1 := θk − µ∇θΦ

MC-pin
α,γ (y −Xθk)

Here, ∇θφ
MC-pin
α,γ (yi − x>

i θ) = −∇zφ
MC-pin
α,γ (yi − x>

i θ)xi,
where

∇zφ
MC-pin
α,γ (z) ∈ ∂zφ

MC-pin
α,γ (z) = (10)

{
α− α2 z

γ

}
, if 0 < z ≤ 1

α
γ,{

− (1− α)− (1− α)2
z

γ

}
, if − 1

1− α
γ ≤ z < 0,

[−(1− α), α], if z = 0,

{0}, otherwise.
(11)

Here, ∂z is Clarke’s generalized gradient operator with respect
to z [14]. In simulations, we simply let ∇zφ

MC-pin
α,γ (0) = 0 ∈

[−(1− α), α].
The stepsize is set to µ = 0.001. The performance is

evaluated with test datasets of sample size 1000 (generated
in the same way as the training datasets) by two metrics: (i)

the system mismatch
‖θ̂α − θα,?‖22

‖θα,?‖22
with the `2 norm ‖ · ‖2,

where θ̂α is the estimate of the true αth quantile θα,?, and (ii)
coverage rate

1

|Ir|
∑

i∈Ir
1Sy(xi)(yi), where |Ir| is the number

of reliable data, and

1S(xi)(yi) :=

{
1 if yi ∈ S(xi) := [x>

i θ̂0.1,x
>
i θ̂0.9],

0 otherwise.
(12)

The results are averaged over 300 independent trials.

B. Experiment A: Robustness under different proportions β of
unreliable data

The results are plotted in Fig. 5 for each density of unreliable
data. For all types of density, the proposed approach attains low
system mismatches and coverage rates close to the target rate
0.8 (= 0.9 − 0.1) over the whole range of β. (The average
error rates of coverage rate for each distribution gi were (d)
6.0× 10−3, (e) 6.0× 10−3, and (f) 6.5× 10−3.) This means
that the proposed approach enjoys remarkable robustness for
quantile regression even when the proportion of unreliable data
is large. As expected, on the other hand, the performance of
the pinball loss deteriorates significantly.

To be more specific, we focus on the case of uniform
distribution g1. In this case, unreliable data arise both above
and below the region of reliable data, making the upper and
lower quantile estimates be larger and smaller, respectively, so
that the interval expands with β. This is the reason why both
upper and lower mismatches (the system mismatches of both
upper and lower quantiles) increase with β. Let us now turn
our attention to the cases of g2 and g3. In contrast to the case
of g1, unreliable data arise only above the reliable-data region.
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Fig. 4: Samples of ε generated from 0.7f + 0.3gi, i ∈ {1, 2, 3}, i.e., β := 0.3.
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Fig. 5: Results of Experiment A: performance comparisons for different proportions of unreliable data.

Because of this, the upper mismatch increases sharply when β
reaches 0.1 so that yi−x>

i θ̂0.9 exceeds some part of εis of the
unreliable data. Once x>

i θ̂0.9 exceeds all yis of the “reliable”
data, the coverage rate starts to decrease due to the gradual
increase of x>

i θ̂0.1.

C. Experiment B: Insensitivity to the choice of γ

Fig. 6 shows the results for Experiment B. For all densities
gi, the performance is stable in the neighborhood of the best γ
in both metrics. Remarkably, the range of good γ is common
among the three cases; i.e., a γ ∈ [1, 10] gives reasonably good
performance for all gis. This indicates the saturation parameter
γ would be simple to tune. This is a potential advantage of the
proposed approach. As expected from the arguments presented

in Remark 1, a too large or too small γ gives deteriorated
performance.

V. Concluding Remarks

We proposed the MC-pinball loss for the task of robust
quantile regression in the presence of unreliable data. The
proposed loss is the composition of the MC penalty and
the pinball loss, enjoying the nice properties as opposed to
the Moreau-enhanced pinball loss. The numerical examples
suggested that the proposed approach yields robust estimates
of the true quantile in the presence of unreliable data. The
potential benefit of the proposed approach was also shown in
terms of the parameter tuning.

Although the proposed loss is nonconvex, there was no
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Fig. 6: Results of Experiment B: insensitivity to the choice of γ.

issue of dependency on the initialization nor local minima
etc. in our simulations. This may suggest that the proposed loss
could have benign nonconvex landscapes, which needs further
detailed investigations. Sensor malfunctions or measurement
errors (which could be the source of unreliable data) are
typically tackled at the hardware level, and the human errors
are handled by costly preprocessing. Those errors could be
supported by the proposed approach at the software level, and
this is a potential advantage from the practical viewpoint.
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